| /* SPDX-License-Identifier: MIT */ |
| /* |
| * Copyright © 2023 Intel Corporation |
| */ |
| |
| #ifndef _UAPI_XE_DRM_H_ |
| #define _UAPI_XE_DRM_H_ |
| |
| #include "drm.h" |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* |
| * Please note that modifications to all structs defined here are |
| * subject to backwards-compatibility constraints. |
| * Sections in this file are organized as follows: |
| * 1. IOCTL definition |
| * 2. Extension definition and helper structs |
| * 3. IOCTL's Query structs in the order of the Query's entries. |
| * 4. The rest of IOCTL structs in the order of IOCTL declaration. |
| */ |
| |
| /** |
| * DOC: Xe Device Block Diagram |
| * |
| * The diagram below represents a high-level simplification of a discrete |
| * GPU supported by the Xe driver. It shows some device components which |
| * are necessary to understand this API, as well as how their relations |
| * to each other. This diagram does not represent real hardware:: |
| * |
| * ┌──────────────────────────────────────────────────────────────────┐ |
| * │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │ |
| * │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │ |
| * │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │ |
| * │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │ |
| * │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │ |
| * │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │ |
| * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ |
| * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │ |
| * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ |
| * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ |
| * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │ |
| * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ |
| * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ |
| * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │ |
| * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ |
| * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ |
| * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │ |
| * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ |
| * │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ |
| * │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │ |
| * │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ |
| * │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │ |
| * │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │ |
| * │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │ |
| * │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │ |
| * └─────────────────────────────Device0───────┬──────────────────────┘ |
| * │ |
| * ───────────────────────┴────────── PCI bus |
| */ |
| |
| /** |
| * DOC: Xe uAPI Overview |
| * |
| * This section aims to describe the Xe's IOCTL entries, its structs, and other |
| * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related |
| * entries and usage. |
| * |
| * List of supported IOCTLs: |
| * - &DRM_IOCTL_XE_DEVICE_QUERY |
| * - &DRM_IOCTL_XE_GEM_CREATE |
| * - &DRM_IOCTL_XE_GEM_MMAP_OFFSET |
| * - &DRM_IOCTL_XE_VM_CREATE |
| * - &DRM_IOCTL_XE_VM_DESTROY |
| * - &DRM_IOCTL_XE_VM_BIND |
| * - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE |
| * - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY |
| * - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY |
| * - &DRM_IOCTL_XE_EXEC |
| * - &DRM_IOCTL_XE_WAIT_USER_FENCE |
| */ |
| |
| /* |
| * xe specific ioctls. |
| * |
| * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie |
| * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset |
| * against DRM_COMMAND_BASE and should be between [0x0, 0x60). |
| */ |
| #define DRM_XE_DEVICE_QUERY 0x00 |
| #define DRM_XE_GEM_CREATE 0x01 |
| #define DRM_XE_GEM_MMAP_OFFSET 0x02 |
| #define DRM_XE_VM_CREATE 0x03 |
| #define DRM_XE_VM_DESTROY 0x04 |
| #define DRM_XE_VM_BIND 0x05 |
| #define DRM_XE_EXEC_QUEUE_CREATE 0x06 |
| #define DRM_XE_EXEC_QUEUE_DESTROY 0x07 |
| #define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08 |
| #define DRM_XE_EXEC 0x09 |
| #define DRM_XE_WAIT_USER_FENCE 0x0a |
| /* Must be kept compact -- no holes */ |
| |
| #define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query) |
| #define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create) |
| #define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset) |
| #define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create) |
| #define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy) |
| #define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind) |
| #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create) |
| #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy) |
| #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property) |
| #define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec) |
| #define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence) |
| |
| /** |
| * DOC: Xe IOCTL Extensions |
| * |
| * Before detailing the IOCTLs and its structs, it is important to highlight |
| * that every IOCTL in Xe is extensible. |
| * |
| * Many interfaces need to grow over time. In most cases we can simply |
| * extend the struct and have userspace pass in more data. Another option, |
| * as demonstrated by Vulkan's approach to providing extensions for forward |
| * and backward compatibility, is to use a list of optional structs to |
| * provide those extra details. |
| * |
| * The key advantage to using an extension chain is that it allows us to |
| * redefine the interface more easily than an ever growing struct of |
| * increasing complexity, and for large parts of that interface to be |
| * entirely optional. The downside is more pointer chasing; chasing across |
| * the __user boundary with pointers encapsulated inside u64. |
| * |
| * Example chaining: |
| * |
| * .. code-block:: C |
| * |
| * struct drm_xe_user_extension ext3 { |
| * .next_extension = 0, // end |
| * .name = ..., |
| * }; |
| * struct drm_xe_user_extension ext2 { |
| * .next_extension = (uintptr_t)&ext3, |
| * .name = ..., |
| * }; |
| * struct drm_xe_user_extension ext1 { |
| * .next_extension = (uintptr_t)&ext2, |
| * .name = ..., |
| * }; |
| * |
| * Typically the struct drm_xe_user_extension would be embedded in some uAPI |
| * struct, and in this case we would feed it the head of the chain(i.e ext1), |
| * which would then apply all of the above extensions. |
| */ |
| |
| /** |
| * struct drm_xe_user_extension - Base class for defining a chain of extensions |
| */ |
| struct drm_xe_user_extension { |
| /** |
| * @next_extension: |
| * |
| * Pointer to the next struct drm_xe_user_extension, or zero if the end. |
| */ |
| __u64 next_extension; |
| |
| /** |
| * @name: Name of the extension. |
| * |
| * Note that the name here is just some integer. |
| * |
| * Also note that the name space for this is not global for the whole |
| * driver, but rather its scope/meaning is limited to the specific piece |
| * of uAPI which has embedded the struct drm_xe_user_extension. |
| */ |
| __u32 name; |
| |
| /** |
| * @pad: MBZ |
| * |
| * All undefined bits must be zero. |
| */ |
| __u32 pad; |
| }; |
| |
| /** |
| * struct drm_xe_ext_set_property - Generic set property extension |
| * |
| * A generic struct that allows any of the Xe's IOCTL to be extended |
| * with a set_property operation. |
| */ |
| struct drm_xe_ext_set_property { |
| /** @base: base user extension */ |
| struct drm_xe_user_extension base; |
| |
| /** @property: property to set */ |
| __u32 property; |
| |
| /** @pad: MBZ */ |
| __u32 pad; |
| |
| /** @value: property value */ |
| __u64 value; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_engine_class_instance - instance of an engine class |
| * |
| * It is returned as part of the @drm_xe_engine, but it also is used as |
| * the input of engine selection for both @drm_xe_exec_queue_create and |
| * @drm_xe_query_engine_cycles |
| * |
| * The @engine_class can be: |
| * - %DRM_XE_ENGINE_CLASS_RENDER |
| * - %DRM_XE_ENGINE_CLASS_COPY |
| * - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE |
| * - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE |
| * - %DRM_XE_ENGINE_CLASS_COMPUTE |
| * - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual |
| * hardware engine class). Used for creating ordered queues of VM |
| * bind operations. |
| */ |
| struct drm_xe_engine_class_instance { |
| #define DRM_XE_ENGINE_CLASS_RENDER 0 |
| #define DRM_XE_ENGINE_CLASS_COPY 1 |
| #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2 |
| #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3 |
| #define DRM_XE_ENGINE_CLASS_COMPUTE 4 |
| #define DRM_XE_ENGINE_CLASS_VM_BIND 5 |
| /** @engine_class: engine class id */ |
| __u16 engine_class; |
| /** @engine_instance: engine instance id */ |
| __u16 engine_instance; |
| /** @gt_id: Unique ID of this GT within the PCI Device */ |
| __u16 gt_id; |
| /** @pad: MBZ */ |
| __u16 pad; |
| }; |
| |
| /** |
| * struct drm_xe_engine - describe hardware engine |
| */ |
| struct drm_xe_engine { |
| /** @instance: The @drm_xe_engine_class_instance */ |
| struct drm_xe_engine_class_instance instance; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[3]; |
| }; |
| |
| /** |
| * struct drm_xe_query_engines - describe engines |
| * |
| * If a query is made with a struct @drm_xe_device_query where .query |
| * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of |
| * struct @drm_xe_query_engines in .data. |
| */ |
| struct drm_xe_query_engines { |
| /** @num_engines: number of engines returned in @engines */ |
| __u32 num_engines; |
| /** @pad: MBZ */ |
| __u32 pad; |
| /** @engines: The returned engines for this device */ |
| struct drm_xe_engine engines[]; |
| }; |
| |
| /** |
| * enum drm_xe_memory_class - Supported memory classes. |
| */ |
| enum drm_xe_memory_class { |
| /** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */ |
| DRM_XE_MEM_REGION_CLASS_SYSMEM = 0, |
| /** |
| * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this |
| * represents the memory that is local to the device, which we |
| * call VRAM. Not valid on integrated platforms. |
| */ |
| DRM_XE_MEM_REGION_CLASS_VRAM |
| }; |
| |
| /** |
| * struct drm_xe_mem_region - Describes some region as known to |
| * the driver. |
| */ |
| struct drm_xe_mem_region { |
| /** |
| * @mem_class: The memory class describing this region. |
| * |
| * See enum drm_xe_memory_class for supported values. |
| */ |
| __u16 mem_class; |
| /** |
| * @instance: The unique ID for this region, which serves as the |
| * index in the placement bitmask used as argument for |
| * &DRM_IOCTL_XE_GEM_CREATE |
| */ |
| __u16 instance; |
| /** |
| * @min_page_size: Min page-size in bytes for this region. |
| * |
| * When the kernel allocates memory for this region, the |
| * underlying pages will be at least @min_page_size in size. |
| * Buffer objects with an allowable placement in this region must be |
| * created with a size aligned to this value. |
| * GPU virtual address mappings of (parts of) buffer objects that |
| * may be placed in this region must also have their GPU virtual |
| * address and range aligned to this value. |
| * Affected IOCTLS will return %-EINVAL if alignment restrictions are |
| * not met. |
| */ |
| __u32 min_page_size; |
| /** |
| * @total_size: The usable size in bytes for this region. |
| */ |
| __u64 total_size; |
| /** |
| * @used: Estimate of the memory used in bytes for this region. |
| * |
| * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable |
| * accounting. Without this the value here will always equal |
| * zero. |
| */ |
| __u64 used; |
| /** |
| * @cpu_visible_size: How much of this region can be CPU |
| * accessed, in bytes. |
| * |
| * This will always be <= @total_size, and the remainder (if |
| * any) will not be CPU accessible. If the CPU accessible part |
| * is smaller than @total_size then this is referred to as a |
| * small BAR system. |
| * |
| * On systems without small BAR (full BAR), the probed_size will |
| * always equal the @total_size, since all of it will be CPU |
| * accessible. |
| * |
| * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM |
| * regions (for other types the value here will always equal |
| * zero). |
| */ |
| __u64 cpu_visible_size; |
| /** |
| * @cpu_visible_used: Estimate of CPU visible memory used, in |
| * bytes. |
| * |
| * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable |
| * accounting. Without this the value here will always equal |
| * zero. Note this is only currently tracked for |
| * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value |
| * here will always be zero). |
| */ |
| __u64 cpu_visible_used; |
| /** @reserved: Reserved */ |
| __u64 reserved[6]; |
| }; |
| |
| /** |
| * struct drm_xe_query_mem_regions - describe memory regions |
| * |
| * If a query is made with a struct drm_xe_device_query where .query |
| * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses |
| * struct drm_xe_query_mem_regions in .data. |
| */ |
| struct drm_xe_query_mem_regions { |
| /** @num_mem_regions: number of memory regions returned in @mem_regions */ |
| __u32 num_mem_regions; |
| /** @pad: MBZ */ |
| __u32 pad; |
| /** @mem_regions: The returned memory regions for this device */ |
| struct drm_xe_mem_region mem_regions[]; |
| }; |
| |
| /** |
| * struct drm_xe_query_config - describe the device configuration |
| * |
| * If a query is made with a struct drm_xe_device_query where .query |
| * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses |
| * struct drm_xe_query_config in .data. |
| * |
| * The index in @info can be: |
| * - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits) |
| * and the device revision (next 8 bits) |
| * - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device |
| * configuration, see list below |
| * |
| * - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device |
| * has usable VRAM |
| * - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment |
| * required by this device, typically SZ_4K or SZ_64K |
| * - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address |
| * - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest |
| * available exec queue priority |
| */ |
| struct drm_xe_query_config { |
| /** @num_params: number of parameters returned in info */ |
| __u32 num_params; |
| |
| /** @pad: MBZ */ |
| __u32 pad; |
| |
| #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0 |
| #define DRM_XE_QUERY_CONFIG_FLAGS 1 |
| #define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0) |
| #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2 |
| #define DRM_XE_QUERY_CONFIG_VA_BITS 3 |
| #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4 |
| /** @info: array of elements containing the config info */ |
| __u64 info[]; |
| }; |
| |
| /** |
| * struct drm_xe_gt - describe an individual GT. |
| * |
| * To be used with drm_xe_query_gt_list, which will return a list with all the |
| * existing GT individual descriptions. |
| * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for |
| * implementing graphics and/or media operations. |
| * |
| * The index in @type can be: |
| * - %DRM_XE_QUERY_GT_TYPE_MAIN |
| * - %DRM_XE_QUERY_GT_TYPE_MEDIA |
| */ |
| struct drm_xe_gt { |
| #define DRM_XE_QUERY_GT_TYPE_MAIN 0 |
| #define DRM_XE_QUERY_GT_TYPE_MEDIA 1 |
| /** @type: GT type: Main or Media */ |
| __u16 type; |
| /** @tile_id: Tile ID where this GT lives (Information only) */ |
| __u16 tile_id; |
| /** @gt_id: Unique ID of this GT within the PCI Device */ |
| __u16 gt_id; |
| /** @pad: MBZ */ |
| __u16 pad[3]; |
| /** @reference_clock: A clock frequency for timestamp */ |
| __u32 reference_clock; |
| /** |
| * @near_mem_regions: Bit mask of instances from |
| * drm_xe_query_mem_regions that are nearest to the current engines |
| * of this GT. |
| * Each index in this mask refers directly to the struct |
| * drm_xe_query_mem_regions' instance, no assumptions should |
| * be made about order. The type of each region is described |
| * by struct drm_xe_query_mem_regions' mem_class. |
| */ |
| __u64 near_mem_regions; |
| /** |
| * @far_mem_regions: Bit mask of instances from |
| * drm_xe_query_mem_regions that are far from the engines of this GT. |
| * In general, they have extra indirections when compared to the |
| * @near_mem_regions. For a discrete device this could mean system |
| * memory and memory living in a different tile. |
| * Each index in this mask refers directly to the struct |
| * drm_xe_query_mem_regions' instance, no assumptions should |
| * be made about order. The type of each region is described |
| * by struct drm_xe_query_mem_regions' mem_class. |
| */ |
| __u64 far_mem_regions; |
| /** @reserved: Reserved */ |
| __u64 reserved[8]; |
| }; |
| |
| /** |
| * struct drm_xe_query_gt_list - A list with GT description items. |
| * |
| * If a query is made with a struct drm_xe_device_query where .query |
| * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct |
| * drm_xe_query_gt_list in .data. |
| */ |
| struct drm_xe_query_gt_list { |
| /** @num_gt: number of GT items returned in gt_list */ |
| __u32 num_gt; |
| /** @pad: MBZ */ |
| __u32 pad; |
| /** @gt_list: The GT list returned for this device */ |
| struct drm_xe_gt gt_list[]; |
| }; |
| |
| /** |
| * struct drm_xe_query_topology_mask - describe the topology mask of a GT |
| * |
| * This is the hardware topology which reflects the internal physical |
| * structure of the GPU. |
| * |
| * If a query is made with a struct drm_xe_device_query where .query |
| * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses |
| * struct drm_xe_query_topology_mask in .data. |
| * |
| * The @type can be: |
| * - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices |
| * (DSS) available for geometry operations. For example a query response |
| * containing the following in mask: |
| * ``DSS_GEOMETRY ff ff ff ff 00 00 00 00`` |
| * means 32 DSS are available for geometry. |
| * - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices |
| * (DSS) available for compute operations. For example a query response |
| * containing the following in mask: |
| * ``DSS_COMPUTE ff ff ff ff 00 00 00 00`` |
| * means 32 DSS are available for compute. |
| * - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU) |
| * available per Dual Sub Slices (DSS). For example a query response |
| * containing the following in mask: |
| * ``EU_PER_DSS ff ff 00 00 00 00 00 00`` |
| * means each DSS has 16 EU. |
| */ |
| struct drm_xe_query_topology_mask { |
| /** @gt_id: GT ID the mask is associated with */ |
| __u16 gt_id; |
| |
| #define DRM_XE_TOPO_DSS_GEOMETRY (1 << 0) |
| #define DRM_XE_TOPO_DSS_COMPUTE (1 << 1) |
| #define DRM_XE_TOPO_EU_PER_DSS (1 << 2) |
| /** @type: type of mask */ |
| __u16 type; |
| |
| /** @num_bytes: number of bytes in requested mask */ |
| __u32 num_bytes; |
| |
| /** @mask: little-endian mask of @num_bytes */ |
| __u8 mask[]; |
| }; |
| |
| /** |
| * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps |
| * |
| * If a query is made with a struct drm_xe_device_query where .query is equal to |
| * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles |
| * in .data. struct drm_xe_query_engine_cycles is allocated by the user and |
| * .data points to this allocated structure. |
| * |
| * The query returns the engine cycles, which along with GT's @reference_clock, |
| * can be used to calculate the engine timestamp. In addition the |
| * query returns a set of cpu timestamps that indicate when the command |
| * streamer cycle count was captured. |
| */ |
| struct drm_xe_query_engine_cycles { |
| /** |
| * @eci: This is input by the user and is the engine for which command |
| * streamer cycles is queried. |
| */ |
| struct drm_xe_engine_class_instance eci; |
| |
| /** |
| * @clockid: This is input by the user and is the reference clock id for |
| * CPU timestamp. For definition, see clock_gettime(2) and |
| * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC, |
| * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI. |
| */ |
| __s32 clockid; |
| |
| /** @width: Width of the engine cycle counter in bits. */ |
| __u32 width; |
| |
| /** |
| * @engine_cycles: Engine cycles as read from its register |
| * at 0x358 offset. |
| */ |
| __u64 engine_cycles; |
| |
| /** |
| * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before |
| * reading the engine_cycles register using the reference clockid set by the |
| * user. |
| */ |
| __u64 cpu_timestamp; |
| |
| /** |
| * @cpu_delta: Time delta in ns captured around reading the lower dword |
| * of the engine_cycles register. |
| */ |
| __u64 cpu_delta; |
| }; |
| |
| /** |
| * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version |
| * |
| * Given a uc_type this will return the branch, major, minor and patch version |
| * of the micro-controller firmware. |
| */ |
| struct drm_xe_query_uc_fw_version { |
| /** @uc_type: The micro-controller type to query firmware version */ |
| #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0 |
| __u16 uc_type; |
| |
| /** @pad: MBZ */ |
| __u16 pad; |
| |
| /** @branch_ver: branch uc fw version */ |
| __u32 branch_ver; |
| /** @major_ver: major uc fw version */ |
| __u32 major_ver; |
| /** @minor_ver: minor uc fw version */ |
| __u32 minor_ver; |
| /** @patch_ver: patch uc fw version */ |
| __u32 patch_ver; |
| |
| /** @pad2: MBZ */ |
| __u32 pad2; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved; |
| }; |
| |
| /** |
| * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main |
| * structure to query device information |
| * |
| * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_* |
| * and sets the value in the query member. This determines the type of |
| * the structure provided by the driver in data, among struct drm_xe_query_*. |
| * |
| * The @query can be: |
| * - %DRM_XE_DEVICE_QUERY_ENGINES |
| * - %DRM_XE_DEVICE_QUERY_MEM_REGIONS |
| * - %DRM_XE_DEVICE_QUERY_CONFIG |
| * - %DRM_XE_DEVICE_QUERY_GT_LIST |
| * - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware |
| * configuration of the device such as information on slices, memory, |
| * caches, and so on. It is provided as a table of key / value |
| * attributes. |
| * - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY |
| * - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES |
| * |
| * If size is set to 0, the driver fills it with the required size for |
| * the requested type of data to query. If size is equal to the required |
| * size, the queried information is copied into data. If size is set to |
| * a value different from 0 and different from the required size, the |
| * IOCTL call returns -EINVAL. |
| * |
| * For example the following code snippet allows retrieving and printing |
| * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES: |
| * |
| * .. code-block:: C |
| * |
| * struct drm_xe_query_engines *engines; |
| * struct drm_xe_device_query query = { |
| * .extensions = 0, |
| * .query = DRM_XE_DEVICE_QUERY_ENGINES, |
| * .size = 0, |
| * .data = 0, |
| * }; |
| * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); |
| * engines = malloc(query.size); |
| * query.data = (uintptr_t)engines; |
| * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); |
| * for (int i = 0; i < engines->num_engines; i++) { |
| * printf("Engine %d: %s\n", i, |
| * engines->engines[i].instance.engine_class == |
| * DRM_XE_ENGINE_CLASS_RENDER ? "RENDER": |
| * engines->engines[i].instance.engine_class == |
| * DRM_XE_ENGINE_CLASS_COPY ? "COPY": |
| * engines->engines[i].instance.engine_class == |
| * DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE": |
| * engines->engines[i].instance.engine_class == |
| * DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE": |
| * engines->engines[i].instance.engine_class == |
| * DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE": |
| * "UNKNOWN"); |
| * } |
| * free(engines); |
| */ |
| struct drm_xe_device_query { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| #define DRM_XE_DEVICE_QUERY_ENGINES 0 |
| #define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1 |
| #define DRM_XE_DEVICE_QUERY_CONFIG 2 |
| #define DRM_XE_DEVICE_QUERY_GT_LIST 3 |
| #define DRM_XE_DEVICE_QUERY_HWCONFIG 4 |
| #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5 |
| #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6 |
| #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7 |
| /** @query: The type of data to query */ |
| __u32 query; |
| |
| /** @size: Size of the queried data */ |
| __u32 size; |
| |
| /** @data: Queried data is placed here */ |
| __u64 data; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for |
| * gem creation |
| * |
| * The @flags can be: |
| * - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
| * - %DRM_XE_GEM_CREATE_FLAG_SCANOUT |
| * - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a |
| * possible placement, ensure that the corresponding VRAM allocation |
| * will always use the CPU accessible part of VRAM. This is important |
| * for small-bar systems (on full-bar systems this gets turned into a |
| * noop). |
| * Note1: System memory can be used as an extra placement if the kernel |
| * should spill the allocation to system memory, if space can't be made |
| * available in the CPU accessible part of VRAM (giving the same |
| * behaviour as the i915 interface, see |
| * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS). |
| * Note2: For clear-color CCS surfaces the kernel needs to read the |
| * clear-color value stored in the buffer, and on discrete platforms we |
| * need to use VRAM for display surfaces, therefore the kernel requires |
| * setting this flag for such objects, otherwise an error is thrown on |
| * small-bar systems. |
| * |
| * @cpu_caching supports the following values: |
| * - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back |
| * caching. On iGPU this can't be used for scanout surfaces. Currently |
| * not allowed for objects placed in VRAM. |
| * - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This |
| * is uncached. Scanout surfaces should likely use this. All objects |
| * that can be placed in VRAM must use this. |
| */ |
| struct drm_xe_gem_create { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** |
| * @size: Size of the object to be created, must match region |
| * (system or vram) minimum alignment (&min_page_size). |
| */ |
| __u64 size; |
| |
| /** |
| * @placement: A mask of memory instances of where BO can be placed. |
| * Each index in this mask refers directly to the struct |
| * drm_xe_query_mem_regions' instance, no assumptions should |
| * be made about order. The type of each region is described |
| * by struct drm_xe_query_mem_regions' mem_class. |
| */ |
| __u32 placement; |
| |
| #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0) |
| #define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1) |
| #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2) |
| /** |
| * @flags: Flags, currently a mask of memory instances of where BO can |
| * be placed |
| */ |
| __u32 flags; |
| |
| /** |
| * @vm_id: Attached VM, if any |
| * |
| * If a VM is specified, this BO must: |
| * |
| * 1. Only ever be bound to that VM. |
| * 2. Cannot be exported as a PRIME fd. |
| */ |
| __u32 vm_id; |
| |
| /** |
| * @handle: Returned handle for the object. |
| * |
| * Object handles are nonzero. |
| */ |
| __u32 handle; |
| |
| #define DRM_XE_GEM_CPU_CACHING_WB 1 |
| #define DRM_XE_GEM_CPU_CACHING_WC 2 |
| /** |
| * @cpu_caching: The CPU caching mode to select for this object. If |
| * mmaping the object the mode selected here will also be used. |
| */ |
| __u16 cpu_caching; |
| /** @pad: MBZ */ |
| __u16 pad[3]; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET |
| */ |
| struct drm_xe_gem_mmap_offset { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** @handle: Handle for the object being mapped. */ |
| __u32 handle; |
| |
| /** @flags: Must be zero */ |
| __u32 flags; |
| |
| /** @offset: The fake offset to use for subsequent mmap call */ |
| __u64 offset; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE |
| * |
| * The @flags can be: |
| * - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE |
| * - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts |
| * exec submissions to its exec_queues that don't have an upper time |
| * limit on the job execution time. But exec submissions to these |
| * don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ, |
| * DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF, |
| * used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL. |
| * LR VMs can be created in recoverable page-fault mode using |
| * DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it. |
| * If that flag is omitted, the UMD can not rely on the slightly |
| * different per-VM overcommit semantics that are enabled by |
| * DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may |
| * still enable recoverable pagefaults if supported by the device. |
| * - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also |
| * DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on |
| * demand when accessed, and also allows per-VM overcommit of memory. |
| * The xe driver internally uses recoverable pagefaults to implement |
| * this. |
| */ |
| struct drm_xe_vm_create { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0) |
| #define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1) |
| #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2) |
| /** @flags: Flags */ |
| __u32 flags; |
| |
| /** @vm_id: Returned VM ID */ |
| __u32 vm_id; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY |
| */ |
| struct drm_xe_vm_destroy { |
| /** @vm_id: VM ID */ |
| __u32 vm_id; |
| |
| /** @pad: MBZ */ |
| __u32 pad; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_vm_bind_op - run bind operations |
| * |
| * The @op can be: |
| * - %DRM_XE_VM_BIND_OP_MAP |
| * - %DRM_XE_VM_BIND_OP_UNMAP |
| * - %DRM_XE_VM_BIND_OP_MAP_USERPTR |
| * - %DRM_XE_VM_BIND_OP_UNMAP_ALL |
| * - %DRM_XE_VM_BIND_OP_PREFETCH |
| * |
| * and the @flags can be: |
| * - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page |
| * tables are setup with a special bit which indicates writes are |
| * dropped and all reads return zero. In the future, the NULL flags |
| * will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO |
| * handle MBZ, and the BO offset MBZ. This flag is intended to |
| * implement VK sparse bindings. |
| */ |
| struct drm_xe_vm_bind_op { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** |
| * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP |
| */ |
| __u32 obj; |
| |
| /** |
| * @pat_index: The platform defined @pat_index to use for this mapping. |
| * The index basically maps to some predefined memory attributes, |
| * including things like caching, coherency, compression etc. The exact |
| * meaning of the pat_index is platform specific and defined in the |
| * Bspec and PRMs. When the KMD sets up the binding the index here is |
| * encoded into the ppGTT PTE. |
| * |
| * For coherency the @pat_index needs to be at least 1way coherent when |
| * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD |
| * will extract the coherency mode from the @pat_index and reject if |
| * there is a mismatch (see note below for pre-MTL platforms). |
| * |
| * Note: On pre-MTL platforms there is only a caching mode and no |
| * explicit coherency mode, but on such hardware there is always a |
| * shared-LLC (or is dgpu) so all GT memory accesses are coherent with |
| * CPU caches even with the caching mode set as uncached. It's only the |
| * display engine that is incoherent (on dgpu it must be in VRAM which |
| * is always mapped as WC on the CPU). However to keep the uapi somewhat |
| * consistent with newer platforms the KMD groups the different cache |
| * levels into the following coherency buckets on all pre-MTL platforms: |
| * |
| * ppGTT UC -> COH_NONE |
| * ppGTT WC -> COH_NONE |
| * ppGTT WT -> COH_NONE |
| * ppGTT WB -> COH_AT_LEAST_1WAY |
| * |
| * In practice UC/WC/WT should only ever used for scanout surfaces on |
| * such platforms (or perhaps in general for dma-buf if shared with |
| * another device) since it is only the display engine that is actually |
| * incoherent. Everything else should typically use WB given that we |
| * have a shared-LLC. On MTL+ this completely changes and the HW |
| * defines the coherency mode as part of the @pat_index, where |
| * incoherent GT access is possible. |
| * |
| * Note: For userptr and externally imported dma-buf the kernel expects |
| * either 1WAY or 2WAY for the @pat_index. |
| * |
| * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions |
| * on the @pat_index. For such mappings there is no actual memory being |
| * mapped (the address in the PTE is invalid), so the various PAT memory |
| * attributes likely do not apply. Simply leaving as zero is one |
| * option (still a valid pat_index). |
| */ |
| __u16 pat_index; |
| |
| /** @pad: MBZ */ |
| __u16 pad; |
| |
| union { |
| /** |
| * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE, |
| * ignored for unbind |
| */ |
| __u64 obj_offset; |
| |
| /** @userptr: user pointer to bind on */ |
| __u64 userptr; |
| }; |
| |
| /** |
| * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL |
| */ |
| __u64 range; |
| |
| /** @addr: Address to operate on, MBZ for UNMAP_ALL */ |
| __u64 addr; |
| |
| #define DRM_XE_VM_BIND_OP_MAP 0x0 |
| #define DRM_XE_VM_BIND_OP_UNMAP 0x1 |
| #define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2 |
| #define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3 |
| #define DRM_XE_VM_BIND_OP_PREFETCH 0x4 |
| /** @op: Bind operation to perform */ |
| __u32 op; |
| |
| #define DRM_XE_VM_BIND_FLAG_NULL (1 << 2) |
| #define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3) |
| /** @flags: Bind flags */ |
| __u32 flags; |
| |
| /** |
| * @prefetch_mem_region_instance: Memory region to prefetch VMA to. |
| * It is a region instance, not a mask. |
| * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation. |
| */ |
| __u32 prefetch_mem_region_instance; |
| |
| /** @pad2: MBZ */ |
| __u32 pad2; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[3]; |
| }; |
| |
| /** |
| * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND |
| * |
| * Below is an example of a minimal use of @drm_xe_vm_bind to |
| * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to |
| * illustrate `userptr`. It can be synchronized by using the example |
| * provided for @drm_xe_sync. |
| * |
| * .. code-block:: C |
| * |
| * data = aligned_alloc(ALIGNMENT, BO_SIZE); |
| * struct drm_xe_vm_bind bind = { |
| * .vm_id = vm, |
| * .num_binds = 1, |
| * .bind.obj = 0, |
| * .bind.obj_offset = to_user_pointer(data), |
| * .bind.range = BO_SIZE, |
| * .bind.addr = BIND_ADDRESS, |
| * .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR, |
| * .bind.flags = 0, |
| * .num_syncs = 1, |
| * .syncs = &sync, |
| * .exec_queue_id = 0, |
| * }; |
| * ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind); |
| * |
| */ |
| struct drm_xe_vm_bind { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** @vm_id: The ID of the VM to bind to */ |
| __u32 vm_id; |
| |
| /** |
| * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND |
| * and exec queue must have same vm_id. If zero, the default VM bind engine |
| * is used. |
| */ |
| __u32 exec_queue_id; |
| |
| /** @pad: MBZ */ |
| __u32 pad; |
| |
| /** @num_binds: number of binds in this IOCTL */ |
| __u32 num_binds; |
| |
| union { |
| /** @bind: used if num_binds == 1 */ |
| struct drm_xe_vm_bind_op bind; |
| |
| /** |
| * @vector_of_binds: userptr to array of struct |
| * drm_xe_vm_bind_op if num_binds > 1 |
| */ |
| __u64 vector_of_binds; |
| }; |
| |
| /** @pad2: MBZ */ |
| __u32 pad2; |
| |
| /** @num_syncs: amount of syncs to wait on */ |
| __u32 num_syncs; |
| |
| /** @syncs: pointer to struct drm_xe_sync array */ |
| __u64 syncs; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE |
| * |
| * The example below shows how to use @drm_xe_exec_queue_create to create |
| * a simple exec_queue (no parallel submission) of class |
| * &DRM_XE_ENGINE_CLASS_RENDER. |
| * |
| * .. code-block:: C |
| * |
| * struct drm_xe_engine_class_instance instance = { |
| * .engine_class = DRM_XE_ENGINE_CLASS_RENDER, |
| * }; |
| * struct drm_xe_exec_queue_create exec_queue_create = { |
| * .extensions = 0, |
| * .vm_id = vm, |
| * .num_bb_per_exec = 1, |
| * .num_eng_per_bb = 1, |
| * .instances = to_user_pointer(&instance), |
| * }; |
| * ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create); |
| * |
| */ |
| struct drm_xe_exec_queue_create { |
| #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0 |
| #define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0 |
| #define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1 |
| |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** @width: submission width (number BB per exec) for this exec queue */ |
| __u16 width; |
| |
| /** @num_placements: number of valid placements for this exec queue */ |
| __u16 num_placements; |
| |
| /** @vm_id: VM to use for this exec queue */ |
| __u32 vm_id; |
| |
| /** @flags: MBZ */ |
| __u32 flags; |
| |
| /** @exec_queue_id: Returned exec queue ID */ |
| __u32 exec_queue_id; |
| |
| /** |
| * @instances: user pointer to a 2-d array of struct |
| * drm_xe_engine_class_instance |
| * |
| * length = width (i) * num_placements (j) |
| * index = j + i * width |
| */ |
| __u64 instances; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY |
| */ |
| struct drm_xe_exec_queue_destroy { |
| /** @exec_queue_id: Exec queue ID */ |
| __u32 exec_queue_id; |
| |
| /** @pad: MBZ */ |
| __u32 pad; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY |
| * |
| * The @property can be: |
| * - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN |
| */ |
| struct drm_xe_exec_queue_get_property { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** @exec_queue_id: Exec queue ID */ |
| __u32 exec_queue_id; |
| |
| #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0 |
| /** @property: property to get */ |
| __u32 property; |
| |
| /** @value: property value */ |
| __u64 value; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_sync - sync object |
| * |
| * The @type can be: |
| * - %DRM_XE_SYNC_TYPE_SYNCOBJ |
| * - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ |
| * - %DRM_XE_SYNC_TYPE_USER_FENCE |
| * |
| * and the @flags can be: |
| * - %DRM_XE_SYNC_FLAG_SIGNAL |
| * |
| * A minimal use of @drm_xe_sync looks like this: |
| * |
| * .. code-block:: C |
| * |
| * struct drm_xe_sync sync = { |
| * .flags = DRM_XE_SYNC_FLAG_SIGNAL, |
| * .type = DRM_XE_SYNC_TYPE_SYNCOBJ, |
| * }; |
| * struct drm_syncobj_create syncobj_create = { 0 }; |
| * ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create); |
| * sync.handle = syncobj_create.handle; |
| * ... |
| * use of &sync in drm_xe_exec or drm_xe_vm_bind |
| * ... |
| * struct drm_syncobj_wait wait = { |
| * .handles = &sync.handle, |
| * .timeout_nsec = INT64_MAX, |
| * .count_handles = 1, |
| * .flags = 0, |
| * .first_signaled = 0, |
| * .pad = 0, |
| * }; |
| * ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait); |
| */ |
| struct drm_xe_sync { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| #define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0 |
| #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1 |
| #define DRM_XE_SYNC_TYPE_USER_FENCE 0x2 |
| /** @type: Type of the this sync object */ |
| __u32 type; |
| |
| #define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0) |
| /** @flags: Sync Flags */ |
| __u32 flags; |
| |
| union { |
| /** @handle: Handle for the object */ |
| __u32 handle; |
| |
| /** |
| * @addr: Address of user fence. When sync is passed in via exec |
| * IOCTL this is a GPU address in the VM. When sync passed in via |
| * VM bind IOCTL this is a user pointer. In either case, it is |
| * the users responsibility that this address is present and |
| * mapped when the user fence is signalled. Must be qword |
| * aligned. |
| */ |
| __u64 addr; |
| }; |
| |
| /** |
| * @timeline_value: Input for the timeline sync object. Needs to be |
| * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ. |
| */ |
| __u64 timeline_value; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC |
| * |
| * This is an example to use @drm_xe_exec for execution of the object |
| * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue |
| * (see example in @drm_xe_exec_queue_create). It can be synchronized |
| * by using the example provided for @drm_xe_sync. |
| * |
| * .. code-block:: C |
| * |
| * struct drm_xe_exec exec = { |
| * .exec_queue_id = exec_queue, |
| * .syncs = &sync, |
| * .num_syncs = 1, |
| * .address = BIND_ADDRESS, |
| * .num_batch_buffer = 1, |
| * }; |
| * ioctl(fd, DRM_IOCTL_XE_EXEC, &exec); |
| * |
| */ |
| struct drm_xe_exec { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** @exec_queue_id: Exec queue ID for the batch buffer */ |
| __u32 exec_queue_id; |
| |
| /** @num_syncs: Amount of struct drm_xe_sync in array. */ |
| __u32 num_syncs; |
| |
| /** @syncs: Pointer to struct drm_xe_sync array. */ |
| __u64 syncs; |
| |
| /** |
| * @address: address of batch buffer if num_batch_buffer == 1 or an |
| * array of batch buffer addresses |
| */ |
| __u64 address; |
| |
| /** |
| * @num_batch_buffer: number of batch buffer in this exec, must match |
| * the width of the engine |
| */ |
| __u16 num_batch_buffer; |
| |
| /** @pad: MBZ */ |
| __u16 pad[3]; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| /** |
| * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE |
| * |
| * Wait on user fence, XE will wake-up on every HW engine interrupt in the |
| * instances list and check if user fence is complete:: |
| * |
| * (*addr & MASK) OP (VALUE & MASK) |
| * |
| * Returns to user on user fence completion or timeout. |
| * |
| * The @op can be: |
| * - %DRM_XE_UFENCE_WAIT_OP_EQ |
| * - %DRM_XE_UFENCE_WAIT_OP_NEQ |
| * - %DRM_XE_UFENCE_WAIT_OP_GT |
| * - %DRM_XE_UFENCE_WAIT_OP_GTE |
| * - %DRM_XE_UFENCE_WAIT_OP_LT |
| * - %DRM_XE_UFENCE_WAIT_OP_LTE |
| * |
| * and the @flags can be: |
| * - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME |
| * - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP |
| * |
| * The @mask values can be for example: |
| * - 0xffu for u8 |
| * - 0xffffu for u16 |
| * - 0xffffffffu for u32 |
| * - 0xffffffffffffffffu for u64 |
| */ |
| struct drm_xe_wait_user_fence { |
| /** @extensions: Pointer to the first extension struct, if any */ |
| __u64 extensions; |
| |
| /** |
| * @addr: user pointer address to wait on, must qword aligned |
| */ |
| __u64 addr; |
| |
| #define DRM_XE_UFENCE_WAIT_OP_EQ 0x0 |
| #define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1 |
| #define DRM_XE_UFENCE_WAIT_OP_GT 0x2 |
| #define DRM_XE_UFENCE_WAIT_OP_GTE 0x3 |
| #define DRM_XE_UFENCE_WAIT_OP_LT 0x4 |
| #define DRM_XE_UFENCE_WAIT_OP_LTE 0x5 |
| /** @op: wait operation (type of comparison) */ |
| __u16 op; |
| |
| #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0) |
| /** @flags: wait flags */ |
| __u16 flags; |
| |
| /** @pad: MBZ */ |
| __u32 pad; |
| |
| /** @value: compare value */ |
| __u64 value; |
| |
| /** @mask: comparison mask */ |
| __u64 mask; |
| |
| /** |
| * @timeout: how long to wait before bailing, value in nanoseconds. |
| * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout) |
| * it contains timeout expressed in nanoseconds to wait (fence will |
| * expire at now() + timeout). |
| * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait |
| * will end at timeout (uses system MONOTONIC_CLOCK). |
| * Passing negative timeout leads to neverending wait. |
| * |
| * On relative timeout this value is updated with timeout left |
| * (for restarting the call in case of signal delivery). |
| * On absolute timeout this value stays intact (restarted call still |
| * expire at the same point of time). |
| */ |
| __s64 timeout; |
| |
| /** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */ |
| __u32 exec_queue_id; |
| |
| /** @pad2: MBZ */ |
| __u32 pad2; |
| |
| /** @reserved: Reserved */ |
| __u64 reserved[2]; |
| }; |
| |
| #if defined(__cplusplus) |
| } |
| #endif |
| |
| #endif /* _UAPI_XE_DRM_H_ */ |