| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2017-2022 Linaro Ltd |
| * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved. |
| * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved. |
| */ |
| #include <linux/bits.h> |
| #include <linux/bitfield.h> |
| #include <linux/led-class-multicolor.h> |
| #include <linux/module.h> |
| #include <linux/nvmem-consumer.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pwm.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| #include <linux/soc/qcom/qcom-pbs.h> |
| |
| #define LPG_SUBTYPE_REG 0x05 |
| #define LPG_SUBTYPE_LPG 0x2 |
| #define LPG_SUBTYPE_PWM 0xb |
| #define LPG_SUBTYPE_HI_RES_PWM 0xc |
| #define LPG_SUBTYPE_LPG_LITE 0x11 |
| #define LPG_PATTERN_CONFIG_REG 0x40 |
| #define LPG_SIZE_CLK_REG 0x41 |
| #define PWM_CLK_SELECT_MASK GENMASK(1, 0) |
| #define PWM_CLK_SELECT_HI_RES_MASK GENMASK(2, 0) |
| #define PWM_SIZE_HI_RES_MASK GENMASK(6, 4) |
| #define LPG_PREDIV_CLK_REG 0x42 |
| #define PWM_FREQ_PRE_DIV_MASK GENMASK(6, 5) |
| #define PWM_FREQ_EXP_MASK GENMASK(2, 0) |
| #define PWM_TYPE_CONFIG_REG 0x43 |
| #define PWM_VALUE_REG 0x44 |
| #define PWM_ENABLE_CONTROL_REG 0x46 |
| #define PWM_SYNC_REG 0x47 |
| #define LPG_RAMP_DURATION_REG 0x50 |
| #define LPG_HI_PAUSE_REG 0x52 |
| #define LPG_LO_PAUSE_REG 0x54 |
| #define LPG_HI_IDX_REG 0x56 |
| #define LPG_LO_IDX_REG 0x57 |
| #define PWM_SEC_ACCESS_REG 0xd0 |
| #define PWM_DTEST_REG(x) (0xe2 + (x) - 1) |
| |
| #define SDAM_REG_PBS_SEQ_EN 0x42 |
| #define SDAM_PBS_TRIG_SET 0xe5 |
| #define SDAM_PBS_TRIG_CLR 0xe6 |
| |
| #define TRI_LED_SRC_SEL 0x45 |
| #define TRI_LED_EN_CTL 0x46 |
| #define TRI_LED_ATC_CTL 0x47 |
| |
| #define LPG_LUT_REG(x) (0x40 + (x) * 2) |
| #define RAMP_CONTROL_REG 0xc8 |
| |
| #define LPG_RESOLUTION_9BIT BIT(9) |
| #define LPG_RESOLUTION_15BIT BIT(15) |
| #define PPG_MAX_LED_BRIGHTNESS 255 |
| |
| #define LPG_MAX_M 7 |
| #define LPG_MAX_PREDIV 6 |
| |
| #define DEFAULT_TICK_DURATION_US 7800 |
| #define RAMP_STEP_DURATION(x) (((x) * 1000 / DEFAULT_TICK_DURATION_US) & 0xff) |
| |
| #define SDAM_MAX_DEVICES 2 |
| /* LPG common config settings for PPG */ |
| #define SDAM_START_BASE 0x40 |
| #define SDAM_REG_RAMP_STEP_DURATION 0x47 |
| |
| #define SDAM_LUT_SDAM_LUT_PATTERN_OFFSET 0x45 |
| #define SDAM_LPG_SDAM_LUT_PATTERN_OFFSET 0x80 |
| |
| /* LPG per channel config settings for PPG */ |
| #define SDAM_LUT_EN_OFFSET 0x0 |
| #define SDAM_PATTERN_CONFIG_OFFSET 0x1 |
| #define SDAM_END_INDEX_OFFSET 0x3 |
| #define SDAM_START_INDEX_OFFSET 0x4 |
| #define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET 0x6 |
| #define SDAM_PAUSE_HI_MULTIPLIER_OFFSET 0x8 |
| #define SDAM_PAUSE_LO_MULTIPLIER_OFFSET 0x9 |
| |
| struct lpg_channel; |
| struct lpg_data; |
| |
| /** |
| * struct lpg - LPG device context |
| * @dev: pointer to LPG device |
| * @map: regmap for register access |
| * @lock: used to synchronize LED and pwm callback requests |
| * @pwm: PWM-chip object, if operating in PWM mode |
| * @data: reference to version specific data |
| * @lut_base: base address of the LUT block (optional) |
| * @lut_size: number of entries in the LUT block |
| * @lut_bitmap: allocation bitmap for LUT entries |
| * @pbs_dev: PBS device |
| * @lpg_chan_sdam: LPG SDAM peripheral device |
| * @lut_sdam: LUT SDAM peripheral device |
| * @pbs_en_bitmap: bitmap for tracking PBS triggers |
| * @triled_base: base address of the TRILED block (optional) |
| * @triled_src: power-source for the TRILED |
| * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register |
| * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register |
| * @channels: list of PWM channels |
| * @num_channels: number of @channels |
| */ |
| struct lpg { |
| struct device *dev; |
| struct regmap *map; |
| |
| struct mutex lock; |
| |
| struct pwm_chip *pwm; |
| |
| const struct lpg_data *data; |
| |
| u32 lut_base; |
| u32 lut_size; |
| unsigned long *lut_bitmap; |
| |
| struct pbs_dev *pbs_dev; |
| struct nvmem_device *lpg_chan_sdam; |
| struct nvmem_device *lut_sdam; |
| unsigned long pbs_en_bitmap; |
| |
| u32 triled_base; |
| u32 triled_src; |
| bool triled_has_atc_ctl; |
| bool triled_has_src_sel; |
| |
| struct lpg_channel *channels; |
| unsigned int num_channels; |
| }; |
| |
| /** |
| * struct lpg_channel - per channel data |
| * @lpg: reference to parent lpg |
| * @base: base address of the PWM channel |
| * @triled_mask: mask in TRILED to enable this channel |
| * @lut_mask: mask in LUT to start pattern generator for this channel |
| * @subtype: PMIC hardware block subtype |
| * @sdam_offset: channel offset in LPG SDAM |
| * @in_use: channel is exposed to LED framework |
| * @color: color of the LED attached to this channel |
| * @dtest_line: DTEST line for output, or 0 if disabled |
| * @dtest_value: DTEST line configuration |
| * @pwm_value: duty (in microseconds) of the generated pulses, overridden by LUT |
| * @enabled: output enabled? |
| * @period: period (in nanoseconds) of the generated pulses |
| * @clk_sel: reference clock frequency selector |
| * @pre_div_sel: divider selector of the reference clock |
| * @pre_div_exp: exponential divider of the reference clock |
| * @pwm_resolution_sel: pwm resolution selector |
| * @ramp_enabled: duty cycle is driven by iterating over lookup table |
| * @ramp_ping_pong: reverse through pattern, rather than wrapping to start |
| * @ramp_oneshot: perform only a single pass over the pattern |
| * @ramp_reverse: iterate over pattern backwards |
| * @ramp_tick_ms: length (in milliseconds) of one step in the pattern |
| * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern |
| * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern |
| * @pattern_lo_idx: start index of associated pattern |
| * @pattern_hi_idx: last index of associated pattern |
| */ |
| struct lpg_channel { |
| struct lpg *lpg; |
| |
| u32 base; |
| unsigned int triled_mask; |
| unsigned int lut_mask; |
| unsigned int subtype; |
| u32 sdam_offset; |
| |
| bool in_use; |
| |
| int color; |
| |
| u32 dtest_line; |
| u32 dtest_value; |
| |
| u16 pwm_value; |
| bool enabled; |
| |
| u64 period; |
| unsigned int clk_sel; |
| unsigned int pre_div_sel; |
| unsigned int pre_div_exp; |
| unsigned int pwm_resolution_sel; |
| |
| bool ramp_enabled; |
| bool ramp_ping_pong; |
| bool ramp_oneshot; |
| bool ramp_reverse; |
| unsigned short ramp_tick_ms; |
| unsigned long ramp_lo_pause_ms; |
| unsigned long ramp_hi_pause_ms; |
| |
| unsigned int pattern_lo_idx; |
| unsigned int pattern_hi_idx; |
| }; |
| |
| /** |
| * struct lpg_led - logical LED object |
| * @lpg: lpg context reference |
| * @cdev: LED class device |
| * @mcdev: Multicolor LED class device |
| * @num_channels: number of @channels |
| * @channels: list of channels associated with the LED |
| */ |
| struct lpg_led { |
| struct lpg *lpg; |
| |
| struct led_classdev cdev; |
| struct led_classdev_mc mcdev; |
| |
| unsigned int num_channels; |
| struct lpg_channel *channels[] __counted_by(num_channels); |
| }; |
| |
| /** |
| * struct lpg_channel_data - per channel initialization data |
| * @sdam_offset: Channel offset in LPG SDAM |
| * @base: base address for PWM channel registers |
| * @triled_mask: bitmask for controlling this channel in TRILED |
| */ |
| struct lpg_channel_data { |
| unsigned int sdam_offset; |
| unsigned int base; |
| u8 triled_mask; |
| }; |
| |
| /** |
| * struct lpg_data - initialization data |
| * @lut_base: base address of LUT block |
| * @lut_size: number of entries in LUT |
| * @triled_base: base address of TRILED |
| * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register |
| * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register |
| * @num_channels: number of channels in LPG |
| * @channels: list of channel initialization data |
| */ |
| struct lpg_data { |
| unsigned int lut_base; |
| unsigned int lut_size; |
| unsigned int triled_base; |
| bool triled_has_atc_ctl; |
| bool triled_has_src_sel; |
| int num_channels; |
| const struct lpg_channel_data *channels; |
| }; |
| |
| #define PBS_SW_TRIG_BIT BIT(0) |
| |
| static int lpg_clear_pbs_trigger(struct lpg *lpg, unsigned int lut_mask) |
| { |
| u8 val = 0; |
| int rc; |
| |
| lpg->pbs_en_bitmap &= (~lut_mask); |
| if (!lpg->pbs_en_bitmap) { |
| rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val); |
| if (rc < 0) |
| return rc; |
| |
| if (lpg->lut_sdam) { |
| val = PBS_SW_TRIG_BIT; |
| rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_CLR, 1, &val); |
| if (rc < 0) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int lpg_set_pbs_trigger(struct lpg *lpg, unsigned int lut_mask) |
| { |
| u8 val = PBS_SW_TRIG_BIT; |
| int rc; |
| |
| if (!lpg->pbs_en_bitmap) { |
| rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val); |
| if (rc < 0) |
| return rc; |
| |
| if (lpg->lut_sdam) { |
| rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_SET, 1, &val); |
| if (rc < 0) |
| return rc; |
| } else { |
| rc = qcom_pbs_trigger_event(lpg->pbs_dev, val); |
| if (rc < 0) |
| return rc; |
| } |
| } |
| lpg->pbs_en_bitmap |= lut_mask; |
| |
| return 0; |
| } |
| |
| static int lpg_sdam_configure_triggers(struct lpg_channel *chan, u8 set_trig) |
| { |
| u32 addr = SDAM_LUT_EN_OFFSET + chan->sdam_offset; |
| |
| if (!chan->lpg->lpg_chan_sdam) |
| return 0; |
| |
| return nvmem_device_write(chan->lpg->lpg_chan_sdam, addr, 1, &set_trig); |
| } |
| |
| static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable) |
| { |
| /* Skip if we don't have a triled block */ |
| if (!lpg->triled_base) |
| return 0; |
| |
| return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, |
| mask, enable); |
| } |
| |
| static int lpg_lut_store_sdam(struct lpg *lpg, struct led_pattern *pattern, |
| size_t len, unsigned int *lo_idx, unsigned int *hi_idx) |
| { |
| unsigned int idx; |
| u8 brightness; |
| int i, rc; |
| u16 addr; |
| |
| if (len > lpg->lut_size) { |
| dev_err(lpg->dev, "Pattern length (%zu) exceeds maximum pattern length (%d)\n", |
| len, lpg->lut_size); |
| return -EINVAL; |
| } |
| |
| idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0); |
| if (idx >= lpg->lut_size) |
| return -ENOSPC; |
| |
| for (i = 0; i < len; i++) { |
| brightness = pattern[i].brightness; |
| |
| if (lpg->lut_sdam) { |
| addr = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET + i + idx; |
| rc = nvmem_device_write(lpg->lut_sdam, addr, 1, &brightness); |
| } else { |
| addr = SDAM_LPG_SDAM_LUT_PATTERN_OFFSET + i + idx; |
| rc = nvmem_device_write(lpg->lpg_chan_sdam, addr, 1, &brightness); |
| } |
| |
| if (rc < 0) |
| return rc; |
| } |
| |
| bitmap_set(lpg->lut_bitmap, idx, len); |
| |
| *lo_idx = idx; |
| *hi_idx = idx + len - 1; |
| |
| return 0; |
| } |
| |
| static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern, |
| size_t len, unsigned int *lo_idx, unsigned int *hi_idx) |
| { |
| unsigned int idx; |
| u16 val; |
| int i; |
| |
| idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, |
| 0, len, 0); |
| if (idx >= lpg->lut_size) |
| return -ENOMEM; |
| |
| for (i = 0; i < len; i++) { |
| val = pattern[i].brightness; |
| |
| regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i), |
| &val, sizeof(val)); |
| } |
| |
| bitmap_set(lpg->lut_bitmap, idx, len); |
| |
| *lo_idx = idx; |
| *hi_idx = idx + len - 1; |
| |
| return 0; |
| } |
| |
| static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx) |
| { |
| int len; |
| |
| len = hi_idx - lo_idx + 1; |
| if (len == 1) |
| return; |
| |
| bitmap_clear(lpg->lut_bitmap, lo_idx, len); |
| } |
| |
| static int lpg_lut_sync(struct lpg *lpg, unsigned int mask) |
| { |
| if (!lpg->lut_base) |
| return 0; |
| |
| return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask); |
| } |
| |
| static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000}; |
| static const unsigned int lpg_clk_rates_hi_res[] = {0, 1024, 32768, 19200000, 76800000}; |
| static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6}; |
| static const unsigned int lpg_pwm_resolution[] = {9}; |
| static const unsigned int lpg_pwm_resolution_hi_res[] = {8, 9, 10, 11, 12, 13, 14, 15}; |
| |
| static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period) |
| { |
| unsigned int i, pwm_resolution_count, best_pwm_resolution_sel = 0; |
| const unsigned int *clk_rate_arr, *pwm_resolution_arr; |
| unsigned int clk_sel, clk_len, best_clk = 0; |
| unsigned int div, best_div = 0; |
| unsigned int m, best_m = 0; |
| unsigned int resolution; |
| unsigned int error; |
| unsigned int best_err = UINT_MAX; |
| u64 max_period, min_period; |
| u64 best_period = 0; |
| u64 max_res; |
| |
| /* |
| * The PWM period is determined by: |
| * |
| * resolution * pre_div * 2^M |
| * period = -------------------------- |
| * refclk |
| * |
| * Resolution = 2^9 bits for PWM or |
| * 2^{8, 9, 10, 11, 12, 13, 14, 15} bits for high resolution PWM |
| * pre_div = {1, 3, 5, 6} and |
| * M = [0..7]. |
| * |
| * This allows for periods between 27uS and 384s for PWM channels and periods between |
| * 3uS and 24576s for high resolution PWMs. |
| * The PWM framework wants a period of equal or lower length than requested, |
| * reject anything below minimum period. |
| */ |
| |
| if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) { |
| clk_rate_arr = lpg_clk_rates_hi_res; |
| clk_len = ARRAY_SIZE(lpg_clk_rates_hi_res); |
| pwm_resolution_arr = lpg_pwm_resolution_hi_res; |
| pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution_hi_res); |
| max_res = LPG_RESOLUTION_15BIT; |
| } else { |
| clk_rate_arr = lpg_clk_rates; |
| clk_len = ARRAY_SIZE(lpg_clk_rates); |
| pwm_resolution_arr = lpg_pwm_resolution; |
| pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution); |
| max_res = LPG_RESOLUTION_9BIT; |
| } |
| |
| min_period = div64_u64((u64)NSEC_PER_SEC * (1 << pwm_resolution_arr[0]), |
| clk_rate_arr[clk_len - 1]); |
| if (period <= min_period) |
| return -EINVAL; |
| |
| /* Limit period to largest possible value, to avoid overflows */ |
| max_period = div64_u64((u64)NSEC_PER_SEC * max_res * LPG_MAX_PREDIV * (1 << LPG_MAX_M), |
| 1024); |
| if (period > max_period) |
| period = max_period; |
| |
| /* |
| * Search for the pre_div, refclk, resolution and M by solving the rewritten formula |
| * for each refclk, resolution and pre_div value: |
| * |
| * period * refclk |
| * M = log2 ------------------------------------- |
| * NSEC_PER_SEC * pre_div * resolution |
| */ |
| |
| for (i = 0; i < pwm_resolution_count; i++) { |
| resolution = 1 << pwm_resolution_arr[i]; |
| for (clk_sel = 1; clk_sel < clk_len; clk_sel++) { |
| u64 numerator = period * clk_rate_arr[clk_sel]; |
| |
| for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) { |
| u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] * |
| resolution; |
| u64 actual; |
| u64 ratio; |
| |
| if (numerator < denominator) |
| continue; |
| |
| ratio = div64_u64(numerator, denominator); |
| m = ilog2(ratio); |
| if (m > LPG_MAX_M) |
| m = LPG_MAX_M; |
| |
| actual = DIV_ROUND_UP_ULL(denominator * (1 << m), |
| clk_rate_arr[clk_sel]); |
| error = period - actual; |
| if (error < best_err) { |
| best_err = error; |
| best_div = div; |
| best_m = m; |
| best_clk = clk_sel; |
| best_period = actual; |
| best_pwm_resolution_sel = i; |
| } |
| } |
| } |
| } |
| chan->clk_sel = best_clk; |
| chan->pre_div_sel = best_div; |
| chan->pre_div_exp = best_m; |
| chan->period = best_period; |
| chan->pwm_resolution_sel = best_pwm_resolution_sel; |
| return 0; |
| } |
| |
| static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty) |
| { |
| unsigned int max; |
| unsigned int val; |
| unsigned int clk_rate; |
| |
| if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) { |
| max = LPG_RESOLUTION_15BIT - 1; |
| clk_rate = lpg_clk_rates_hi_res[chan->clk_sel]; |
| } else { |
| max = LPG_RESOLUTION_9BIT - 1; |
| clk_rate = lpg_clk_rates[chan->clk_sel]; |
| } |
| |
| val = div64_u64(duty * clk_rate, |
| (u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp)); |
| |
| chan->pwm_value = min(val, max); |
| } |
| |
| static void lpg_apply_freq(struct lpg_channel *chan) |
| { |
| unsigned long val; |
| struct lpg *lpg = chan->lpg; |
| |
| if (!chan->enabled) |
| return; |
| |
| val = chan->clk_sel; |
| |
| /* Specify resolution, based on the subtype of the channel */ |
| switch (chan->subtype) { |
| case LPG_SUBTYPE_LPG: |
| val |= GENMASK(5, 4); |
| break; |
| case LPG_SUBTYPE_PWM: |
| val |= BIT(2); |
| break; |
| case LPG_SUBTYPE_HI_RES_PWM: |
| val |= FIELD_PREP(PWM_SIZE_HI_RES_MASK, chan->pwm_resolution_sel); |
| break; |
| case LPG_SUBTYPE_LPG_LITE: |
| default: |
| val |= BIT(4); |
| break; |
| } |
| |
| regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val); |
| |
| val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) | |
| FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp); |
| regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val); |
| } |
| |
| #define LPG_ENABLE_GLITCH_REMOVAL BIT(5) |
| |
| static void lpg_enable_glitch(struct lpg_channel *chan) |
| { |
| struct lpg *lpg = chan->lpg; |
| |
| regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG, |
| LPG_ENABLE_GLITCH_REMOVAL, 0); |
| } |
| |
| static void lpg_disable_glitch(struct lpg_channel *chan) |
| { |
| struct lpg *lpg = chan->lpg; |
| |
| regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG, |
| LPG_ENABLE_GLITCH_REMOVAL, |
| LPG_ENABLE_GLITCH_REMOVAL); |
| } |
| |
| static void lpg_apply_pwm_value(struct lpg_channel *chan) |
| { |
| struct lpg *lpg = chan->lpg; |
| u16 val = chan->pwm_value; |
| |
| if (!chan->enabled) |
| return; |
| |
| regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val)); |
| } |
| |
| #define LPG_PATTERN_CONFIG_LO_TO_HI BIT(4) |
| #define LPG_PATTERN_CONFIG_REPEAT BIT(3) |
| #define LPG_PATTERN_CONFIG_TOGGLE BIT(2) |
| #define LPG_PATTERN_CONFIG_PAUSE_HI BIT(1) |
| #define LPG_PATTERN_CONFIG_PAUSE_LO BIT(0) |
| |
| static void lpg_sdam_apply_lut_control(struct lpg_channel *chan) |
| { |
| struct nvmem_device *lpg_chan_sdam = chan->lpg->lpg_chan_sdam; |
| unsigned int lo_idx = chan->pattern_lo_idx; |
| unsigned int hi_idx = chan->pattern_hi_idx; |
| u8 val = 0, conf = 0, lut_offset = 0; |
| unsigned int hi_pause, lo_pause; |
| struct lpg *lpg = chan->lpg; |
| |
| if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx) |
| return; |
| |
| hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, chan->ramp_tick_ms); |
| lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, chan->ramp_tick_ms); |
| |
| if (!chan->ramp_oneshot) |
| conf |= LPG_PATTERN_CONFIG_REPEAT; |
| if (chan->ramp_hi_pause_ms && lpg->lut_sdam) |
| conf |= LPG_PATTERN_CONFIG_PAUSE_HI; |
| if (chan->ramp_lo_pause_ms && lpg->lut_sdam) |
| conf |= LPG_PATTERN_CONFIG_PAUSE_LO; |
| |
| if (lpg->lut_sdam) { |
| lut_offset = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET - SDAM_START_BASE; |
| hi_idx += lut_offset; |
| lo_idx += lut_offset; |
| } |
| |
| nvmem_device_write(lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val); |
| nvmem_device_write(lpg_chan_sdam, SDAM_PATTERN_CONFIG_OFFSET + chan->sdam_offset, 1, &conf); |
| nvmem_device_write(lpg_chan_sdam, SDAM_END_INDEX_OFFSET + chan->sdam_offset, 1, &hi_idx); |
| nvmem_device_write(lpg_chan_sdam, SDAM_START_INDEX_OFFSET + chan->sdam_offset, 1, &lo_idx); |
| |
| val = RAMP_STEP_DURATION(chan->ramp_tick_ms); |
| nvmem_device_write(lpg_chan_sdam, SDAM_REG_RAMP_STEP_DURATION, 1, &val); |
| |
| if (lpg->lut_sdam) { |
| nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_HI_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &hi_pause); |
| nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_LO_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &lo_pause); |
| } |
| |
| } |
| |
| static void lpg_apply_lut_control(struct lpg_channel *chan) |
| { |
| struct lpg *lpg = chan->lpg; |
| unsigned int hi_pause; |
| unsigned int lo_pause; |
| unsigned int conf = 0; |
| unsigned int lo_idx = chan->pattern_lo_idx; |
| unsigned int hi_idx = chan->pattern_hi_idx; |
| u16 step = chan->ramp_tick_ms; |
| |
| if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx) |
| return; |
| |
| hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step); |
| lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step); |
| |
| if (!chan->ramp_reverse) |
| conf |= LPG_PATTERN_CONFIG_LO_TO_HI; |
| if (!chan->ramp_oneshot) |
| conf |= LPG_PATTERN_CONFIG_REPEAT; |
| if (chan->ramp_ping_pong) |
| conf |= LPG_PATTERN_CONFIG_TOGGLE; |
| if (chan->ramp_hi_pause_ms) |
| conf |= LPG_PATTERN_CONFIG_PAUSE_HI; |
| if (chan->ramp_lo_pause_ms) |
| conf |= LPG_PATTERN_CONFIG_PAUSE_LO; |
| |
| regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf); |
| regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx); |
| regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx); |
| |
| regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step)); |
| regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause); |
| regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause); |
| } |
| |
| #define LPG_ENABLE_CONTROL_OUTPUT BIT(7) |
| #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE BIT(5) |
| #define LPG_ENABLE_CONTROL_SRC_PWM BIT(2) |
| #define LPG_ENABLE_CONTROL_RAMP_GEN BIT(1) |
| |
| static void lpg_apply_control(struct lpg_channel *chan) |
| { |
| unsigned int ctrl; |
| struct lpg *lpg = chan->lpg; |
| |
| ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE; |
| |
| if (chan->enabled) |
| ctrl |= LPG_ENABLE_CONTROL_OUTPUT; |
| |
| if (chan->pattern_lo_idx != chan->pattern_hi_idx) |
| ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN; |
| else |
| ctrl |= LPG_ENABLE_CONTROL_SRC_PWM; |
| |
| regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl); |
| |
| /* |
| * Due to LPG hardware bug, in the PWM mode, having enabled PWM, |
| * We have to write PWM values one more time. |
| */ |
| if (chan->enabled) |
| lpg_apply_pwm_value(chan); |
| } |
| |
| #define LPG_SYNC_PWM BIT(0) |
| |
| static void lpg_apply_sync(struct lpg_channel *chan) |
| { |
| struct lpg *lpg = chan->lpg; |
| |
| regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM); |
| } |
| |
| static int lpg_parse_dtest(struct lpg *lpg) |
| { |
| struct lpg_channel *chan; |
| struct device_node *np = lpg->dev->of_node; |
| int count; |
| int ret; |
| int i; |
| |
| count = of_property_count_u32_elems(np, "qcom,dtest"); |
| if (count == -EINVAL) { |
| return 0; |
| } else if (count < 0) { |
| ret = count; |
| goto err_malformed; |
| } else if (count != lpg->data->num_channels * 2) { |
| return dev_err_probe(lpg->dev, -EINVAL, |
| "qcom,dtest needs to be %d items\n", |
| lpg->data->num_channels * 2); |
| } |
| |
| for (i = 0; i < lpg->data->num_channels; i++) { |
| chan = &lpg->channels[i]; |
| |
| ret = of_property_read_u32_index(np, "qcom,dtest", i * 2, |
| &chan->dtest_line); |
| if (ret) |
| goto err_malformed; |
| |
| ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1, |
| &chan->dtest_value); |
| if (ret) |
| goto err_malformed; |
| } |
| |
| return 0; |
| |
| err_malformed: |
| return dev_err_probe(lpg->dev, ret, "malformed qcom,dtest\n"); |
| } |
| |
| static void lpg_apply_dtest(struct lpg_channel *chan) |
| { |
| struct lpg *lpg = chan->lpg; |
| |
| if (!chan->dtest_line) |
| return; |
| |
| regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5); |
| regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line), |
| chan->dtest_value); |
| } |
| |
| static void lpg_apply(struct lpg_channel *chan) |
| { |
| lpg_disable_glitch(chan); |
| lpg_apply_freq(chan); |
| lpg_apply_pwm_value(chan); |
| lpg_apply_control(chan); |
| lpg_apply_sync(chan); |
| if (chan->lpg->lpg_chan_sdam) |
| lpg_sdam_apply_lut_control(chan); |
| else |
| lpg_apply_lut_control(chan); |
| lpg_enable_glitch(chan); |
| } |
| |
| static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev, |
| struct mc_subled *subleds) |
| { |
| enum led_brightness brightness; |
| struct lpg_channel *chan; |
| unsigned int triled_enabled = 0; |
| unsigned int triled_mask = 0; |
| unsigned int lut_mask = 0; |
| unsigned int duty; |
| struct lpg *lpg = led->lpg; |
| int i; |
| |
| for (i = 0; i < led->num_channels; i++) { |
| chan = led->channels[i]; |
| brightness = subleds[i].brightness; |
| |
| if (brightness == LED_OFF) { |
| chan->enabled = false; |
| chan->ramp_enabled = false; |
| } else if (chan->pattern_lo_idx != chan->pattern_hi_idx) { |
| lpg_calc_freq(chan, NSEC_PER_MSEC); |
| lpg_sdam_configure_triggers(chan, 1); |
| |
| chan->enabled = true; |
| chan->ramp_enabled = true; |
| |
| lut_mask |= chan->lut_mask; |
| triled_enabled |= chan->triled_mask; |
| } else { |
| lpg_calc_freq(chan, NSEC_PER_MSEC); |
| |
| duty = div_u64(brightness * chan->period, cdev->max_brightness); |
| lpg_calc_duty(chan, duty); |
| chan->enabled = true; |
| chan->ramp_enabled = false; |
| |
| triled_enabled |= chan->triled_mask; |
| } |
| |
| triled_mask |= chan->triled_mask; |
| |
| lpg_apply(chan); |
| } |
| |
| /* Toggle triled lines */ |
| if (triled_mask) |
| triled_set(lpg, triled_mask, triled_enabled); |
| |
| /* Trigger start of ramp generator(s) */ |
| if (lut_mask) { |
| lpg_lut_sync(lpg, lut_mask); |
| lpg_set_pbs_trigger(lpg, lut_mask); |
| } |
| } |
| |
| static int lpg_brightness_single_set(struct led_classdev *cdev, |
| enum led_brightness value) |
| { |
| struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); |
| struct mc_subled info; |
| |
| mutex_lock(&led->lpg->lock); |
| |
| info.brightness = value; |
| lpg_brightness_set(led, cdev, &info); |
| |
| mutex_unlock(&led->lpg->lock); |
| |
| return 0; |
| } |
| |
| static int lpg_brightness_mc_set(struct led_classdev *cdev, |
| enum led_brightness value) |
| { |
| struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); |
| struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); |
| |
| mutex_lock(&led->lpg->lock); |
| |
| led_mc_calc_color_components(mc, value); |
| lpg_brightness_set(led, cdev, mc->subled_info); |
| |
| mutex_unlock(&led->lpg->lock); |
| |
| return 0; |
| } |
| |
| static int lpg_blink_set(struct lpg_led *led, |
| unsigned long *delay_on, unsigned long *delay_off) |
| { |
| struct lpg_channel *chan; |
| unsigned int period; |
| unsigned int triled_mask = 0; |
| struct lpg *lpg = led->lpg; |
| u64 duty; |
| int i; |
| |
| if (!*delay_on && !*delay_off) { |
| *delay_on = 500; |
| *delay_off = 500; |
| } |
| |
| duty = *delay_on * NSEC_PER_MSEC; |
| period = (*delay_on + *delay_off) * NSEC_PER_MSEC; |
| |
| for (i = 0; i < led->num_channels; i++) { |
| chan = led->channels[i]; |
| |
| lpg_calc_freq(chan, period); |
| lpg_calc_duty(chan, duty); |
| |
| chan->enabled = true; |
| chan->ramp_enabled = false; |
| |
| triled_mask |= chan->triled_mask; |
| |
| lpg_apply(chan); |
| } |
| |
| /* Enable triled lines */ |
| triled_set(lpg, triled_mask, triled_mask); |
| |
| chan = led->channels[0]; |
| duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION_9BIT); |
| *delay_on = div_u64(duty, NSEC_PER_MSEC); |
| *delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC); |
| |
| return 0; |
| } |
| |
| static int lpg_blink_single_set(struct led_classdev *cdev, |
| unsigned long *delay_on, unsigned long *delay_off) |
| { |
| struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); |
| int ret; |
| |
| mutex_lock(&led->lpg->lock); |
| |
| ret = lpg_blink_set(led, delay_on, delay_off); |
| |
| mutex_unlock(&led->lpg->lock); |
| |
| return ret; |
| } |
| |
| static int lpg_blink_mc_set(struct led_classdev *cdev, |
| unsigned long *delay_on, unsigned long *delay_off) |
| { |
| struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); |
| struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); |
| int ret; |
| |
| mutex_lock(&led->lpg->lock); |
| |
| ret = lpg_blink_set(led, delay_on, delay_off); |
| |
| mutex_unlock(&led->lpg->lock); |
| |
| return ret; |
| } |
| |
| static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern, |
| u32 len, int repeat) |
| { |
| struct lpg_channel *chan; |
| struct lpg *lpg = led->lpg; |
| struct led_pattern *pattern; |
| unsigned int brightness_a; |
| unsigned int brightness_b; |
| unsigned int hi_pause = 0; |
| unsigned int lo_pause = 0; |
| unsigned int actual_len; |
| unsigned int delta_t; |
| unsigned int lo_idx; |
| unsigned int hi_idx; |
| unsigned int i; |
| bool ping_pong = true; |
| int ret = -EINVAL; |
| |
| /* Hardware only support oneshot or indefinite loops */ |
| if (repeat != -1 && repeat != 1) |
| return -EINVAL; |
| |
| /* |
| * The standardized leds-trigger-pattern format defines that the |
| * brightness of the LED follows a linear transition from one entry |
| * in the pattern to the next, over the given delta_t time. It |
| * describes that the way to perform instant transitions a zero-length |
| * entry should be added following a pattern entry. |
| * |
| * The LPG hardware is only able to perform the latter (no linear |
| * transitions), so require each entry in the pattern to be followed by |
| * a zero-length transition. |
| */ |
| if (len % 2) |
| return -EINVAL; |
| |
| pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL); |
| if (!pattern) |
| return -ENOMEM; |
| |
| for (i = 0; i < len; i += 2) { |
| if (led_pattern[i].brightness != led_pattern[i + 1].brightness) |
| goto out_free_pattern; |
| if (led_pattern[i + 1].delta_t != 0) |
| goto out_free_pattern; |
| |
| pattern[i / 2].brightness = led_pattern[i].brightness; |
| pattern[i / 2].delta_t = led_pattern[i].delta_t; |
| } |
| |
| len /= 2; |
| |
| /* |
| * Specifying a pattern of length 1 causes the hardware to iterate |
| * through the entire LUT, so prohibit this. |
| */ |
| if (len < 2) |
| goto out_free_pattern; |
| |
| /* |
| * The LPG plays patterns with at a fixed pace, a "low pause" can be |
| * used to stretch the first delay of the pattern and a "high pause" |
| * the last one. |
| * |
| * In order to save space the pattern can be played in "ping pong" |
| * mode, in which the pattern is first played forward, then "high |
| * pause" is applied, then the pattern is played backwards and finally |
| * the "low pause" is applied. |
| * |
| * The middle elements of the pattern are used to determine delta_t and |
| * the "low pause" and "high pause" multipliers are derrived from this. |
| * |
| * The first element in the pattern is used to determine "low pause". |
| * |
| * If the specified pattern is a palindrome the ping pong mode is |
| * enabled. In this scenario the delta_t of the middle entry (i.e. the |
| * last in the programmed pattern) determines the "high pause". |
| * |
| * SDAM-based devices do not support "ping pong", and only supports |
| * "low pause" and "high pause" with a dedicated SDAM LUT. |
| */ |
| |
| /* Detect palindromes and use "ping pong" to reduce LUT usage */ |
| if (lpg->lut_base) { |
| for (i = 0; i < len / 2; i++) { |
| brightness_a = pattern[i].brightness; |
| brightness_b = pattern[len - i - 1].brightness; |
| |
| if (brightness_a != brightness_b) { |
| ping_pong = false; |
| break; |
| } |
| } |
| } else |
| ping_pong = false; |
| |
| /* The pattern length to be written to the LUT */ |
| if (ping_pong) |
| actual_len = (len + 1) / 2; |
| else |
| actual_len = len; |
| |
| /* |
| * Validate that all delta_t in the pattern are the same, with the |
| * exception of the middle element in case of ping_pong. |
| */ |
| delta_t = pattern[1].delta_t; |
| for (i = 2; i < len; i++) { |
| if (pattern[i].delta_t != delta_t) { |
| /* |
| * Allow last entry in the full or shortened pattern to |
| * specify hi pause. Reject other variations. |
| */ |
| if (i != actual_len - 1) |
| goto out_free_pattern; |
| } |
| } |
| |
| /* LPG_RAMP_DURATION_REG is a 9bit */ |
| if (delta_t >= BIT(9)) |
| goto out_free_pattern; |
| |
| /* |
| * Find "low pause" and "high pause" in the pattern in the LUT case. |
| * SDAM-based devices without dedicated LUT SDAM require equal |
| * duration of all steps. |
| */ |
| if (lpg->lut_base || lpg->lut_sdam) { |
| lo_pause = pattern[0].delta_t; |
| hi_pause = pattern[actual_len - 1].delta_t; |
| } else { |
| if (delta_t != pattern[0].delta_t || delta_t != pattern[actual_len - 1].delta_t) |
| goto out_free_pattern; |
| } |
| |
| |
| mutex_lock(&lpg->lock); |
| |
| if (lpg->lut_base) |
| ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx); |
| else |
| ret = lpg_lut_store_sdam(lpg, pattern, actual_len, &lo_idx, &hi_idx); |
| |
| if (ret < 0) |
| goto out_unlock; |
| |
| for (i = 0; i < led->num_channels; i++) { |
| chan = led->channels[i]; |
| |
| chan->ramp_tick_ms = delta_t; |
| chan->ramp_ping_pong = ping_pong; |
| chan->ramp_oneshot = repeat != -1; |
| |
| chan->ramp_lo_pause_ms = lo_pause; |
| chan->ramp_hi_pause_ms = hi_pause; |
| |
| chan->pattern_lo_idx = lo_idx; |
| chan->pattern_hi_idx = hi_idx; |
| } |
| |
| out_unlock: |
| mutex_unlock(&lpg->lock); |
| out_free_pattern: |
| kfree(pattern); |
| |
| return ret; |
| } |
| |
| static int lpg_pattern_single_set(struct led_classdev *cdev, |
| struct led_pattern *pattern, u32 len, |
| int repeat) |
| { |
| struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); |
| int ret; |
| |
| ret = lpg_pattern_set(led, pattern, len, repeat); |
| if (ret < 0) |
| return ret; |
| |
| lpg_brightness_single_set(cdev, LED_FULL); |
| |
| return 0; |
| } |
| |
| static int lpg_pattern_mc_set(struct led_classdev *cdev, |
| struct led_pattern *pattern, u32 len, |
| int repeat) |
| { |
| struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); |
| struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); |
| unsigned int triled_mask = 0; |
| int ret, i; |
| |
| for (i = 0; i < led->num_channels; i++) |
| triled_mask |= led->channels[i]->triled_mask; |
| triled_set(led->lpg, triled_mask, 0); |
| |
| ret = lpg_pattern_set(led, pattern, len, repeat); |
| if (ret < 0) |
| return ret; |
| |
| led_mc_calc_color_components(mc, LED_FULL); |
| lpg_brightness_set(led, cdev, mc->subled_info); |
| |
| return 0; |
| } |
| |
| static int lpg_pattern_clear(struct lpg_led *led) |
| { |
| struct lpg_channel *chan; |
| struct lpg *lpg = led->lpg; |
| int i; |
| |
| mutex_lock(&lpg->lock); |
| |
| chan = led->channels[0]; |
| lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx); |
| |
| for (i = 0; i < led->num_channels; i++) { |
| chan = led->channels[i]; |
| lpg_sdam_configure_triggers(chan, 0); |
| lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask); |
| chan->pattern_lo_idx = 0; |
| chan->pattern_hi_idx = 0; |
| } |
| |
| mutex_unlock(&lpg->lock); |
| |
| return 0; |
| } |
| |
| static int lpg_pattern_single_clear(struct led_classdev *cdev) |
| { |
| struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); |
| |
| return lpg_pattern_clear(led); |
| } |
| |
| static int lpg_pattern_mc_clear(struct led_classdev *cdev) |
| { |
| struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); |
| struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); |
| |
| return lpg_pattern_clear(led); |
| } |
| |
| static inline struct lpg *lpg_pwm_from_chip(struct pwm_chip *chip) |
| { |
| return pwmchip_get_drvdata(chip); |
| } |
| |
| static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) |
| { |
| struct lpg *lpg = lpg_pwm_from_chip(chip); |
| struct lpg_channel *chan = &lpg->channels[pwm->hwpwm]; |
| |
| return chan->in_use ? -EBUSY : 0; |
| } |
| |
| /* |
| * Limitations: |
| * - Updating both duty and period is not done atomically, so the output signal |
| * will momentarily be a mix of the settings. |
| * - Changed parameters takes effect immediately. |
| * - A disabled channel outputs a logical 0. |
| */ |
| static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
| const struct pwm_state *state) |
| { |
| struct lpg *lpg = lpg_pwm_from_chip(chip); |
| struct lpg_channel *chan = &lpg->channels[pwm->hwpwm]; |
| int ret = 0; |
| |
| if (state->polarity != PWM_POLARITY_NORMAL) |
| return -EINVAL; |
| |
| mutex_lock(&lpg->lock); |
| |
| if (state->enabled) { |
| ret = lpg_calc_freq(chan, state->period); |
| if (ret < 0) |
| goto out_unlock; |
| |
| lpg_calc_duty(chan, state->duty_cycle); |
| } |
| chan->enabled = state->enabled; |
| |
| lpg_apply(chan); |
| |
| triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0); |
| |
| out_unlock: |
| mutex_unlock(&lpg->lock); |
| |
| return ret; |
| } |
| |
| static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, |
| struct pwm_state *state) |
| { |
| struct lpg *lpg = lpg_pwm_from_chip(chip); |
| struct lpg_channel *chan = &lpg->channels[pwm->hwpwm]; |
| unsigned int resolution; |
| unsigned int pre_div; |
| unsigned int refclk; |
| unsigned int val; |
| unsigned int m; |
| u16 pwm_value; |
| int ret; |
| |
| ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val); |
| if (ret) |
| return ret; |
| |
| if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) { |
| refclk = lpg_clk_rates_hi_res[FIELD_GET(PWM_CLK_SELECT_HI_RES_MASK, val)]; |
| resolution = lpg_pwm_resolution_hi_res[FIELD_GET(PWM_SIZE_HI_RES_MASK, val)]; |
| } else { |
| refclk = lpg_clk_rates[FIELD_GET(PWM_CLK_SELECT_MASK, val)]; |
| resolution = 9; |
| } |
| |
| if (refclk) { |
| ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val); |
| if (ret) |
| return ret; |
| |
| pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)]; |
| m = FIELD_GET(PWM_FREQ_EXP_MASK, val); |
| |
| ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value)); |
| if (ret) |
| return ret; |
| |
| state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * (1 << resolution) * |
| pre_div * (1 << m), refclk); |
| state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk); |
| } else { |
| state->period = 0; |
| state->duty_cycle = 0; |
| } |
| |
| ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val); |
| if (ret) |
| return ret; |
| |
| state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val); |
| state->polarity = PWM_POLARITY_NORMAL; |
| |
| if (state->duty_cycle > state->period) |
| state->duty_cycle = state->period; |
| |
| return 0; |
| } |
| |
| static const struct pwm_ops lpg_pwm_ops = { |
| .request = lpg_pwm_request, |
| .apply = lpg_pwm_apply, |
| .get_state = lpg_pwm_get_state, |
| }; |
| |
| static int lpg_add_pwm(struct lpg *lpg) |
| { |
| struct pwm_chip *chip; |
| int ret; |
| |
| lpg->pwm = chip = devm_pwmchip_alloc(lpg->dev, lpg->num_channels, 0); |
| if (IS_ERR(chip)) |
| return PTR_ERR(chip); |
| |
| chip->ops = &lpg_pwm_ops; |
| pwmchip_set_drvdata(chip, lpg); |
| |
| ret = devm_pwmchip_add(lpg->dev, chip); |
| if (ret) |
| dev_err_probe(lpg->dev, ret, "failed to add PWM chip\n"); |
| |
| return ret; |
| } |
| |
| static int lpg_parse_channel(struct lpg *lpg, struct device_node *np, |
| struct lpg_channel **channel) |
| { |
| struct lpg_channel *chan; |
| u32 color = LED_COLOR_ID_GREEN; |
| u32 reg; |
| int ret; |
| |
| ret = of_property_read_u32(np, "reg", ®); |
| if (ret || !reg || reg > lpg->num_channels) |
| return dev_err_probe(lpg->dev, -EINVAL, "invalid \"reg\" of %pOFn\n", np); |
| |
| chan = &lpg->channels[reg - 1]; |
| chan->in_use = true; |
| |
| ret = of_property_read_u32(np, "color", &color); |
| if (ret < 0 && ret != -EINVAL) |
| return dev_err_probe(lpg->dev, ret, |
| "failed to parse \"color\" of %pOF\n", np); |
| |
| chan->color = color; |
| |
| *channel = chan; |
| |
| return 0; |
| } |
| |
| static int lpg_add_led(struct lpg *lpg, struct device_node *np) |
| { |
| struct led_init_data init_data = {}; |
| struct led_classdev *cdev; |
| struct device_node *child; |
| struct mc_subled *info; |
| struct lpg_led *led; |
| const char *state; |
| int num_channels; |
| u32 color = 0; |
| int ret; |
| int i; |
| |
| ret = of_property_read_u32(np, "color", &color); |
| if (ret < 0 && ret != -EINVAL) |
| return dev_err_probe(lpg->dev, ret, |
| "failed to parse \"color\" of %pOF\n", np); |
| |
| if (color == LED_COLOR_ID_RGB) |
| num_channels = of_get_available_child_count(np); |
| else |
| num_channels = 1; |
| |
| led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL); |
| if (!led) |
| return -ENOMEM; |
| |
| led->lpg = lpg; |
| led->num_channels = num_channels; |
| |
| if (color == LED_COLOR_ID_RGB) { |
| info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| i = 0; |
| for_each_available_child_of_node(np, child) { |
| ret = lpg_parse_channel(lpg, child, &led->channels[i]); |
| if (ret < 0) { |
| of_node_put(child); |
| return ret; |
| } |
| |
| info[i].color_index = led->channels[i]->color; |
| info[i].intensity = 0; |
| i++; |
| } |
| |
| led->mcdev.subled_info = info; |
| led->mcdev.num_colors = num_channels; |
| |
| cdev = &led->mcdev.led_cdev; |
| cdev->brightness_set_blocking = lpg_brightness_mc_set; |
| cdev->blink_set = lpg_blink_mc_set; |
| |
| /* Register pattern accessors if we have a LUT block or when using PPG */ |
| if (lpg->lut_base || lpg->lpg_chan_sdam) { |
| cdev->pattern_set = lpg_pattern_mc_set; |
| cdev->pattern_clear = lpg_pattern_mc_clear; |
| } |
| } else { |
| ret = lpg_parse_channel(lpg, np, &led->channels[0]); |
| if (ret < 0) |
| return ret; |
| |
| cdev = &led->cdev; |
| cdev->brightness_set_blocking = lpg_brightness_single_set; |
| cdev->blink_set = lpg_blink_single_set; |
| |
| /* Register pattern accessors if we have a LUT block or when using PPG */ |
| if (lpg->lut_base || lpg->lpg_chan_sdam) { |
| cdev->pattern_set = lpg_pattern_single_set; |
| cdev->pattern_clear = lpg_pattern_single_clear; |
| } |
| } |
| |
| cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL); |
| |
| if (lpg->lpg_chan_sdam) |
| cdev->max_brightness = PPG_MAX_LED_BRIGHTNESS; |
| else |
| cdev->max_brightness = LPG_RESOLUTION_9BIT - 1; |
| |
| if (!of_property_read_string(np, "default-state", &state) && |
| !strcmp(state, "on")) |
| cdev->brightness = cdev->max_brightness; |
| else |
| cdev->brightness = LED_OFF; |
| |
| cdev->brightness_set_blocking(cdev, cdev->brightness); |
| |
| init_data.fwnode = of_fwnode_handle(np); |
| |
| if (color == LED_COLOR_ID_RGB) |
| ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data); |
| else |
| ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data); |
| if (ret) |
| dev_err_probe(lpg->dev, ret, "unable to register %s\n", cdev->name); |
| |
| return ret; |
| } |
| |
| static int lpg_init_channels(struct lpg *lpg) |
| { |
| const struct lpg_data *data = lpg->data; |
| struct lpg_channel *chan; |
| int i; |
| |
| lpg->num_channels = data->num_channels; |
| lpg->channels = devm_kcalloc(lpg->dev, data->num_channels, |
| sizeof(struct lpg_channel), GFP_KERNEL); |
| if (!lpg->channels) |
| return -ENOMEM; |
| |
| for (i = 0; i < data->num_channels; i++) { |
| chan = &lpg->channels[i]; |
| |
| chan->lpg = lpg; |
| chan->base = data->channels[i].base; |
| chan->triled_mask = data->channels[i].triled_mask; |
| chan->lut_mask = BIT(i); |
| chan->sdam_offset = data->channels[i].sdam_offset; |
| |
| regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype); |
| } |
| |
| return 0; |
| } |
| |
| static int lpg_init_triled(struct lpg *lpg) |
| { |
| struct device_node *np = lpg->dev->of_node; |
| int ret; |
| |
| /* Skip initialization if we don't have a triled block */ |
| if (!lpg->data->triled_base) |
| return 0; |
| |
| lpg->triled_base = lpg->data->triled_base; |
| lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl; |
| lpg->triled_has_src_sel = lpg->data->triled_has_src_sel; |
| |
| if (lpg->triled_has_src_sel) { |
| ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src); |
| if (ret || lpg->triled_src == 2 || lpg->triled_src > 3) |
| return dev_err_probe(lpg->dev, -EINVAL, |
| "invalid power source\n"); |
| } |
| |
| /* Disable automatic trickle charge LED */ |
| if (lpg->triled_has_atc_ctl) |
| regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0); |
| |
| /* Configure power source */ |
| if (lpg->triled_has_src_sel) |
| regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src); |
| |
| /* Default all outputs to off */ |
| regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0); |
| |
| return 0; |
| } |
| |
| static int lpg_init_lut(struct lpg *lpg) |
| { |
| const struct lpg_data *data = lpg->data; |
| |
| if (!data->lut_size) |
| return 0; |
| |
| lpg->lut_size = data->lut_size; |
| if (data->lut_base) |
| lpg->lut_base = data->lut_base; |
| |
| lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL); |
| if (!lpg->lut_bitmap) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int lpg_init_sdam(struct lpg *lpg) |
| { |
| int i, sdam_count, rc; |
| u8 val = 0; |
| |
| sdam_count = of_property_count_strings(lpg->dev->of_node, "nvmem-names"); |
| if (sdam_count <= 0) |
| return 0; |
| if (sdam_count > SDAM_MAX_DEVICES) |
| return -EINVAL; |
| |
| /* Get the 1st SDAM device for LPG/LUT config */ |
| lpg->lpg_chan_sdam = devm_nvmem_device_get(lpg->dev, "lpg_chan_sdam"); |
| if (IS_ERR(lpg->lpg_chan_sdam)) |
| return dev_err_probe(lpg->dev, PTR_ERR(lpg->lpg_chan_sdam), |
| "Failed to get LPG chan SDAM device\n"); |
| |
| if (sdam_count == 1) { |
| /* Get PBS device node if single SDAM device */ |
| lpg->pbs_dev = get_pbs_client_device(lpg->dev); |
| if (IS_ERR(lpg->pbs_dev)) |
| return dev_err_probe(lpg->dev, PTR_ERR(lpg->pbs_dev), |
| "Failed to get PBS client device\n"); |
| } else if (sdam_count == 2) { |
| /* Get the 2nd SDAM device for LUT pattern */ |
| lpg->lut_sdam = devm_nvmem_device_get(lpg->dev, "lut_sdam"); |
| if (IS_ERR(lpg->lut_sdam)) |
| return dev_err_probe(lpg->dev, PTR_ERR(lpg->lut_sdam), |
| "Failed to get LPG LUT SDAM device\n"); |
| } |
| |
| for (i = 0; i < lpg->num_channels; i++) { |
| struct lpg_channel *chan = &lpg->channels[i]; |
| |
| if (chan->sdam_offset) { |
| rc = nvmem_device_write(lpg->lpg_chan_sdam, |
| SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val); |
| if (rc < 0) |
| return rc; |
| |
| rc = lpg_sdam_configure_triggers(chan, 0); |
| if (rc < 0) |
| return rc; |
| |
| rc = lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask); |
| if (rc < 0) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int lpg_probe(struct platform_device *pdev) |
| { |
| struct device_node *np; |
| struct lpg *lpg; |
| int ret; |
| int i; |
| |
| lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL); |
| if (!lpg) |
| return -ENOMEM; |
| |
| lpg->data = of_device_get_match_data(&pdev->dev); |
| if (!lpg->data) |
| return -EINVAL; |
| |
| lpg->dev = &pdev->dev; |
| mutex_init(&lpg->lock); |
| |
| lpg->map = dev_get_regmap(pdev->dev.parent, NULL); |
| if (!lpg->map) |
| return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n"); |
| |
| ret = lpg_init_channels(lpg); |
| if (ret < 0) |
| return ret; |
| |
| ret = lpg_parse_dtest(lpg); |
| if (ret < 0) |
| return ret; |
| |
| ret = lpg_init_triled(lpg); |
| if (ret < 0) |
| return ret; |
| |
| ret = lpg_init_sdam(lpg); |
| if (ret < 0) |
| return ret; |
| |
| ret = lpg_init_lut(lpg); |
| if (ret < 0) |
| return ret; |
| |
| for_each_available_child_of_node(pdev->dev.of_node, np) { |
| ret = lpg_add_led(lpg, np); |
| if (ret) { |
| of_node_put(np); |
| return ret; |
| } |
| } |
| |
| for (i = 0; i < lpg->num_channels; i++) |
| lpg_apply_dtest(&lpg->channels[i]); |
| |
| return lpg_add_pwm(lpg); |
| } |
| |
| static const struct lpg_data pm660l_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 49, |
| |
| .triled_base = 0xd000, |
| .triled_has_atc_ctl = true, |
| .triled_has_src_sel = true, |
| |
| .num_channels = 4, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100, .triled_mask = BIT(5) }, |
| { .base = 0xb200, .triled_mask = BIT(6) }, |
| { .base = 0xb300, .triled_mask = BIT(7) }, |
| { .base = 0xb400 }, |
| }, |
| }; |
| |
| static const struct lpg_data pm8916_pwm_data = { |
| .num_channels = 1, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xbc00 }, |
| }, |
| }; |
| |
| static const struct lpg_data pm8941_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 64, |
| |
| .triled_base = 0xd000, |
| .triled_has_atc_ctl = true, |
| .triled_has_src_sel = true, |
| |
| .num_channels = 8, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100 }, |
| { .base = 0xb200 }, |
| { .base = 0xb300 }, |
| { .base = 0xb400 }, |
| { .base = 0xb500, .triled_mask = BIT(5) }, |
| { .base = 0xb600, .triled_mask = BIT(6) }, |
| { .base = 0xb700, .triled_mask = BIT(7) }, |
| { .base = 0xb800 }, |
| }, |
| }; |
| |
| static const struct lpg_data pm8994_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 64, |
| |
| .num_channels = 6, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100 }, |
| { .base = 0xb200 }, |
| { .base = 0xb300 }, |
| { .base = 0xb400 }, |
| { .base = 0xb500 }, |
| { .base = 0xb600 }, |
| }, |
| }; |
| |
| /* PMI632 uses SDAM instead of LUT for pattern */ |
| static const struct lpg_data pmi632_lpg_data = { |
| .triled_base = 0xd000, |
| |
| .lut_size = 64, |
| |
| .num_channels = 5, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb300, .triled_mask = BIT(7), .sdam_offset = 0x48 }, |
| { .base = 0xb400, .triled_mask = BIT(6), .sdam_offset = 0x56 }, |
| { .base = 0xb500, .triled_mask = BIT(5), .sdam_offset = 0x64 }, |
| { .base = 0xb600 }, |
| { .base = 0xb700 }, |
| }, |
| }; |
| |
| static const struct lpg_data pmi8994_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 24, |
| |
| .triled_base = 0xd000, |
| .triled_has_atc_ctl = true, |
| .triled_has_src_sel = true, |
| |
| .num_channels = 4, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100, .triled_mask = BIT(5) }, |
| { .base = 0xb200, .triled_mask = BIT(6) }, |
| { .base = 0xb300, .triled_mask = BIT(7) }, |
| { .base = 0xb400 }, |
| }, |
| }; |
| |
| static const struct lpg_data pmi8998_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 49, |
| |
| .triled_base = 0xd000, |
| |
| .num_channels = 6, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100 }, |
| { .base = 0xb200 }, |
| { .base = 0xb300, .triled_mask = BIT(5) }, |
| { .base = 0xb400, .triled_mask = BIT(6) }, |
| { .base = 0xb500, .triled_mask = BIT(7) }, |
| { .base = 0xb600 }, |
| }, |
| }; |
| |
| static const struct lpg_data pm8150b_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 24, |
| |
| .triled_base = 0xd000, |
| |
| .num_channels = 2, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100, .triled_mask = BIT(7) }, |
| { .base = 0xb200, .triled_mask = BIT(6) }, |
| }, |
| }; |
| |
| static const struct lpg_data pm8150l_lpg_data = { |
| .lut_base = 0xb000, |
| .lut_size = 48, |
| |
| .triled_base = 0xd000, |
| |
| .num_channels = 5, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xb100, .triled_mask = BIT(7) }, |
| { .base = 0xb200, .triled_mask = BIT(6) }, |
| { .base = 0xb300, .triled_mask = BIT(5) }, |
| { .base = 0xbc00 }, |
| { .base = 0xbd00 }, |
| |
| }, |
| }; |
| |
| static const struct lpg_data pm8350c_pwm_data = { |
| .triled_base = 0xef00, |
| |
| .lut_size = 122, |
| |
| .num_channels = 4, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xe800, .triled_mask = BIT(7), .sdam_offset = 0x48 }, |
| { .base = 0xe900, .triled_mask = BIT(6), .sdam_offset = 0x56 }, |
| { .base = 0xea00, .triled_mask = BIT(5), .sdam_offset = 0x64 }, |
| { .base = 0xeb00 }, |
| }, |
| }; |
| |
| static const struct lpg_data pmk8550_pwm_data = { |
| .num_channels = 2, |
| .channels = (const struct lpg_channel_data[]) { |
| { .base = 0xe800 }, |
| { .base = 0xe900 }, |
| }, |
| }; |
| |
| static const struct of_device_id lpg_of_table[] = { |
| { .compatible = "qcom,pm660l-lpg", .data = &pm660l_lpg_data }, |
| { .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data }, |
| { .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data }, |
| { .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data }, |
| { .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data }, |
| { .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data }, |
| { .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data }, |
| { .compatible = "qcom,pmi632-lpg", .data = &pmi632_lpg_data }, |
| { .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data }, |
| { .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data }, |
| { .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data }, |
| { .compatible = "qcom,pmk8550-pwm", .data = &pmk8550_pwm_data }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, lpg_of_table); |
| |
| static struct platform_driver lpg_driver = { |
| .probe = lpg_probe, |
| .driver = { |
| .name = "qcom-spmi-lpg", |
| .of_match_table = lpg_of_table, |
| }, |
| }; |
| module_platform_driver(lpg_driver); |
| |
| MODULE_DESCRIPTION("Qualcomm LPG LED driver"); |
| MODULE_LICENSE("GPL v2"); |