blob: 12dbd2588ca7ccdaa1ea641327b5cbf866f50a68 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_RESCTRL_H
#define _ASM_X86_RESCTRL_H
#ifdef CONFIG_X86_CPU_RESCTRL
#include <linux/sched.h>
#include <linux/jump_label.h>
/*
* This value can never be a valid CLOSID, and is used when mapping a
* (closid, rmid) pair to an index and back. On x86 only the RMID is
* needed. The index is a software defined value.
*/
#define X86_RESCTRL_EMPTY_CLOSID ((u32)~0)
/**
* struct resctrl_pqr_state - State cache for the PQR MSR
* @cur_rmid: The cached Resource Monitoring ID
* @cur_closid: The cached Class Of Service ID
* @default_rmid: The user assigned Resource Monitoring ID
* @default_closid: The user assigned cached Class Of Service ID
*
* The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
* lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
* contains both parts, so we need to cache them. This also
* stores the user configured per cpu CLOSID and RMID.
*
* The cache also helps to avoid pointless updates if the value does
* not change.
*/
struct resctrl_pqr_state {
u32 cur_rmid;
u32 cur_closid;
u32 default_rmid;
u32 default_closid;
};
DECLARE_PER_CPU(struct resctrl_pqr_state, pqr_state);
extern bool rdt_alloc_capable;
extern bool rdt_mon_capable;
DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
static inline bool resctrl_arch_alloc_capable(void)
{
return rdt_alloc_capable;
}
static inline void resctrl_arch_enable_alloc(void)
{
static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
static_branch_inc_cpuslocked(&rdt_enable_key);
}
static inline void resctrl_arch_disable_alloc(void)
{
static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
static_branch_dec_cpuslocked(&rdt_enable_key);
}
static inline bool resctrl_arch_mon_capable(void)
{
return rdt_mon_capable;
}
static inline void resctrl_arch_enable_mon(void)
{
static_branch_enable_cpuslocked(&rdt_mon_enable_key);
static_branch_inc_cpuslocked(&rdt_enable_key);
}
static inline void resctrl_arch_disable_mon(void)
{
static_branch_disable_cpuslocked(&rdt_mon_enable_key);
static_branch_dec_cpuslocked(&rdt_enable_key);
}
/*
* __resctrl_sched_in() - Writes the task's CLOSid/RMID to IA32_PQR_MSR
*
* Following considerations are made so that this has minimal impact
* on scheduler hot path:
* - This will stay as no-op unless we are running on an Intel SKU
* which supports resource control or monitoring and we enable by
* mounting the resctrl file system.
* - Caches the per cpu CLOSid/RMID values and does the MSR write only
* when a task with a different CLOSid/RMID is scheduled in.
* - We allocate RMIDs/CLOSids globally in order to keep this as
* simple as possible.
* Must be called with preemption disabled.
*/
static inline void __resctrl_sched_in(struct task_struct *tsk)
{
struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state);
u32 closid = state->default_closid;
u32 rmid = state->default_rmid;
u32 tmp;
/*
* If this task has a closid/rmid assigned, use it.
* Else use the closid/rmid assigned to this cpu.
*/
if (static_branch_likely(&rdt_alloc_enable_key)) {
tmp = READ_ONCE(tsk->closid);
if (tmp)
closid = tmp;
}
if (static_branch_likely(&rdt_mon_enable_key)) {
tmp = READ_ONCE(tsk->rmid);
if (tmp)
rmid = tmp;
}
if (closid != state->cur_closid || rmid != state->cur_rmid) {
state->cur_closid = closid;
state->cur_rmid = rmid;
wrmsr(MSR_IA32_PQR_ASSOC, rmid, closid);
}
}
static inline unsigned int resctrl_arch_round_mon_val(unsigned int val)
{
unsigned int scale = boot_cpu_data.x86_cache_occ_scale;
/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
val /= scale;
return val * scale;
}
static inline void resctrl_arch_set_closid_rmid(struct task_struct *tsk,
u32 closid, u32 rmid)
{
WRITE_ONCE(tsk->closid, closid);
WRITE_ONCE(tsk->rmid, rmid);
}
static inline bool resctrl_arch_match_closid(struct task_struct *tsk, u32 closid)
{
return READ_ONCE(tsk->closid) == closid;
}
static inline bool resctrl_arch_match_rmid(struct task_struct *tsk, u32 ignored,
u32 rmid)
{
return READ_ONCE(tsk->rmid) == rmid;
}
static inline void resctrl_sched_in(struct task_struct *tsk)
{
if (static_branch_likely(&rdt_enable_key))
__resctrl_sched_in(tsk);
}
static inline u32 resctrl_arch_system_num_rmid_idx(void)
{
/* RMID are independent numbers for x86. num_rmid_idx == num_rmid */
return boot_cpu_data.x86_cache_max_rmid + 1;
}
static inline void resctrl_arch_rmid_idx_decode(u32 idx, u32 *closid, u32 *rmid)
{
*rmid = idx;
*closid = X86_RESCTRL_EMPTY_CLOSID;
}
static inline u32 resctrl_arch_rmid_idx_encode(u32 ignored, u32 rmid)
{
return rmid;
}
/* x86 can always read an rmid, nothing needs allocating */
struct rdt_resource;
static inline void *resctrl_arch_mon_ctx_alloc(struct rdt_resource *r, int evtid)
{
might_sleep();
return NULL;
};
static inline void resctrl_arch_mon_ctx_free(struct rdt_resource *r, int evtid,
void *ctx) { };
void resctrl_cpu_detect(struct cpuinfo_x86 *c);
#else
static inline void resctrl_sched_in(struct task_struct *tsk) {}
static inline void resctrl_cpu_detect(struct cpuinfo_x86 *c) {}
#endif /* CONFIG_X86_CPU_RESCTRL */
#endif /* _ASM_X86_RESCTRL_H */