| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
| * Internal non-public definitions that provide either classic |
| * or preemptible semantics. |
| * |
| * Copyright Red Hat, 2009 |
| * Copyright IBM Corporation, 2009 |
| * |
| * Author: Ingo Molnar <mingo@elte.hu> |
| * Paul E. McKenney <paulmck@linux.ibm.com> |
| */ |
| |
| #include "../locking/rtmutex_common.h" |
| |
| #ifdef CONFIG_RCU_NOCB_CPU |
| static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ |
| static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| |
| /* |
| * Check the RCU kernel configuration parameters and print informative |
| * messages about anything out of the ordinary. |
| */ |
| static void __init rcu_bootup_announce_oddness(void) |
| { |
| if (IS_ENABLED(CONFIG_RCU_TRACE)) |
| pr_info("\tRCU event tracing is enabled.\n"); |
| if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || |
| (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) |
| pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", |
| RCU_FANOUT); |
| if (rcu_fanout_exact) |
| pr_info("\tHierarchical RCU autobalancing is disabled.\n"); |
| if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) |
| pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); |
| if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| pr_info("\tRCU lockdep checking is enabled.\n"); |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) |
| pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); |
| if (RCU_NUM_LVLS >= 4) |
| pr_info("\tFour(or more)-level hierarchy is enabled.\n"); |
| if (RCU_FANOUT_LEAF != 16) |
| pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", |
| RCU_FANOUT_LEAF); |
| if (rcu_fanout_leaf != RCU_FANOUT_LEAF) |
| pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", |
| rcu_fanout_leaf); |
| if (nr_cpu_ids != NR_CPUS) |
| pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); |
| #ifdef CONFIG_RCU_BOOST |
| pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", |
| kthread_prio, CONFIG_RCU_BOOST_DELAY); |
| #endif |
| if (blimit != DEFAULT_RCU_BLIMIT) |
| pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); |
| if (qhimark != DEFAULT_RCU_QHIMARK) |
| pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); |
| if (qlowmark != DEFAULT_RCU_QLOMARK) |
| pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); |
| if (qovld != DEFAULT_RCU_QOVLD) |
| pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); |
| if (jiffies_till_first_fqs != ULONG_MAX) |
| pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); |
| if (jiffies_till_next_fqs != ULONG_MAX) |
| pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); |
| if (jiffies_till_sched_qs != ULONG_MAX) |
| pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); |
| if (rcu_kick_kthreads) |
| pr_info("\tKick kthreads if too-long grace period.\n"); |
| if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) |
| pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); |
| if (gp_preinit_delay) |
| pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); |
| if (gp_init_delay) |
| pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); |
| if (gp_cleanup_delay) |
| pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); |
| if (!use_softirq) |
| pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); |
| if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) |
| pr_info("\tRCU debug extended QS entry/exit.\n"); |
| rcupdate_announce_bootup_oddness(); |
| } |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| |
| static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); |
| static void rcu_read_unlock_special(struct task_struct *t); |
| |
| /* |
| * Tell them what RCU they are running. |
| */ |
| static void __init rcu_bootup_announce(void) |
| { |
| pr_info("Preemptible hierarchical RCU implementation.\n"); |
| rcu_bootup_announce_oddness(); |
| } |
| |
| /* Flags for rcu_preempt_ctxt_queue() decision table. */ |
| #define RCU_GP_TASKS 0x8 |
| #define RCU_EXP_TASKS 0x4 |
| #define RCU_GP_BLKD 0x2 |
| #define RCU_EXP_BLKD 0x1 |
| |
| /* |
| * Queues a task preempted within an RCU-preempt read-side critical |
| * section into the appropriate location within the ->blkd_tasks list, |
| * depending on the states of any ongoing normal and expedited grace |
| * periods. The ->gp_tasks pointer indicates which element the normal |
| * grace period is waiting on (NULL if none), and the ->exp_tasks pointer |
| * indicates which element the expedited grace period is waiting on (again, |
| * NULL if none). If a grace period is waiting on a given element in the |
| * ->blkd_tasks list, it also waits on all subsequent elements. Thus, |
| * adding a task to the tail of the list blocks any grace period that is |
| * already waiting on one of the elements. In contrast, adding a task |
| * to the head of the list won't block any grace period that is already |
| * waiting on one of the elements. |
| * |
| * This queuing is imprecise, and can sometimes make an ongoing grace |
| * period wait for a task that is not strictly speaking blocking it. |
| * Given the choice, we needlessly block a normal grace period rather than |
| * blocking an expedited grace period. |
| * |
| * Note that an endless sequence of expedited grace periods still cannot |
| * indefinitely postpone a normal grace period. Eventually, all of the |
| * fixed number of preempted tasks blocking the normal grace period that are |
| * not also blocking the expedited grace period will resume and complete |
| * their RCU read-side critical sections. At that point, the ->gp_tasks |
| * pointer will equal the ->exp_tasks pointer, at which point the end of |
| * the corresponding expedited grace period will also be the end of the |
| * normal grace period. |
| */ |
| static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) |
| __releases(rnp->lock) /* But leaves rrupts disabled. */ |
| { |
| int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + |
| (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + |
| (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + |
| (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); |
| struct task_struct *t = current; |
| |
| raw_lockdep_assert_held_rcu_node(rnp); |
| WARN_ON_ONCE(rdp->mynode != rnp); |
| WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| /* RCU better not be waiting on newly onlined CPUs! */ |
| WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & |
| rdp->grpmask); |
| |
| /* |
| * Decide where to queue the newly blocked task. In theory, |
| * this could be an if-statement. In practice, when I tried |
| * that, it was quite messy. |
| */ |
| switch (blkd_state) { |
| case 0: |
| case RCU_EXP_TASKS: |
| case RCU_EXP_TASKS + RCU_GP_BLKD: |
| case RCU_GP_TASKS: |
| case RCU_GP_TASKS + RCU_EXP_TASKS: |
| |
| /* |
| * Blocking neither GP, or first task blocking the normal |
| * GP but not blocking the already-waiting expedited GP. |
| * Queue at the head of the list to avoid unnecessarily |
| * blocking the already-waiting GPs. |
| */ |
| list_add(&t->rcu_node_entry, &rnp->blkd_tasks); |
| break; |
| |
| case RCU_EXP_BLKD: |
| case RCU_GP_BLKD: |
| case RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| |
| /* |
| * First task arriving that blocks either GP, or first task |
| * arriving that blocks the expedited GP (with the normal |
| * GP already waiting), or a task arriving that blocks |
| * both GPs with both GPs already waiting. Queue at the |
| * tail of the list to avoid any GP waiting on any of the |
| * already queued tasks that are not blocking it. |
| */ |
| list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); |
| break; |
| |
| case RCU_EXP_TASKS + RCU_EXP_BLKD: |
| case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: |
| |
| /* |
| * Second or subsequent task blocking the expedited GP. |
| * The task either does not block the normal GP, or is the |
| * first task blocking the normal GP. Queue just after |
| * the first task blocking the expedited GP. |
| */ |
| list_add(&t->rcu_node_entry, rnp->exp_tasks); |
| break; |
| |
| case RCU_GP_TASKS + RCU_GP_BLKD: |
| case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: |
| |
| /* |
| * Second or subsequent task blocking the normal GP. |
| * The task does not block the expedited GP. Queue just |
| * after the first task blocking the normal GP. |
| */ |
| list_add(&t->rcu_node_entry, rnp->gp_tasks); |
| break; |
| |
| default: |
| |
| /* Yet another exercise in excessive paranoia. */ |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| /* |
| * We have now queued the task. If it was the first one to |
| * block either grace period, update the ->gp_tasks and/or |
| * ->exp_tasks pointers, respectively, to reference the newly |
| * blocked tasks. |
| */ |
| if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { |
| WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); |
| WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); |
| } |
| if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) |
| WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); |
| WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != |
| !(rnp->qsmask & rdp->grpmask)); |
| WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != |
| !(rnp->expmask & rdp->grpmask)); |
| raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ |
| |
| /* |
| * Report the quiescent state for the expedited GP. This expedited |
| * GP should not be able to end until we report, so there should be |
| * no need to check for a subsequent expedited GP. (Though we are |
| * still in a quiescent state in any case.) |
| */ |
| if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) |
| rcu_report_exp_rdp(rdp); |
| else |
| WARN_ON_ONCE(rdp->exp_deferred_qs); |
| } |
| |
| /* |
| * Record a preemptible-RCU quiescent state for the specified CPU. |
| * Note that this does not necessarily mean that the task currently running |
| * on the CPU is in a quiescent state: Instead, it means that the current |
| * grace period need not wait on any RCU read-side critical section that |
| * starts later on this CPU. It also means that if the current task is |
| * in an RCU read-side critical section, it has already added itself to |
| * some leaf rcu_node structure's ->blkd_tasks list. In addition to the |
| * current task, there might be any number of other tasks blocked while |
| * in an RCU read-side critical section. |
| * |
| * Callers to this function must disable preemption. |
| */ |
| static void rcu_qs(void) |
| { |
| RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); |
| if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { |
| trace_rcu_grace_period(TPS("rcu_preempt"), |
| __this_cpu_read(rcu_data.gp_seq), |
| TPS("cpuqs")); |
| __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
| barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ |
| WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); |
| } |
| } |
| |
| /* |
| * We have entered the scheduler, and the current task might soon be |
| * context-switched away from. If this task is in an RCU read-side |
| * critical section, we will no longer be able to rely on the CPU to |
| * record that fact, so we enqueue the task on the blkd_tasks list. |
| * The task will dequeue itself when it exits the outermost enclosing |
| * RCU read-side critical section. Therefore, the current grace period |
| * cannot be permitted to complete until the blkd_tasks list entries |
| * predating the current grace period drain, in other words, until |
| * rnp->gp_tasks becomes NULL. |
| * |
| * Caller must disable interrupts. |
| */ |
| void rcu_note_context_switch(bool preempt) |
| { |
| struct task_struct *t = current; |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp; |
| |
| trace_rcu_utilization(TPS("Start context switch")); |
| lockdep_assert_irqs_disabled(); |
| WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); |
| if (rcu_preempt_depth() > 0 && |
| !t->rcu_read_unlock_special.b.blocked) { |
| |
| /* Possibly blocking in an RCU read-side critical section. */ |
| rnp = rdp->mynode; |
| raw_spin_lock_rcu_node(rnp); |
| t->rcu_read_unlock_special.b.blocked = true; |
| t->rcu_blocked_node = rnp; |
| |
| /* |
| * Verify the CPU's sanity, trace the preemption, and |
| * then queue the task as required based on the states |
| * of any ongoing and expedited grace periods. |
| */ |
| WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); |
| WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
| trace_rcu_preempt_task(rcu_state.name, |
| t->pid, |
| (rnp->qsmask & rdp->grpmask) |
| ? rnp->gp_seq |
| : rcu_seq_snap(&rnp->gp_seq)); |
| rcu_preempt_ctxt_queue(rnp, rdp); |
| } else { |
| rcu_preempt_deferred_qs(t); |
| } |
| |
| /* |
| * Either we were not in an RCU read-side critical section to |
| * begin with, or we have now recorded that critical section |
| * globally. Either way, we can now note a quiescent state |
| * for this CPU. Again, if we were in an RCU read-side critical |
| * section, and if that critical section was blocking the current |
| * grace period, then the fact that the task has been enqueued |
| * means that we continue to block the current grace period. |
| */ |
| rcu_qs(); |
| if (rdp->exp_deferred_qs) |
| rcu_report_exp_rdp(rdp); |
| rcu_tasks_qs(current, preempt); |
| trace_rcu_utilization(TPS("End context switch")); |
| } |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
| |
| /* |
| * Check for preempted RCU readers blocking the current grace period |
| * for the specified rcu_node structure. If the caller needs a reliable |
| * answer, it must hold the rcu_node's ->lock. |
| */ |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| { |
| return READ_ONCE(rnp->gp_tasks) != NULL; |
| } |
| |
| /* limit value for ->rcu_read_lock_nesting. */ |
| #define RCU_NEST_PMAX (INT_MAX / 2) |
| |
| static void rcu_preempt_read_enter(void) |
| { |
| current->rcu_read_lock_nesting++; |
| } |
| |
| static int rcu_preempt_read_exit(void) |
| { |
| return --current->rcu_read_lock_nesting; |
| } |
| |
| static void rcu_preempt_depth_set(int val) |
| { |
| current->rcu_read_lock_nesting = val; |
| } |
| |
| /* |
| * Preemptible RCU implementation for rcu_read_lock(). |
| * Just increment ->rcu_read_lock_nesting, shared state will be updated |
| * if we block. |
| */ |
| void __rcu_read_lock(void) |
| { |
| rcu_preempt_read_enter(); |
| if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
| WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) |
| WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); |
| barrier(); /* critical section after entry code. */ |
| } |
| EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| |
| /* |
| * Preemptible RCU implementation for rcu_read_unlock(). |
| * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost |
| * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then |
| * invoke rcu_read_unlock_special() to clean up after a context switch |
| * in an RCU read-side critical section and other special cases. |
| */ |
| void __rcu_read_unlock(void) |
| { |
| struct task_struct *t = current; |
| |
| if (rcu_preempt_read_exit() == 0) { |
| barrier(); /* critical section before exit code. */ |
| if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) |
| rcu_read_unlock_special(t); |
| } |
| if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { |
| int rrln = rcu_preempt_depth(); |
| |
| WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); |
| } |
| } |
| EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
| |
| /* |
| * Advance a ->blkd_tasks-list pointer to the next entry, instead |
| * returning NULL if at the end of the list. |
| */ |
| static struct list_head *rcu_next_node_entry(struct task_struct *t, |
| struct rcu_node *rnp) |
| { |
| struct list_head *np; |
| |
| np = t->rcu_node_entry.next; |
| if (np == &rnp->blkd_tasks) |
| np = NULL; |
| return np; |
| } |
| |
| /* |
| * Return true if the specified rcu_node structure has tasks that were |
| * preempted within an RCU read-side critical section. |
| */ |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| { |
| return !list_empty(&rnp->blkd_tasks); |
| } |
| |
| /* |
| * Report deferred quiescent states. The deferral time can |
| * be quite short, for example, in the case of the call from |
| * rcu_read_unlock_special(). |
| */ |
| static void |
| rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) |
| { |
| bool empty_exp; |
| bool empty_norm; |
| bool empty_exp_now; |
| struct list_head *np; |
| bool drop_boost_mutex = false; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp; |
| union rcu_special special; |
| |
| /* |
| * If RCU core is waiting for this CPU to exit its critical section, |
| * report the fact that it has exited. Because irqs are disabled, |
| * t->rcu_read_unlock_special cannot change. |
| */ |
| special = t->rcu_read_unlock_special; |
| rdp = this_cpu_ptr(&rcu_data); |
| if (!special.s && !rdp->exp_deferred_qs) { |
| local_irq_restore(flags); |
| return; |
| } |
| t->rcu_read_unlock_special.s = 0; |
| if (special.b.need_qs) { |
| if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { |
| rcu_report_qs_rdp(rdp); |
| udelay(rcu_unlock_delay); |
| } else { |
| rcu_qs(); |
| } |
| } |
| |
| /* |
| * Respond to a request by an expedited grace period for a |
| * quiescent state from this CPU. Note that requests from |
| * tasks are handled when removing the task from the |
| * blocked-tasks list below. |
| */ |
| if (rdp->exp_deferred_qs) |
| rcu_report_exp_rdp(rdp); |
| |
| /* Clean up if blocked during RCU read-side critical section. */ |
| if (special.b.blocked) { |
| |
| /* |
| * Remove this task from the list it blocked on. The task |
| * now remains queued on the rcu_node corresponding to the |
| * CPU it first blocked on, so there is no longer any need |
| * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. |
| */ |
| rnp = t->rcu_blocked_node; |
| raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| WARN_ON_ONCE(rnp != t->rcu_blocked_node); |
| WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
| WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && |
| (!empty_norm || rnp->qsmask)); |
| empty_exp = sync_rcu_exp_done(rnp); |
| smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
| np = rcu_next_node_entry(t, rnp); |
| list_del_init(&t->rcu_node_entry); |
| t->rcu_blocked_node = NULL; |
| trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
| rnp->gp_seq, t->pid); |
| if (&t->rcu_node_entry == rnp->gp_tasks) |
| WRITE_ONCE(rnp->gp_tasks, np); |
| if (&t->rcu_node_entry == rnp->exp_tasks) |
| WRITE_ONCE(rnp->exp_tasks, np); |
| if (IS_ENABLED(CONFIG_RCU_BOOST)) { |
| /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ |
| drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; |
| if (&t->rcu_node_entry == rnp->boost_tasks) |
| WRITE_ONCE(rnp->boost_tasks, np); |
| } |
| |
| /* |
| * If this was the last task on the current list, and if |
| * we aren't waiting on any CPUs, report the quiescent state. |
| * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
| * so we must take a snapshot of the expedited state. |
| */ |
| empty_exp_now = sync_rcu_exp_done(rnp); |
| if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
| trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
| rnp->gp_seq, |
| 0, rnp->qsmask, |
| rnp->level, |
| rnp->grplo, |
| rnp->grphi, |
| !!rnp->gp_tasks); |
| rcu_report_unblock_qs_rnp(rnp, flags); |
| } else { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| |
| /* Unboost if we were boosted. */ |
| if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) |
| rt_mutex_futex_unlock(&rnp->boost_mtx); |
| |
| /* |
| * If this was the last task on the expedited lists, |
| * then we need to report up the rcu_node hierarchy. |
| */ |
| if (!empty_exp && empty_exp_now) |
| rcu_report_exp_rnp(rnp, true); |
| } else { |
| local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * Is a deferred quiescent-state pending, and are we also not in |
| * an RCU read-side critical section? It is the caller's responsibility |
| * to ensure it is otherwise safe to report any deferred quiescent |
| * states. The reason for this is that it is safe to report a |
| * quiescent state during context switch even though preemption |
| * is disabled. This function cannot be expected to understand these |
| * nuances, so the caller must handle them. |
| */ |
| static bool rcu_preempt_need_deferred_qs(struct task_struct *t) |
| { |
| return (__this_cpu_read(rcu_data.exp_deferred_qs) || |
| READ_ONCE(t->rcu_read_unlock_special.s)) && |
| rcu_preempt_depth() == 0; |
| } |
| |
| /* |
| * Report a deferred quiescent state if needed and safe to do so. |
| * As with rcu_preempt_need_deferred_qs(), "safe" involves only |
| * not being in an RCU read-side critical section. The caller must |
| * evaluate safety in terms of interrupt, softirq, and preemption |
| * disabling. |
| */ |
| static void rcu_preempt_deferred_qs(struct task_struct *t) |
| { |
| unsigned long flags; |
| |
| if (!rcu_preempt_need_deferred_qs(t)) |
| return; |
| local_irq_save(flags); |
| rcu_preempt_deferred_qs_irqrestore(t, flags); |
| } |
| |
| /* |
| * Minimal handler to give the scheduler a chance to re-evaluate. |
| */ |
| static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) |
| { |
| struct rcu_data *rdp; |
| |
| rdp = container_of(iwp, struct rcu_data, defer_qs_iw); |
| rdp->defer_qs_iw_pending = false; |
| } |
| |
| /* |
| * Handle special cases during rcu_read_unlock(), such as needing to |
| * notify RCU core processing or task having blocked during the RCU |
| * read-side critical section. |
| */ |
| static void rcu_read_unlock_special(struct task_struct *t) |
| { |
| unsigned long flags; |
| bool preempt_bh_were_disabled = |
| !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); |
| bool irqs_were_disabled; |
| |
| /* NMI handlers cannot block and cannot safely manipulate state. */ |
| if (in_nmi()) |
| return; |
| |
| local_irq_save(flags); |
| irqs_were_disabled = irqs_disabled_flags(flags); |
| if (preempt_bh_were_disabled || irqs_were_disabled) { |
| bool exp; |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp = rdp->mynode; |
| |
| exp = (t->rcu_blocked_node && |
| READ_ONCE(t->rcu_blocked_node->exp_tasks)) || |
| (rdp->grpmask & READ_ONCE(rnp->expmask)); |
| // Need to defer quiescent state until everything is enabled. |
| if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) { |
| // Using softirq, safe to awaken, and either the |
| // wakeup is free or there is an expedited GP. |
| raise_softirq_irqoff(RCU_SOFTIRQ); |
| } else { |
| // Enabling BH or preempt does reschedule, so... |
| // Also if no expediting, slow is OK. |
| // Plus nohz_full CPUs eventually get tick enabled. |
| set_tsk_need_resched(current); |
| set_preempt_need_resched(); |
| if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && |
| !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) { |
| // Get scheduler to re-evaluate and call hooks. |
| // If !IRQ_WORK, FQS scan will eventually IPI. |
| init_irq_work(&rdp->defer_qs_iw, |
| rcu_preempt_deferred_qs_handler); |
| rdp->defer_qs_iw_pending = true; |
| irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); |
| } |
| } |
| local_irq_restore(flags); |
| return; |
| } |
| rcu_preempt_deferred_qs_irqrestore(t, flags); |
| } |
| |
| /* |
| * Check that the list of blocked tasks for the newly completed grace |
| * period is in fact empty. It is a serious bug to complete a grace |
| * period that still has RCU readers blocked! This function must be |
| * invoked -before- updating this rnp's ->gp_seq. |
| * |
| * Also, if there are blocked tasks on the list, they automatically |
| * block the newly created grace period, so set up ->gp_tasks accordingly. |
| */ |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| { |
| struct task_struct *t; |
| |
| RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); |
| raw_lockdep_assert_held_rcu_node(rnp); |
| if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
| dump_blkd_tasks(rnp, 10); |
| if (rcu_preempt_has_tasks(rnp) && |
| (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { |
| WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); |
| t = container_of(rnp->gp_tasks, struct task_struct, |
| rcu_node_entry); |
| trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), |
| rnp->gp_seq, t->pid); |
| } |
| WARN_ON_ONCE(rnp->qsmask); |
| } |
| |
| /* |
| * Check for a quiescent state from the current CPU, including voluntary |
| * context switches for Tasks RCU. When a task blocks, the task is |
| * recorded in the corresponding CPU's rcu_node structure, which is checked |
| * elsewhere, hence this function need only check for quiescent states |
| * related to the current CPU, not to those related to tasks. |
| */ |
| static void rcu_flavor_sched_clock_irq(int user) |
| { |
| struct task_struct *t = current; |
| |
| if (user || rcu_is_cpu_rrupt_from_idle()) { |
| rcu_note_voluntary_context_switch(current); |
| } |
| if (rcu_preempt_depth() > 0 || |
| (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { |
| /* No QS, force context switch if deferred. */ |
| if (rcu_preempt_need_deferred_qs(t)) { |
| set_tsk_need_resched(t); |
| set_preempt_need_resched(); |
| } |
| } else if (rcu_preempt_need_deferred_qs(t)) { |
| rcu_preempt_deferred_qs(t); /* Report deferred QS. */ |
| return; |
| } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { |
| rcu_qs(); /* Report immediate QS. */ |
| return; |
| } |
| |
| /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ |
| if (rcu_preempt_depth() > 0 && |
| __this_cpu_read(rcu_data.core_needs_qs) && |
| __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && |
| !t->rcu_read_unlock_special.b.need_qs && |
| time_after(jiffies, rcu_state.gp_start + HZ)) |
| t->rcu_read_unlock_special.b.need_qs = true; |
| } |
| |
| /* |
| * Check for a task exiting while in a preemptible-RCU read-side |
| * critical section, clean up if so. No need to issue warnings, as |
| * debug_check_no_locks_held() already does this if lockdep is enabled. |
| * Besides, if this function does anything other than just immediately |
| * return, there was a bug of some sort. Spewing warnings from this |
| * function is like as not to simply obscure important prior warnings. |
| */ |
| void exit_rcu(void) |
| { |
| struct task_struct *t = current; |
| |
| if (unlikely(!list_empty(¤t->rcu_node_entry))) { |
| rcu_preempt_depth_set(1); |
| barrier(); |
| WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); |
| } else if (unlikely(rcu_preempt_depth())) { |
| rcu_preempt_depth_set(1); |
| } else { |
| return; |
| } |
| __rcu_read_unlock(); |
| rcu_preempt_deferred_qs(current); |
| } |
| |
| /* |
| * Dump the blocked-tasks state, but limit the list dump to the |
| * specified number of elements. |
| */ |
| static void |
| dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
| { |
| int cpu; |
| int i; |
| struct list_head *lhp; |
| bool onl; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp1; |
| |
| raw_lockdep_assert_held_rcu_node(rnp); |
| pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
| __func__, rnp->grplo, rnp->grphi, rnp->level, |
| (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); |
| for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
| pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", |
| __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); |
| pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", |
| __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), |
| READ_ONCE(rnp->exp_tasks)); |
| pr_info("%s: ->blkd_tasks", __func__); |
| i = 0; |
| list_for_each(lhp, &rnp->blkd_tasks) { |
| pr_cont(" %p", lhp); |
| if (++i >= ncheck) |
| break; |
| } |
| pr_cont("\n"); |
| for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { |
| rdp = per_cpu_ptr(&rcu_data, cpu); |
| onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); |
| pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", |
| cpu, ".o"[onl], |
| (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, |
| (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); |
| } |
| } |
| |
| #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| |
| /* |
| * If strict grace periods are enabled, and if the calling |
| * __rcu_read_unlock() marks the beginning of a quiescent state, immediately |
| * report that quiescent state and, if requested, spin for a bit. |
| */ |
| void rcu_read_unlock_strict(void) |
| { |
| struct rcu_data *rdp; |
| |
| if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || |
| irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) |
| return; |
| rdp = this_cpu_ptr(&rcu_data); |
| rcu_report_qs_rdp(rdp); |
| udelay(rcu_unlock_delay); |
| } |
| EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); |
| |
| /* |
| * Tell them what RCU they are running. |
| */ |
| static void __init rcu_bootup_announce(void) |
| { |
| pr_info("Hierarchical RCU implementation.\n"); |
| rcu_bootup_announce_oddness(); |
| } |
| |
| /* |
| * Note a quiescent state for PREEMPTION=n. Because we do not need to know |
| * how many quiescent states passed, just if there was at least one since |
| * the start of the grace period, this just sets a flag. The caller must |
| * have disabled preemption. |
| */ |
| static void rcu_qs(void) |
| { |
| RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); |
| if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) |
| return; |
| trace_rcu_grace_period(TPS("rcu_sched"), |
| __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); |
| __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
| if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) |
| return; |
| __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); |
| rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); |
| } |
| |
| /* |
| * Register an urgently needed quiescent state. If there is an |
| * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight |
| * dyntick-idle quiescent state visible to other CPUs, which will in |
| * some cases serve for expedited as well as normal grace periods. |
| * Either way, register a lightweight quiescent state. |
| */ |
| void rcu_all_qs(void) |
| { |
| unsigned long flags; |
| |
| if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) |
| return; |
| preempt_disable(); |
| /* Load rcu_urgent_qs before other flags. */ |
| if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { |
| preempt_enable(); |
| return; |
| } |
| this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { |
| local_irq_save(flags); |
| rcu_momentary_dyntick_idle(); |
| local_irq_restore(flags); |
| } |
| rcu_qs(); |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_all_qs); |
| |
| /* |
| * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. |
| */ |
| void rcu_note_context_switch(bool preempt) |
| { |
| trace_rcu_utilization(TPS("Start context switch")); |
| rcu_qs(); |
| /* Load rcu_urgent_qs before other flags. */ |
| if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) |
| goto out; |
| this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) |
| rcu_momentary_dyntick_idle(); |
| rcu_tasks_qs(current, preempt); |
| out: |
| trace_rcu_utilization(TPS("End context switch")); |
| } |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
| |
| /* |
| * Because preemptible RCU does not exist, there are never any preempted |
| * RCU readers. |
| */ |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| { |
| return 0; |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no readers blocked. |
| */ |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| { |
| return false; |
| } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no deferred quiescent |
| * states. |
| */ |
| static bool rcu_preempt_need_deferred_qs(struct task_struct *t) |
| { |
| return false; |
| } |
| static void rcu_preempt_deferred_qs(struct task_struct *t) { } |
| |
| /* |
| * Because there is no preemptible RCU, there can be no readers blocked, |
| * so there is no need to check for blocked tasks. So check only for |
| * bogus qsmask values. |
| */ |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| { |
| WARN_ON_ONCE(rnp->qsmask); |
| } |
| |
| /* |
| * Check to see if this CPU is in a non-context-switch quiescent state, |
| * namely user mode and idle loop. |
| */ |
| static void rcu_flavor_sched_clock_irq(int user) |
| { |
| if (user || rcu_is_cpu_rrupt_from_idle()) { |
| |
| /* |
| * Get here if this CPU took its interrupt from user |
| * mode or from the idle loop, and if this is not a |
| * nested interrupt. In this case, the CPU is in |
| * a quiescent state, so note it. |
| * |
| * No memory barrier is required here because rcu_qs() |
| * references only CPU-local variables that other CPUs |
| * neither access nor modify, at least not while the |
| * corresponding CPU is online. |
| */ |
| |
| rcu_qs(); |
| } |
| } |
| |
| /* |
| * Because preemptible RCU does not exist, tasks cannot possibly exit |
| * while in preemptible RCU read-side critical sections. |
| */ |
| void exit_rcu(void) |
| { |
| } |
| |
| /* |
| * Dump the guaranteed-empty blocked-tasks state. Trust but verify. |
| */ |
| static void |
| dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
| { |
| WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); |
| } |
| |
| #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| |
| /* |
| * If boosting, set rcuc kthreads to realtime priority. |
| */ |
| static void rcu_cpu_kthread_setup(unsigned int cpu) |
| { |
| #ifdef CONFIG_RCU_BOOST |
| struct sched_param sp; |
| |
| sp.sched_priority = kthread_prio; |
| sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); |
| #endif /* #ifdef CONFIG_RCU_BOOST */ |
| } |
| |
| #ifdef CONFIG_RCU_BOOST |
| |
| /* |
| * Carry out RCU priority boosting on the task indicated by ->exp_tasks |
| * or ->boost_tasks, advancing the pointer to the next task in the |
| * ->blkd_tasks list. |
| * |
| * Note that irqs must be enabled: boosting the task can block. |
| * Returns 1 if there are more tasks needing to be boosted. |
| */ |
| static int rcu_boost(struct rcu_node *rnp) |
| { |
| unsigned long flags; |
| struct task_struct *t; |
| struct list_head *tb; |
| |
| if (READ_ONCE(rnp->exp_tasks) == NULL && |
| READ_ONCE(rnp->boost_tasks) == NULL) |
| return 0; /* Nothing left to boost. */ |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| |
| /* |
| * Recheck under the lock: all tasks in need of boosting |
| * might exit their RCU read-side critical sections on their own. |
| */ |
| if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| return 0; |
| } |
| |
| /* |
| * Preferentially boost tasks blocking expedited grace periods. |
| * This cannot starve the normal grace periods because a second |
| * expedited grace period must boost all blocked tasks, including |
| * those blocking the pre-existing normal grace period. |
| */ |
| if (rnp->exp_tasks != NULL) |
| tb = rnp->exp_tasks; |
| else |
| tb = rnp->boost_tasks; |
| |
| /* |
| * We boost task t by manufacturing an rt_mutex that appears to |
| * be held by task t. We leave a pointer to that rt_mutex where |
| * task t can find it, and task t will release the mutex when it |
| * exits its outermost RCU read-side critical section. Then |
| * simply acquiring this artificial rt_mutex will boost task |
| * t's priority. (Thanks to tglx for suggesting this approach!) |
| * |
| * Note that task t must acquire rnp->lock to remove itself from |
| * the ->blkd_tasks list, which it will do from exit() if from |
| * nowhere else. We therefore are guaranteed that task t will |
| * stay around at least until we drop rnp->lock. Note that |
| * rnp->lock also resolves races between our priority boosting |
| * and task t's exiting its outermost RCU read-side critical |
| * section. |
| */ |
| t = container_of(tb, struct task_struct, rcu_node_entry); |
| rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| /* Lock only for side effect: boosts task t's priority. */ |
| rt_mutex_lock(&rnp->boost_mtx); |
| rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ |
| |
| return READ_ONCE(rnp->exp_tasks) != NULL || |
| READ_ONCE(rnp->boost_tasks) != NULL; |
| } |
| |
| /* |
| * Priority-boosting kthread, one per leaf rcu_node. |
| */ |
| static int rcu_boost_kthread(void *arg) |
| { |
| struct rcu_node *rnp = (struct rcu_node *)arg; |
| int spincnt = 0; |
| int more2boost; |
| |
| trace_rcu_utilization(TPS("Start boost kthread@init")); |
| for (;;) { |
| WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); |
| trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
| rcu_wait(READ_ONCE(rnp->boost_tasks) || |
| READ_ONCE(rnp->exp_tasks)); |
| trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
| WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); |
| more2boost = rcu_boost(rnp); |
| if (more2boost) |
| spincnt++; |
| else |
| spincnt = 0; |
| if (spincnt > 10) { |
| WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); |
| trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
| schedule_timeout_idle(2); |
| trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
| spincnt = 0; |
| } |
| } |
| /* NOTREACHED */ |
| trace_rcu_utilization(TPS("End boost kthread@notreached")); |
| return 0; |
| } |
| |
| /* |
| * Check to see if it is time to start boosting RCU readers that are |
| * blocking the current grace period, and, if so, tell the per-rcu_node |
| * kthread to start boosting them. If there is an expedited grace |
| * period in progress, it is always time to boost. |
| * |
| * The caller must hold rnp->lock, which this function releases. |
| * The ->boost_kthread_task is immortal, so we don't need to worry |
| * about it going away. |
| */ |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| raw_lockdep_assert_held_rcu_node(rnp); |
| if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| return; |
| } |
| if (rnp->exp_tasks != NULL || |
| (rnp->gp_tasks != NULL && |
| rnp->boost_tasks == NULL && |
| rnp->qsmask == 0 && |
| (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { |
| if (rnp->exp_tasks == NULL) |
| WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| rcu_wake_cond(rnp->boost_kthread_task, |
| READ_ONCE(rnp->boost_kthread_status)); |
| } else { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| } |
| |
| /* |
| * Is the current CPU running the RCU-callbacks kthread? |
| * Caller must have preemption disabled. |
| */ |
| static bool rcu_is_callbacks_kthread(void) |
| { |
| return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; |
| } |
| |
| #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
| |
| /* |
| * Do priority-boost accounting for the start of a new grace period. |
| */ |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| { |
| rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; |
| } |
| |
| /* |
| * Create an RCU-boost kthread for the specified node if one does not |
| * already exist. We only create this kthread for preemptible RCU. |
| * Returns zero if all is well, a negated errno otherwise. |
| */ |
| static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) |
| { |
| int rnp_index = rnp - rcu_get_root(); |
| unsigned long flags; |
| struct sched_param sp; |
| struct task_struct *t; |
| |
| if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) |
| return; |
| |
| if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) |
| return; |
| |
| rcu_state.boost = 1; |
| |
| if (rnp->boost_kthread_task != NULL) |
| return; |
| |
| t = kthread_create(rcu_boost_kthread, (void *)rnp, |
| "rcub/%d", rnp_index); |
| if (WARN_ON_ONCE(IS_ERR(t))) |
| return; |
| |
| raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| rnp->boost_kthread_task = t; |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| sp.sched_priority = kthread_prio; |
| sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
| } |
| |
| /* |
| * Set the per-rcu_node kthread's affinity to cover all CPUs that are |
| * served by the rcu_node in question. The CPU hotplug lock is still |
| * held, so the value of rnp->qsmaskinit will be stable. |
| * |
| * We don't include outgoingcpu in the affinity set, use -1 if there is |
| * no outgoing CPU. If there are no CPUs left in the affinity set, |
| * this function allows the kthread to execute on any CPU. |
| */ |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| { |
| struct task_struct *t = rnp->boost_kthread_task; |
| unsigned long mask = rcu_rnp_online_cpus(rnp); |
| cpumask_var_t cm; |
| int cpu; |
| |
| if (!t) |
| return; |
| if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
| return; |
| for_each_leaf_node_possible_cpu(rnp, cpu) |
| if ((mask & leaf_node_cpu_bit(rnp, cpu)) && |
| cpu != outgoingcpu) |
| cpumask_set_cpu(cpu, cm); |
| if (cpumask_weight(cm) == 0) |
| cpumask_setall(cm); |
| set_cpus_allowed_ptr(t, cm); |
| free_cpumask_var(cm); |
| } |
| |
| /* |
| * Spawn boost kthreads -- called as soon as the scheduler is running. |
| */ |
| static void __init rcu_spawn_boost_kthreads(void) |
| { |
| struct rcu_node *rnp; |
| |
| rcu_for_each_leaf_node(rnp) |
| rcu_spawn_one_boost_kthread(rnp); |
| } |
| |
| static void rcu_prepare_kthreads(int cpu) |
| { |
| struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| struct rcu_node *rnp = rdp->mynode; |
| |
| /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ |
| if (rcu_scheduler_fully_active) |
| rcu_spawn_one_boost_kthread(rnp); |
| } |
| |
| #else /* #ifdef CONFIG_RCU_BOOST */ |
| |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| __releases(rnp->lock) |
| { |
| raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| } |
| |
| static bool rcu_is_callbacks_kthread(void) |
| { |
| return false; |
| } |
| |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| { |
| } |
| |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| { |
| } |
| |
| static void __init rcu_spawn_boost_kthreads(void) |
| { |
| } |
| |
| static void rcu_prepare_kthreads(int cpu) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| |
| #if !defined(CONFIG_RCU_FAST_NO_HZ) |
| |
| /* |
| * Check to see if any future non-offloaded RCU-related work will need |
| * to be done by the current CPU, even if none need be done immediately, |
| * returning 1 if so. This function is part of the RCU implementation; |
| * it is -not- an exported member of the RCU API. |
| * |
| * Because we not have RCU_FAST_NO_HZ, just check whether or not this |
| * CPU has RCU callbacks queued. |
| */ |
| int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| { |
| *nextevt = KTIME_MAX; |
| return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && |
| !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); |
| } |
| |
| /* |
| * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up |
| * after it. |
| */ |
| static void rcu_cleanup_after_idle(void) |
| { |
| } |
| |
| /* |
| * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
| * is nothing. |
| */ |
| static void rcu_prepare_for_idle(void) |
| { |
| } |
| |
| #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| |
| /* |
| * This code is invoked when a CPU goes idle, at which point we want |
| * to have the CPU do everything required for RCU so that it can enter |
| * the energy-efficient dyntick-idle mode. |
| * |
| * The following preprocessor symbol controls this: |
| * |
| * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
| * to sleep in dyntick-idle mode with RCU callbacks pending. This |
| * is sized to be roughly one RCU grace period. Those energy-efficiency |
| * benchmarkers who might otherwise be tempted to set this to a large |
| * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your |
| * system. And if you are -that- concerned about energy efficiency, |
| * just power the system down and be done with it! |
| * |
| * The value below works well in practice. If future workloads require |
| * adjustment, they can be converted into kernel config parameters, though |
| * making the state machine smarter might be a better option. |
| */ |
| #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
| |
| static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
| module_param(rcu_idle_gp_delay, int, 0644); |
| |
| /* |
| * Try to advance callbacks on the current CPU, but only if it has been |
| * awhile since the last time we did so. Afterwards, if there are any |
| * callbacks ready for immediate invocation, return true. |
| */ |
| static bool __maybe_unused rcu_try_advance_all_cbs(void) |
| { |
| bool cbs_ready = false; |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp; |
| |
| /* Exit early if we advanced recently. */ |
| if (jiffies == rdp->last_advance_all) |
| return false; |
| rdp->last_advance_all = jiffies; |
| |
| rnp = rdp->mynode; |
| |
| /* |
| * Don't bother checking unless a grace period has |
| * completed since we last checked and there are |
| * callbacks not yet ready to invoke. |
| */ |
| if ((rcu_seq_completed_gp(rdp->gp_seq, |
| rcu_seq_current(&rnp->gp_seq)) || |
| unlikely(READ_ONCE(rdp->gpwrap))) && |
| rcu_segcblist_pend_cbs(&rdp->cblist)) |
| note_gp_changes(rdp); |
| |
| if (rcu_segcblist_ready_cbs(&rdp->cblist)) |
| cbs_ready = true; |
| return cbs_ready; |
| } |
| |
| /* |
| * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
| * to invoke. If the CPU has callbacks, try to advance them. Tell the |
| * caller about what to set the timeout. |
| * |
| * The caller must have disabled interrupts. |
| */ |
| int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| { |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| unsigned long dj; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ |
| if (rcu_segcblist_empty(&rdp->cblist) || |
| rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { |
| *nextevt = KTIME_MAX; |
| return 0; |
| } |
| |
| /* Attempt to advance callbacks. */ |
| if (rcu_try_advance_all_cbs()) { |
| /* Some ready to invoke, so initiate later invocation. */ |
| invoke_rcu_core(); |
| return 1; |
| } |
| rdp->last_accelerate = jiffies; |
| |
| /* Request timer and round. */ |
| dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; |
| |
| *nextevt = basemono + dj * TICK_NSEC; |
| return 0; |
| } |
| |
| /* |
| * Prepare a CPU for idle from an RCU perspective. The first major task is to |
| * sense whether nohz mode has been enabled or disabled via sysfs. The second |
| * major task is to accelerate (that is, assign grace-period numbers to) any |
| * recently arrived callbacks. |
| * |
| * The caller must have disabled interrupts. |
| */ |
| static void rcu_prepare_for_idle(void) |
| { |
| bool needwake; |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| struct rcu_node *rnp; |
| int tne; |
| |
| lockdep_assert_irqs_disabled(); |
| if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
| return; |
| |
| /* Handle nohz enablement switches conservatively. */ |
| tne = READ_ONCE(tick_nohz_active); |
| if (tne != rdp->tick_nohz_enabled_snap) { |
| if (!rcu_segcblist_empty(&rdp->cblist)) |
| invoke_rcu_core(); /* force nohz to see update. */ |
| rdp->tick_nohz_enabled_snap = tne; |
| return; |
| } |
| if (!tne) |
| return; |
| |
| /* |
| * If we have not yet accelerated this jiffy, accelerate all |
| * callbacks on this CPU. |
| */ |
| if (rdp->last_accelerate == jiffies) |
| return; |
| rdp->last_accelerate = jiffies; |
| if (rcu_segcblist_pend_cbs(&rdp->cblist)) { |
| rnp = rdp->mynode; |
| raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| needwake = rcu_accelerate_cbs(rnp, rdp); |
| raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| if (needwake) |
| rcu_gp_kthread_wake(); |
| } |
| } |
| |
| /* |
| * Clean up for exit from idle. Attempt to advance callbacks based on |
| * any grace periods that elapsed while the CPU was idle, and if any |
| * callbacks are now ready to invoke, initiate invocation. |
| */ |
| static void rcu_cleanup_after_idle(void) |
| { |
| struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| |
| lockdep_assert_irqs_disabled(); |
| if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
| return; |
| if (rcu_try_advance_all_cbs()) |
| invoke_rcu_core(); |
| } |
| |
| #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| |
| #ifdef CONFIG_RCU_NOCB_CPU |
| |
| /* |
| * Offload callback processing from the boot-time-specified set of CPUs |
| * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads |
| * created that pull the callbacks from the corresponding CPU, wait for |
| * a grace period to elapse, and invoke the callbacks. These kthreads |
| * are organized into GP kthreads, which manage incoming callbacks, wait for |
| * grace periods, and awaken CB kthreads, and the CB kthreads, which only |
| * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs |
| * do a wake_up() on their GP kthread when they insert a callback into any |
| * empty list, unless the rcu_nocb_poll boot parameter has been specified, |
| * in which case each kthread actively polls its CPU. (Which isn't so great |
| * for energy efficiency, but which does reduce RCU's overhead on that CPU.) |
| * |
| * This is intended to be used in conjunction with Frederic Weisbecker's |
| * adaptive-idle work, which would seriously reduce OS jitter on CPUs |
| * running CPU-bound user-mode computations. |
| * |
| * Offloading of callbacks can also be used as an energy-efficiency |
| * measure because CPUs with no RCU callbacks queued are more aggressive |
| * about entering dyntick-idle mode. |
| */ |
| |
| |
| /* |
| * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. |
| * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a |
| * comma-separated list of CPUs and/or CPU ranges. If an invalid list is |
| * given, a warning is emitted and all CPUs are offloaded. |
| */ |
| static int __init rcu_nocb_setup(char *str) |
| { |
| alloc_bootmem_cpumask_var(&rcu_nocb_mask); |
| if (!strcasecmp(str, "all")) |
| cpumask_setall(rcu_nocb_mask); |
| else |
| if (cpulist_parse(str, rcu_nocb_mask)) { |
| pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); |
| cpumask_setall(rcu_nocb_mask); |
| } |
| return 1; |
| } |
| __setup("rcu_nocbs=", rcu_nocb_setup); |
| |
| static int __init parse_rcu_nocb_poll(char *arg) |
| { |
| rcu_nocb_poll = true; |
| return 0; |
| } |
| early_param("rcu_nocb_poll", parse_rcu_nocb_poll); |
| |
| /* |
| * Don't bother bypassing ->cblist if the call_rcu() rate is low. |
| * After all, the main point of bypassing is to avoid lock contention |
| * on ->nocb_lock, which only can happen at high call_rcu() rates. |
| */ |
| int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; |
| module_param(nocb_nobypass_lim_per_jiffy, int, 0); |
| |
| /* |
| * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the |
| * lock isn't immediately available, increment ->nocb_lock_contended to |
| * flag the contention. |
| */ |
| static void rcu_nocb_bypass_lock(struct rcu_data *rdp) |
| __acquires(&rdp->nocb_bypass_lock) |
| { |
| lockdep_assert_irqs_disabled(); |
| if (raw_spin_trylock(&rdp->nocb_bypass_lock)) |
| return; |
| atomic_inc(&rdp->nocb_lock_contended); |
| WARN_ON_ONCE(smp_processor_id() != rdp->cpu); |
| smp_mb__after_atomic(); /* atomic_inc() before lock. */ |
| raw_spin_lock(&rdp->nocb_bypass_lock); |
| smp_mb__before_atomic(); /* atomic_dec() after lock. */ |
| atomic_dec(&rdp->nocb_lock_contended); |
| } |
| |
| /* |
| * Spinwait until the specified rcu_data structure's ->nocb_lock is |
| * not contended. Please note that this is extremely special-purpose, |
| * relying on the fact that at most two kthreads and one CPU contend for |
| * this lock, and also that the two kthreads are guaranteed to have frequent |
| * grace-period-duration time intervals between successive acquisitions |
| * of the lock. This allows us to use an extremely simple throttling |
| * mechanism, and further to apply it only to the CPU doing floods of |
| * call_rcu() invocations. Don't try this at home! |
| */ |
| static void rcu_nocb_wait_contended(struct rcu_data *rdp) |
| { |
| WARN_ON_ONCE(smp_processor_id() != rdp->cpu); |
| while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) |
| cpu_relax(); |
| } |
| |
| /* |
| * Conditionally acquire the specified rcu_data structure's |
| * ->nocb_bypass_lock. |
| */ |
| static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) |
| { |
| lockdep_assert_irqs_disabled(); |
| return raw_spin_trylock(&rdp->nocb_bypass_lock); |
| } |
| |
| /* |
| * Release the specified rcu_data structure's ->nocb_bypass_lock. |
| */ |
| static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) |
| __releases(&rdp->nocb_bypass_lock) |
| { |
| lockdep_assert_irqs_disabled(); |
| raw_spin_unlock(&rdp->nocb_bypass_lock); |
| } |
| |
| /* |
| * Acquire the specified rcu_data structure's ->nocb_lock, but only |
| * if it corresponds to a no-CBs CPU. |
| */ |
| static void rcu_nocb_lock(struct rcu_data *rdp) |
| { |
| lockdep_assert_irqs_disabled(); |
| if (!rcu_segcblist_is_offloaded(&rdp->cblist)) |
| return; |
| raw_spin_lock(&rdp->nocb_lock); |
| } |
| |
| /* |
| * Release the specified rcu_data structure's ->nocb_lock, but only |
| * if it corresponds to a no-CBs CPU. |
| */ |
| static void rcu_nocb_unlock(struct rcu_data *rdp) |
| { |
| if (rcu_segcblist_is_offloaded(&rdp->cblist)) { |
| lockdep_assert_irqs_disabled(); |
| raw_spin_unlock(&rdp->nocb_lock); |
| } |
| } |
| |
| /* |
| * Release the specified rcu_data structure's ->nocb_lock and restore |
| * interrupts, but only if it corresponds to a no-CBs CPU. |
| */ |
| static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, |
| unsigned long flags) |
| { |
| if (rcu_segcblist_is_offloaded(&rdp->cblist)) { |
| lockdep_assert_irqs_disabled(); |
| raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| } else { |
| local_irq_restore(flags); |
| } |
| } |
| |
| /* Lockdep check that ->cblist may be safely accessed. */ |
| static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) |
| { |
| lockdep_assert_irqs_disabled(); |
| if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
| lockdep_assert_held(&rdp->nocb_lock); |
| } |
| |
| /* |
| * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
| * grace period. |
| */ |
| static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
| { |
| swake_up_all(sq); |
| } |
| |
| static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
| { |
| return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; |
| } |
| |
| static void rcu_init_one_nocb(struct rcu_node *rnp) |
| { |
| init_swait_queue_head(&rnp->nocb_gp_wq[0]); |
| init_swait_queue_head(&rnp->nocb_gp_wq[1]); |
| } |
| |
| /* Is the specified CPU a no-CBs CPU? */ |
| bool rcu_is_nocb_cpu(int cpu) |
| { |
| if (cpumask_available(rcu_nocb_mask)) |
| return cpumask_test_cpu(cpu, rcu_nocb_mask); |
| return false; |
| } |
| |
| /* |
| * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock |
| * and this function releases it. |
| */ |
| static void wake_nocb_gp(struct rcu_data *rdp, bool force, |
| unsigned long flags) |
| __releases(rdp->nocb_lock) |
| { |
| bool needwake = false; |
| struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; |
| |
| lockdep_assert_held(&rdp->nocb_lock); |
| if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("AlreadyAwake")); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| return; |
| } |
| del_timer(&rdp->nocb_timer); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); |
| if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { |
| WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); |
| needwake = true; |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); |
| } |
| raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); |
| if (needwake) |
| wake_up_process(rdp_gp->nocb_gp_kthread); |
| } |
| |
| /* |
| * Arrange to wake the GP kthread for this NOCB group at some future |
| * time when it is safe to do so. |
| */ |
| static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, |
| const char *reason) |
| { |
| if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) |
| mod_timer(&rdp->nocb_timer, jiffies + 1); |
| if (rdp->nocb_defer_wakeup < waketype) |
| WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); |
| } |
| |
| /* |
| * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. |
| * However, if there is a callback to be enqueued and if ->nocb_bypass |
| * proves to be initially empty, just return false because the no-CB GP |
| * kthread may need to be awakened in this case. |
| * |
| * Note that this function always returns true if rhp is NULL. |
| */ |
| static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| unsigned long j) |
| { |
| struct rcu_cblist rcl; |
| |
| WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); |
| rcu_lockdep_assert_cblist_protected(rdp); |
| lockdep_assert_held(&rdp->nocb_bypass_lock); |
| if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { |
| raw_spin_unlock(&rdp->nocb_bypass_lock); |
| return false; |
| } |
| /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ |
| if (rhp) |
| rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ |
| rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); |
| rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); |
| WRITE_ONCE(rdp->nocb_bypass_first, j); |
| rcu_nocb_bypass_unlock(rdp); |
| return true; |
| } |
| |
| /* |
| * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. |
| * However, if there is a callback to be enqueued and if ->nocb_bypass |
| * proves to be initially empty, just return false because the no-CB GP |
| * kthread may need to be awakened in this case. |
| * |
| * Note that this function always returns true if rhp is NULL. |
| */ |
| static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| unsigned long j) |
| { |
| if (!rcu_segcblist_is_offloaded(&rdp->cblist)) |
| return true; |
| rcu_lockdep_assert_cblist_protected(rdp); |
| rcu_nocb_bypass_lock(rdp); |
| return rcu_nocb_do_flush_bypass(rdp, rhp, j); |
| } |
| |
| /* |
| * If the ->nocb_bypass_lock is immediately available, flush the |
| * ->nocb_bypass queue into ->cblist. |
| */ |
| static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) |
| { |
| rcu_lockdep_assert_cblist_protected(rdp); |
| if (!rcu_segcblist_is_offloaded(&rdp->cblist) || |
| !rcu_nocb_bypass_trylock(rdp)) |
| return; |
| WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); |
| } |
| |
| /* |
| * See whether it is appropriate to use the ->nocb_bypass list in order |
| * to control contention on ->nocb_lock. A limited number of direct |
| * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass |
| * is non-empty, further callbacks must be placed into ->nocb_bypass, |
| * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch |
| * back to direct use of ->cblist. However, ->nocb_bypass should not be |
| * used if ->cblist is empty, because otherwise callbacks can be stranded |
| * on ->nocb_bypass because we cannot count on the current CPU ever again |
| * invoking call_rcu(). The general rule is that if ->nocb_bypass is |
| * non-empty, the corresponding no-CBs grace-period kthread must not be |
| * in an indefinite sleep state. |
| * |
| * Finally, it is not permitted to use the bypass during early boot, |
| * as doing so would confuse the auto-initialization code. Besides |
| * which, there is no point in worrying about lock contention while |
| * there is only one CPU in operation. |
| */ |
| static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| bool *was_alldone, unsigned long flags) |
| { |
| unsigned long c; |
| unsigned long cur_gp_seq; |
| unsigned long j = jiffies; |
| long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| |
| if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { |
| *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| return false; /* Not offloaded, no bypassing. */ |
| } |
| lockdep_assert_irqs_disabled(); |
| |
| // Don't use ->nocb_bypass during early boot. |
| if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { |
| rcu_nocb_lock(rdp); |
| WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); |
| *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| return false; |
| } |
| |
| // If we have advanced to a new jiffy, reset counts to allow |
| // moving back from ->nocb_bypass to ->cblist. |
| if (j == rdp->nocb_nobypass_last) { |
| c = rdp->nocb_nobypass_count + 1; |
| } else { |
| WRITE_ONCE(rdp->nocb_nobypass_last, j); |
| c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; |
| if (ULONG_CMP_LT(rdp->nocb_nobypass_count, |
| nocb_nobypass_lim_per_jiffy)) |
| c = 0; |
| else if (c > nocb_nobypass_lim_per_jiffy) |
| c = nocb_nobypass_lim_per_jiffy; |
| } |
| WRITE_ONCE(rdp->nocb_nobypass_count, c); |
| |
| // If there hasn't yet been all that many ->cblist enqueues |
| // this jiffy, tell the caller to enqueue onto ->cblist. But flush |
| // ->nocb_bypass first. |
| if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { |
| rcu_nocb_lock(rdp); |
| *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| if (*was_alldone) |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("FirstQ")); |
| WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); |
| WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); |
| return false; // Caller must enqueue the callback. |
| } |
| |
| // If ->nocb_bypass has been used too long or is too full, |
| // flush ->nocb_bypass to ->cblist. |
| if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || |
| ncbs >= qhimark) { |
| rcu_nocb_lock(rdp); |
| if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { |
| *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| if (*was_alldone) |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("FirstQ")); |
| WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); |
| return false; // Caller must enqueue the callback. |
| } |
| if (j != rdp->nocb_gp_adv_time && |
| rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { |
| rcu_advance_cbs_nowake(rdp->mynode, rdp); |
| rdp->nocb_gp_adv_time = j; |
| } |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| return true; // Callback already enqueued. |
| } |
| |
| // We need to use the bypass. |
| rcu_nocb_wait_contended(rdp); |
| rcu_nocb_bypass_lock(rdp); |
| ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ |
| rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); |
| if (!ncbs) { |
| WRITE_ONCE(rdp->nocb_bypass_first, j); |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); |
| } |
| rcu_nocb_bypass_unlock(rdp); |
| smp_mb(); /* Order enqueue before wake. */ |
| if (ncbs) { |
| local_irq_restore(flags); |
| } else { |
| // No-CBs GP kthread might be indefinitely asleep, if so, wake. |
| rcu_nocb_lock(rdp); // Rare during call_rcu() flood. |
| if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("FirstBQwake")); |
| __call_rcu_nocb_wake(rdp, true, flags); |
| } else { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("FirstBQnoWake")); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| } |
| } |
| return true; // Callback already enqueued. |
| } |
| |
| /* |
| * Awaken the no-CBs grace-period kthead if needed, either due to it |
| * legitimately being asleep or due to overload conditions. |
| * |
| * If warranted, also wake up the kthread servicing this CPUs queues. |
| */ |
| static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, |
| unsigned long flags) |
| __releases(rdp->nocb_lock) |
| { |
| unsigned long cur_gp_seq; |
| unsigned long j; |
| long len; |
| struct task_struct *t; |
| |
| // If we are being polled or there is no kthread, just leave. |
| t = READ_ONCE(rdp->nocb_gp_kthread); |
| if (rcu_nocb_poll || !t) { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("WakeNotPoll")); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| return; |
| } |
| // Need to actually to a wakeup. |
| len = rcu_segcblist_n_cbs(&rdp->cblist); |
| if (was_alldone) { |
| rdp->qlen_last_fqs_check = len; |
| if (!irqs_disabled_flags(flags)) { |
| /* ... if queue was empty ... */ |
| wake_nocb_gp(rdp, false, flags); |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("WakeEmpty")); |
| } else { |
| wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, |
| TPS("WakeEmptyIsDeferred")); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| } |
| } else if (len > rdp->qlen_last_fqs_check + qhimark) { |
| /* ... or if many callbacks queued. */ |
| rdp->qlen_last_fqs_check = len; |
| j = jiffies; |
| if (j != rdp->nocb_gp_adv_time && |
| rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { |
| rcu_advance_cbs_nowake(rdp->mynode, rdp); |
| rdp->nocb_gp_adv_time = j; |
| } |
| smp_mb(); /* Enqueue before timer_pending(). */ |
| if ((rdp->nocb_cb_sleep || |
| !rcu_segcblist_ready_cbs(&rdp->cblist)) && |
| !timer_pending(&rdp->nocb_bypass_timer)) |
| wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, |
| TPS("WakeOvfIsDeferred")); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| } else { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| } |
| return; |
| } |
| |
| /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ |
| static void do_nocb_bypass_wakeup_timer(struct timer_list *t) |
| { |
| unsigned long flags; |
| struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); |
| |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); |
| rcu_nocb_lock_irqsave(rdp, flags); |
| smp_mb__after_spinlock(); /* Timer expire before wakeup. */ |
| __call_rcu_nocb_wake(rdp, true, flags); |
| } |
| |
| /* |
| * No-CBs GP kthreads come here to wait for additional callbacks to show up |
| * or for grace periods to end. |
| */ |
| static void nocb_gp_wait(struct rcu_data *my_rdp) |
| { |
| bool bypass = false; |
| long bypass_ncbs; |
| int __maybe_unused cpu = my_rdp->cpu; |
| unsigned long cur_gp_seq; |
| unsigned long flags; |
| bool gotcbs = false; |
| unsigned long j = jiffies; |
| bool needwait_gp = false; // This prevents actual uninitialized use. |
| bool needwake; |
| bool needwake_gp; |
| struct rcu_data *rdp; |
| struct rcu_node *rnp; |
| unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. |
| bool wasempty = false; |
| |
| /* |
| * Each pass through the following loop checks for CBs and for the |
| * nearest grace period (if any) to wait for next. The CB kthreads |
| * and the global grace-period kthread are awakened if needed. |
| */ |
| WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); |
| for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); |
| rcu_nocb_lock_irqsave(rdp, flags); |
| bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| if (bypass_ncbs && |
| (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || |
| bypass_ncbs > 2 * qhimark)) { |
| // Bypass full or old, so flush it. |
| (void)rcu_nocb_try_flush_bypass(rdp, j); |
| bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| continue; /* No callbacks here, try next. */ |
| } |
| if (bypass_ncbs) { |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("Bypass")); |
| bypass = true; |
| } |
| rnp = rdp->mynode; |
| if (bypass) { // Avoid race with first bypass CB. |
| WRITE_ONCE(my_rdp->nocb_defer_wakeup, |
| RCU_NOCB_WAKE_NOT); |
| del_timer(&my_rdp->nocb_timer); |
| } |
| // Advance callbacks if helpful and low contention. |
| needwake_gp = false; |
| if (!rcu_segcblist_restempty(&rdp->cblist, |
| RCU_NEXT_READY_TAIL) || |
| (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { |
| raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ |
| needwake_gp = rcu_advance_cbs(rnp, rdp); |
| wasempty = rcu_segcblist_restempty(&rdp->cblist, |
| RCU_NEXT_READY_TAIL); |
| raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ |
| } |
| // Need to wait on some grace period? |
| WARN_ON_ONCE(wasempty && |
| !rcu_segcblist_restempty(&rdp->cblist, |
| RCU_NEXT_READY_TAIL)); |
| if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { |
| if (!needwait_gp || |
| ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) |
| wait_gp_seq = cur_gp_seq; |
| needwait_gp = true; |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| TPS("NeedWaitGP")); |
| } |
| if (rcu_segcblist_ready_cbs(&rdp->cblist)) { |
| needwake = rdp->nocb_cb_sleep; |
| WRITE_ONCE(rdp->nocb_cb_sleep, false); |
| smp_mb(); /* CB invocation -after- GP end. */ |
| } else { |
| needwake = false; |
| } |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| if (needwake) { |
| swake_up_one(&rdp->nocb_cb_wq); |
| gotcbs = true; |
| } |
| if (needwake_gp) |
| rcu_gp_kthread_wake(); |
| } |
| |
| my_rdp->nocb_gp_bypass = bypass; |
| my_rdp->nocb_gp_gp = needwait_gp; |
| my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; |
| if (bypass && !rcu_nocb_poll) { |
| // At least one child with non-empty ->nocb_bypass, so set |
| // timer in order to avoid stranding its callbacks. |
| raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); |
| mod_timer(&my_rdp->nocb_bypass_timer, j + 2); |
| raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); |
| } |
| if (rcu_nocb_poll) { |
| /* Polling, so trace if first poll in the series. */ |
| if (gotcbs) |
| trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); |
| schedule_timeout_idle(1); |
| } else if (!needwait_gp) { |
| /* Wait for callbacks to appear. */ |
| trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); |
| swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, |
| !READ_ONCE(my_rdp->nocb_gp_sleep)); |
| trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); |
| } else { |
| rnp = my_rdp->mynode; |
| trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); |
| swait_event_interruptible_exclusive( |
| rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], |
| rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || |
| !READ_ONCE(my_rdp->nocb_gp_sleep)); |
| trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); |
| } |
| if (!rcu_nocb_poll) { |
| raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); |
| if (bypass) |
| del_timer(&my_rdp->nocb_bypass_timer); |
| WRITE_ONCE(my_rdp->nocb_gp_sleep, true); |
| raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); |
| } |
| my_rdp->nocb_gp_seq = -1; |
| WARN_ON(signal_pending(current)); |
| } |
| |
| /* |
| * No-CBs grace-period-wait kthread. There is one of these per group |
| * of CPUs, but only once at least one CPU in that group has come online |
| * at least once since boot. This kthread checks for newly posted |
| * callbacks from any of the CPUs it is responsible for, waits for a |
| * grace period, then awakens all of the rcu_nocb_cb_kthread() instances |
| * that then have callback-invocation work to do. |
| */ |
| static int rcu_nocb_gp_kthread(void *arg) |
| { |
| struct rcu_data *rdp = arg; |
| |
| for (;;) { |
| WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); |
| nocb_gp_wait(rdp); |
| cond_resched_tasks_rcu_qs(); |
| } |
| return 0; |
| } |
| |
| /* |
| * Invoke any ready callbacks from the corresponding no-CBs CPU, |
| * then, if there are no more, wait for more to appear. |
| */ |
| static void nocb_cb_wait(struct rcu_data *rdp) |
| { |
| unsigned long cur_gp_seq; |
| unsigned long flags; |
| bool needwake_gp = false; |
| struct rcu_node *rnp = rdp->mynode; |
| |
| local_irq_save(flags); |
| rcu_momentary_dyntick_idle(); |
| local_irq_restore(flags); |
| local_bh_disable(); |
| rcu_do_batch(rdp); |
| local_bh_enable(); |
| lockdep_assert_irqs_enabled(); |
| rcu_nocb_lock_irqsave(rdp, flags); |
| if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && |
| raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ |
| needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); |
| raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| } |
| if (rcu_segcblist_ready_cbs(&rdp->cblist)) { |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| if (needwake_gp) |
| rcu_gp_kthread_wake(); |
| return; |
| } |
| |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); |
| WRITE_ONCE(rdp->nocb_cb_sleep, true); |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| if (needwake_gp) |
| rcu_gp_kthread_wake(); |
| swait_event_interruptible_exclusive(rdp->nocb_cb_wq, |
| !READ_ONCE(rdp->nocb_cb_sleep)); |
| if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ |
| /* ^^^ Ensure CB invocation follows _sleep test. */ |
| return; |
| } |
| WARN_ON(signal_pending(current)); |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); |
| } |
| |
| /* |
| * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke |
| * nocb_cb_wait() to do the dirty work. |
| */ |
| static int rcu_nocb_cb_kthread(void *arg) |
| { |
| struct rcu_data *rdp = arg; |
| |
| // Each pass through this loop does one callback batch, and, |
| // if there are no more ready callbacks, waits for them. |
| for (;;) { |
| nocb_cb_wait(rdp); |
| cond_resched_tasks_rcu_qs(); |
| } |
| return 0; |
| } |
| |
| /* Is a deferred wakeup of rcu_nocb_kthread() required? */ |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| { |
| return READ_ONCE(rdp->nocb_defer_wakeup); |
| } |
| |
| /* Do a deferred wakeup of rcu_nocb_kthread(). */ |
| static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) |
| { |
| unsigned long flags; |
| int ndw; |
| |
| rcu_nocb_lock_irqsave(rdp, flags); |
| if (!rcu_nocb_need_deferred_wakeup(rdp)) { |
| rcu_nocb_unlock_irqrestore(rdp, flags); |
| return; |
| } |
| ndw = READ_ONCE(rdp->nocb_defer_wakeup); |
| WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); |
| wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); |
| trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); |
| } |
| |
| /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ |
| static void do_nocb_deferred_wakeup_timer(struct timer_list *t) |
| { |
| struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); |
| |
| do_nocb_deferred_wakeup_common(rdp); |
| } |
| |
| /* |
| * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. |
| * This means we do an inexact common-case check. Note that if |
| * we miss, ->nocb_timer will eventually clean things up. |
| */ |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| { |
| if (rcu_nocb_need_deferred_wakeup(rdp)) |
| do_nocb_deferred_wakeup_common(rdp); |
| } |
| |
| void __init rcu_init_nohz(void) |
| { |
| int cpu; |
| bool need_rcu_nocb_mask = false; |
| struct rcu_data *rdp; |
| |
| #if defined(CONFIG_NO_HZ_FULL) |
| if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) |
| need_rcu_nocb_mask = true; |
| #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| |
| if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { |
| if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { |
| pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); |
| return; |
| } |
| } |
| if (!cpumask_available(rcu_nocb_mask)) |
| return; |
| |
| #if defined(CONFIG_NO_HZ_FULL) |
| if (tick_nohz_full_running) |
| cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); |
| #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| |
| if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { |
| pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); |
| cpumask_and(rcu_nocb_mask, cpu_possible_mask, |
| rcu_nocb_mask); |
| } |
| if (cpumask_empty(rcu_nocb_mask)) |
| pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); |
| else |
| pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", |
| cpumask_pr_args(rcu_nocb_mask)); |
| if (rcu_nocb_poll) |
| pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); |
| |
| for_each_cpu(cpu, rcu_nocb_mask) { |
| rdp = per_cpu_ptr(&rcu_data, cpu); |
| if (rcu_segcblist_empty(&rdp->cblist)) |
| rcu_segcblist_init(&rdp->cblist); |
| rcu_segcblist_offload(&rdp->cblist); |
| } |
| rcu_organize_nocb_kthreads(); |
| } |
| |
| /* Initialize per-rcu_data variables for no-CBs CPUs. */ |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| { |
| init_swait_queue_head(&rdp->nocb_cb_wq); |
| init_swait_queue_head(&rdp->nocb_gp_wq); |
| raw_spin_lock_init(&rdp->nocb_lock); |
| raw_spin_lock_init(&rdp->nocb_bypass_lock); |
| raw_spin_lock_init(&rdp->nocb_gp_lock); |
| timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); |
| timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); |
| rcu_cblist_init(&rdp->nocb_bypass); |
| } |
| |
| /* |
| * If the specified CPU is a no-CBs CPU that does not already have its |
| * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread |
| * for this CPU's group has not yet been created, spawn it as well. |
| */ |
| static void rcu_spawn_one_nocb_kthread(int cpu) |
| { |
| struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| struct rcu_data *rdp_gp; |
| struct task_struct *t; |
| |
| /* |
| * If this isn't a no-CBs CPU or if it already has an rcuo kthread, |
| * then nothing to do. |
| */ |
| if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) |
| return; |
| |
| /* If we didn't spawn the GP kthread first, reorganize! */ |
| rdp_gp = rdp->nocb_gp_rdp; |
| if (!rdp_gp->nocb_gp_kthread) { |
| t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, |
| "rcuog/%d", rdp_gp->cpu); |
| if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) |
| return; |
| WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); |
| } |
| |
| /* Spawn the kthread for this CPU. */ |
| t = kthread_run(rcu_nocb_cb_kthread, rdp, |
| "rcuo%c/%d", rcu_state.abbr, cpu); |
| if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) |
| return; |
| WRITE_ONCE(rdp->nocb_cb_kthread, t); |
| WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); |
| } |
| |
| /* |
| * If the specified CPU is a no-CBs CPU that does not already have its |
| * rcuo kthread, spawn it. |
| */ |
| static void rcu_spawn_cpu_nocb_kthread(int cpu) |
| { |
| if (rcu_scheduler_fully_active) |
| rcu_spawn_one_nocb_kthread(cpu); |
| } |
| |
| /* |
| * Once the scheduler is running, spawn rcuo kthreads for all online |
| * no-CBs CPUs. This assumes that the early_initcall()s happen before |
| * non-boot CPUs come online -- if this changes, we will need to add |
| * some mutual exclusion. |
| */ |
| static void __init rcu_spawn_nocb_kthreads(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| rcu_spawn_cpu_nocb_kthread(cpu); |
| } |
| |
| /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ |
| static int rcu_nocb_gp_stride = -1; |
| module_param(rcu_nocb_gp_stride, int, 0444); |
| |
| /* |
| * Initialize GP-CB relationships for all no-CBs CPU. |
| */ |
| static void __init rcu_organize_nocb_kthreads(void) |
| { |
| int cpu; |
| bool firsttime = true; |
| bool gotnocbs = false; |
| bool gotnocbscbs = true; |
| int ls = rcu_nocb_gp_stride; |
| int nl = 0; /* Next GP kthread. */ |
| struct rcu_data *rdp; |
| struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ |
| struct rcu_data *rdp_prev = NULL; |
| |
| if (!cpumask_available(rcu_nocb_mask)) |
| return; |
| if (ls == -1) { |
| ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); |
| rcu_nocb_gp_stride = ls; |
| } |
| |
| /* |
| * Each pass through this loop sets up one rcu_data structure. |
| * Should the corresponding CPU come online in the future, then |
| * we will spawn the needed set of rcu_nocb_kthread() kthreads. |
| */ |
| for_each_cpu(cpu, rcu_nocb_mask) { |
| rdp = per_cpu_ptr(&rcu_data, cpu); |
| if (rdp->cpu >= nl) { |
| /* New GP kthread, set up for CBs & next GP. */ |
| gotnocbs = true; |
| nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; |
| rdp->nocb_gp_rdp = rdp; |
| rdp_gp = rdp; |
| if (dump_tree) { |
| if (!firsttime) |
| pr_cont("%s\n", gotnocbscbs |
| ? "" : " (self only)"); |
| gotnocbscbs = false; |
| firsttime = false; |
| pr_alert("%s: No-CB GP kthread CPU %d:", |
| __func__, cpu); |
| } |
| } else { |
| /* Another CB kthread, link to previous GP kthread. */ |
| gotnocbscbs = true; |
| rdp->nocb_gp_rdp = rdp_gp; |
| rdp_prev->nocb_next_cb_rdp = rdp; |
| if (dump_tree) |
| pr_cont(" %d", cpu); |
| } |
| rdp_prev = rdp; |
| } |
| if (gotnocbs && dump_tree) |
| pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); |
| } |
| |
| /* |
| * Bind the current task to the offloaded CPUs. If there are no offloaded |
| * CPUs, leave the task unbound. Splat if the bind attempt fails. |
| */ |
| void rcu_bind_current_to_nocb(void) |
| { |
| if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) |
| WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); |
| } |
| EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); |
| |
| /* |
| * Dump out nocb grace-period kthread state for the specified rcu_data |
| * structure. |
| */ |
| static void show_rcu_nocb_gp_state(struct rcu_data *rdp) |
| { |
| struct rcu_node *rnp = rdp->mynode; |
| |
| pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", |
| rdp->cpu, |
| "kK"[!!rdp->nocb_gp_kthread], |
| "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], |
| "dD"[!!rdp->nocb_defer_wakeup], |
| "tT"[timer_pending(&rdp->nocb_timer)], |
| "bB"[timer_pending(&rdp->nocb_bypass_timer)], |
| "sS"[!!rdp->nocb_gp_sleep], |
| ".W"[swait_active(&rdp->nocb_gp_wq)], |
| ".W"[swait_active(&rnp->nocb_gp_wq[0])], |
| ".W"[swait_active(&rnp->nocb_gp_wq[1])], |
| ".B"[!!rdp->nocb_gp_bypass], |
| ".G"[!!rdp->nocb_gp_gp], |
| (long)rdp->nocb_gp_seq, |
| rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); |
| } |
| |
| /* Dump out nocb kthread state for the specified rcu_data structure. */ |
| static void show_rcu_nocb_state(struct rcu_data *rdp) |
| { |
| struct rcu_segcblist *rsclp = &rdp->cblist; |
| bool waslocked; |
| bool wastimer; |
| bool wassleep; |
| |
| if (rdp->nocb_gp_rdp == rdp) |
| show_rcu_nocb_gp_state(rdp); |
| |
| pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", |
| rdp->cpu, rdp->nocb_gp_rdp->cpu, |
| "kK"[!!rdp->nocb_cb_kthread], |
| "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], |
| "cC"[!!atomic_read(&rdp->nocb_lock_contended)], |
| "lL"[raw_spin_is_locked(&rdp->nocb_lock)], |
| "sS"[!!rdp->nocb_cb_sleep], |
| ".W"[swait_active(&rdp->nocb_cb_wq)], |
| jiffies - rdp->nocb_bypass_first, |
| jiffies - rdp->nocb_nobypass_last, |
| rdp->nocb_nobypass_count, |
| ".D"[rcu_segcblist_ready_cbs(rsclp)], |
| ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], |
| ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], |
| ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], |
| ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], |
| rcu_segcblist_n_cbs(&rdp->cblist)); |
| |
| /* It is OK for GP kthreads to have GP state. */ |
| if (rdp->nocb_gp_rdp == rdp) |
| return; |
| |
| waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); |
| wastimer = timer_pending(&rdp->nocb_bypass_timer); |
| wassleep = swait_active(&rdp->nocb_gp_wq); |
| if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep) |
| return; /* Nothing untowards. */ |
| |
| pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n", |
| "lL"[waslocked], |
| "dD"[!!rdp->nocb_defer_wakeup], |
| "tT"[wastimer], |
| "sS"[!!rdp->nocb_gp_sleep], |
| ".W"[wassleep]); |
| } |
| |
| #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| |
| /* No ->nocb_lock to acquire. */ |
| static void rcu_nocb_lock(struct rcu_data *rdp) |
| { |
| } |
| |
| /* No ->nocb_lock to release. */ |
| static void rcu_nocb_unlock(struct rcu_data *rdp) |
| { |
| } |
| |
| /* No ->nocb_lock to release. */ |
| static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, |
| unsigned long flags) |
| { |
| local_irq_restore(flags); |
| } |
| |
| /* Lockdep check that ->cblist may be safely accessed. */ |
| static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) |
| { |
| lockdep_assert_irqs_disabled(); |
| } |
| |
| static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
| { |
| } |
| |
| static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
| { |
| return NULL; |
| } |
| |
| static void rcu_init_one_nocb(struct rcu_node *rnp) |
| { |
| } |
| |
| static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| unsigned long j) |
| { |
| return true; |
| } |
| |
| static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| bool *was_alldone, unsigned long flags) |
| { |
| return false; |
| } |
| |
| static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, |
| unsigned long flags) |
| { |
| WARN_ON_ONCE(1); /* Should be dead code! */ |
| } |
| |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| { |
| } |
| |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| { |
| return false; |
| } |
| |
| static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| { |
| } |
| |
| static void rcu_spawn_cpu_nocb_kthread(int cpu) |
| { |
| } |
| |
| static void __init rcu_spawn_nocb_kthreads(void) |
| { |
| } |
| |
| static void show_rcu_nocb_state(struct rcu_data *rdp) |
| { |
| } |
| |
| #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |
| |
| /* |
| * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the |
| * grace-period kthread will do force_quiescent_state() processing? |
| * The idea is to avoid waking up RCU core processing on such a |
| * CPU unless the grace period has extended for too long. |
| * |
| * This code relies on the fact that all NO_HZ_FULL CPUs are also |
| * CONFIG_RCU_NOCB_CPU CPUs. |
| */ |
| static bool rcu_nohz_full_cpu(void) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| if (tick_nohz_full_cpu(smp_processor_id()) && |
| (!rcu_gp_in_progress() || |
| time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) |
| return true; |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| return false; |
| } |
| |
| /* |
| * Bind the RCU grace-period kthreads to the housekeeping CPU. |
| */ |
| static void rcu_bind_gp_kthread(void) |
| { |
| if (!tick_nohz_full_enabled()) |
| return; |
| housekeeping_affine(current, HK_FLAG_RCU); |
| } |
| |
| /* Record the current task on dyntick-idle entry. */ |
| static void noinstr rcu_dynticks_task_enter(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| } |
| |
| /* Record no current task on dyntick-idle exit. */ |
| static void noinstr rcu_dynticks_task_exit(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| } |
| |
| /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ |
| static void rcu_dynticks_task_trace_enter(void) |
| { |
| #ifdef CONFIG_TASKS_RCU_TRACE |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| current->trc_reader_special.b.need_mb = true; |
| #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ |
| } |
| |
| /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ |
| static void rcu_dynticks_task_trace_exit(void) |
| { |
| #ifdef CONFIG_TASKS_RCU_TRACE |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| current->trc_reader_special.b.need_mb = false; |
| #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ |
| } |