| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2022 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #define pr_fmt(fmt) "habanalabs: " fmt |
| |
| #include <uapi/drm/habanalabs_accel.h> |
| #include "habanalabs.h" |
| |
| #include <linux/pci.h> |
| #include <linux/hwmon.h> |
| #include <linux/vmalloc.h> |
| |
| #include <drm/drm_accel.h> |
| #include <drm/drm_drv.h> |
| |
| #include <trace/events/habanalabs.h> |
| |
| #define HL_RESET_DELAY_USEC 10000 /* 10ms */ |
| |
| #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC 30 |
| |
| enum dma_alloc_type { |
| DMA_ALLOC_COHERENT, |
| DMA_ALLOC_POOL, |
| }; |
| |
| #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788 |
| |
| /* |
| * hl_set_dram_bar- sets the bar to allow later access to address |
| * |
| * @hdev: pointer to habanalabs device structure. |
| * @addr: the address the caller wants to access. |
| * @region: the PCI region. |
| * @new_bar_region_base: the new BAR region base address. |
| * |
| * @return: the old BAR base address on success, U64_MAX for failure. |
| * The caller should set it back to the old address after use. |
| * |
| * In case the bar space does not cover the whole address space, |
| * the bar base address should be set to allow access to a given address. |
| * This function can be called also if the bar doesn't need to be set, |
| * in that case it just won't change the base. |
| */ |
| static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region, |
| u64 *new_bar_region_base) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 bar_base_addr, old_base; |
| |
| if (is_power_of_2(prop->dram_pci_bar_size)) |
| bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull); |
| else |
| bar_base_addr = region->region_base + |
| div64_u64((addr - region->region_base), prop->dram_pci_bar_size) * |
| prop->dram_pci_bar_size; |
| |
| old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr); |
| |
| /* in case of success we need to update the new BAR base */ |
| if ((old_base != U64_MAX) && new_bar_region_base) |
| *new_bar_region_base = bar_base_addr; |
| |
| return old_base; |
| } |
| |
| int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, |
| enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar) |
| { |
| struct pci_mem_region *region = &hdev->pci_mem_region[region_type]; |
| u64 old_base = 0, rc, bar_region_base = region->region_base; |
| void __iomem *acc_addr; |
| |
| if (set_dram_bar) { |
| old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base); |
| if (old_base == U64_MAX) |
| return -EIO; |
| } |
| |
| acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + |
| (addr - bar_region_base); |
| |
| switch (acc_type) { |
| case DEBUGFS_READ8: |
| *val = readb(acc_addr); |
| break; |
| case DEBUGFS_WRITE8: |
| writeb(*val, acc_addr); |
| break; |
| case DEBUGFS_READ32: |
| *val = readl(acc_addr); |
| break; |
| case DEBUGFS_WRITE32: |
| writel(*val, acc_addr); |
| break; |
| case DEBUGFS_READ64: |
| *val = readq(acc_addr); |
| break; |
| case DEBUGFS_WRITE64: |
| writeq(*val, acc_addr); |
| break; |
| } |
| |
| if (set_dram_bar) { |
| rc = hl_set_dram_bar(hdev, old_base, region, NULL); |
| if (rc == U64_MAX) |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, |
| gfp_t flag, enum dma_alloc_type alloc_type, |
| const char *caller) |
| { |
| void *ptr = NULL; |
| |
| switch (alloc_type) { |
| case DMA_ALLOC_COHERENT: |
| ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag); |
| break; |
| case DMA_ALLOC_POOL: |
| ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle); |
| break; |
| } |
| |
| if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr)) |
| trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size, |
| caller); |
| |
| return ptr; |
| } |
| |
| static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle, enum dma_alloc_type alloc_type, |
| const char *caller) |
| { |
| /* this is needed to avoid warning on using freed pointer */ |
| u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr; |
| |
| switch (alloc_type) { |
| case DMA_ALLOC_COHERENT: |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle); |
| break; |
| case DMA_ALLOC_POOL: |
| hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle); |
| break; |
| } |
| |
| trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller); |
| } |
| |
| void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, |
| gfp_t flag, const char *caller) |
| { |
| return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller); |
| } |
| |
| void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle, const char *caller) |
| { |
| hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller); |
| } |
| |
| void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, |
| dma_addr_t *dma_handle, const char *caller) |
| { |
| return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller); |
| } |
| |
| void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, |
| const char *caller) |
| { |
| hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller); |
| } |
| |
| void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle) |
| { |
| return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); |
| } |
| |
| void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) |
| { |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr); |
| } |
| |
| int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir, const char *caller) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct scatterlist *sg; |
| int rc, i; |
| |
| rc = hdev->asic_funcs->dma_map_sgtable(hdev, sgt, dir); |
| if (rc) |
| return rc; |
| |
| if (!trace_habanalabs_dma_map_page_enabled()) |
| return 0; |
| |
| for_each_sgtable_dma_sg(sgt, sg, i) |
| trace_habanalabs_dma_map_page(hdev->dev, |
| page_to_phys(sg_page(sg)), |
| sg->dma_address - prop->device_dma_offset_for_host_access, |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| sg->dma_length, |
| #else |
| sg->length, |
| #endif |
| dir, caller); |
| |
| return 0; |
| } |
| |
| int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct scatterlist *sg; |
| int rc, i; |
| |
| rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0); |
| if (rc) |
| return rc; |
| |
| /* Shift to the device's base physical address of host memory if necessary */ |
| if (prop->device_dma_offset_for_host_access) |
| for_each_sgtable_dma_sg(sgt, sg, i) |
| sg->dma_address += prop->device_dma_offset_for_host_access; |
| |
| return 0; |
| } |
| |
| void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir, const char *caller) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct scatterlist *sg; |
| int i; |
| |
| hdev->asic_funcs->dma_unmap_sgtable(hdev, sgt, dir); |
| |
| if (trace_habanalabs_dma_unmap_page_enabled()) { |
| for_each_sgtable_dma_sg(sgt, sg, i) |
| trace_habanalabs_dma_unmap_page(hdev->dev, page_to_phys(sg_page(sg)), |
| sg->dma_address - prop->device_dma_offset_for_host_access, |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| sg->dma_length, |
| #else |
| sg->length, |
| #endif |
| dir, caller); |
| } |
| } |
| |
| void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, |
| enum dma_data_direction dir) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct scatterlist *sg; |
| int i; |
| |
| /* Cancel the device's base physical address of host memory if necessary */ |
| if (prop->device_dma_offset_for_host_access) |
| for_each_sgtable_dma_sg(sgt, sg, i) |
| sg->dma_address -= prop->device_dma_offset_for_host_access; |
| |
| dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0); |
| } |
| |
| /* |
| * hl_access_cfg_region - access the config region |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @addr: the address to access |
| * @val: the value to write from or read to |
| * @acc_type: the type of access (read/write 64/32) |
| */ |
| int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, |
| enum debugfs_access_type acc_type) |
| { |
| struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG]; |
| u32 val_h, val_l; |
| |
| if (!IS_ALIGNED(addr, sizeof(u32))) { |
| dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32)); |
| return -EINVAL; |
| } |
| |
| switch (acc_type) { |
| case DEBUGFS_READ32: |
| *val = RREG32(addr - cfg_region->region_base); |
| break; |
| case DEBUGFS_WRITE32: |
| WREG32(addr - cfg_region->region_base, *val); |
| break; |
| case DEBUGFS_READ64: |
| val_l = RREG32(addr - cfg_region->region_base); |
| val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base); |
| |
| *val = (((u64) val_h) << 32) | val_l; |
| break; |
| case DEBUGFS_WRITE64: |
| WREG32(addr - cfg_region->region_base, lower_32_bits(*val)); |
| WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val)); |
| break; |
| default: |
| dev_err(hdev->dev, "access type %d is not supported\n", acc_type); |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * hl_access_dev_mem - access device memory |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @region_type: the type of the region the address belongs to |
| * @addr: the address to access |
| * @val: the value to write from or read to |
| * @acc_type: the type of access (r/w, 32/64) |
| */ |
| int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, |
| u64 addr, u64 *val, enum debugfs_access_type acc_type) |
| { |
| switch (region_type) { |
| case PCI_REGION_CFG: |
| return hl_access_cfg_region(hdev, addr, val, acc_type); |
| case PCI_REGION_SRAM: |
| case PCI_REGION_DRAM: |
| return hl_access_sram_dram_region(hdev, addr, val, acc_type, |
| region_type, (region_type == PCI_REGION_DRAM)); |
| default: |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...) |
| { |
| va_list args; |
| int str_size; |
| |
| va_start(args, fmt); |
| /* Calculate formatted string length. Assuming each string is null terminated, hence |
| * increment result by 1 |
| */ |
| str_size = vsnprintf(NULL, 0, fmt, args) + 1; |
| va_end(args); |
| |
| if ((e->actual_size + str_size) < e->allocated_buf_size) { |
| va_start(args, fmt); |
| vsnprintf(e->buf + e->actual_size, str_size, fmt, args); |
| va_end(args); |
| } |
| |
| /* Need to update the size even when not updating destination buffer to get the exact size |
| * of all input strings |
| */ |
| e->actual_size += str_size; |
| } |
| |
| enum hl_device_status hl_device_status(struct hl_device *hdev) |
| { |
| enum hl_device_status status; |
| |
| if (hdev->device_fini_pending) { |
| status = HL_DEVICE_STATUS_MALFUNCTION; |
| } else if (hdev->reset_info.in_reset) { |
| if (hdev->reset_info.in_compute_reset) |
| status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE; |
| else |
| status = HL_DEVICE_STATUS_IN_RESET; |
| } else if (hdev->reset_info.needs_reset) { |
| status = HL_DEVICE_STATUS_NEEDS_RESET; |
| } else if (hdev->disabled) { |
| status = HL_DEVICE_STATUS_MALFUNCTION; |
| } else if (!hdev->init_done) { |
| status = HL_DEVICE_STATUS_IN_DEVICE_CREATION; |
| } else { |
| status = HL_DEVICE_STATUS_OPERATIONAL; |
| } |
| |
| return status; |
| } |
| |
| bool hl_device_operational(struct hl_device *hdev, |
| enum hl_device_status *status) |
| { |
| enum hl_device_status current_status; |
| |
| current_status = hl_device_status(hdev); |
| if (status) |
| *status = current_status; |
| |
| switch (current_status) { |
| case HL_DEVICE_STATUS_MALFUNCTION: |
| case HL_DEVICE_STATUS_IN_RESET: |
| case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: |
| case HL_DEVICE_STATUS_NEEDS_RESET: |
| return false; |
| case HL_DEVICE_STATUS_OPERATIONAL: |
| case HL_DEVICE_STATUS_IN_DEVICE_CREATION: |
| default: |
| return true; |
| } |
| } |
| |
| bool hl_ctrl_device_operational(struct hl_device *hdev, |
| enum hl_device_status *status) |
| { |
| enum hl_device_status current_status; |
| |
| current_status = hl_device_status(hdev); |
| if (status) |
| *status = current_status; |
| |
| switch (current_status) { |
| case HL_DEVICE_STATUS_MALFUNCTION: |
| return false; |
| case HL_DEVICE_STATUS_IN_RESET: |
| case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: |
| case HL_DEVICE_STATUS_NEEDS_RESET: |
| case HL_DEVICE_STATUS_OPERATIONAL: |
| case HL_DEVICE_STATUS_IN_DEVICE_CREATION: |
| default: |
| return true; |
| } |
| } |
| |
| static void print_idle_status_mask(struct hl_device *hdev, const char *message, |
| u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE]) |
| { |
| if (idle_mask[3]) |
| dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n", |
| message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]); |
| else if (idle_mask[2]) |
| dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n", |
| message, idle_mask[2], idle_mask[1], idle_mask[0]); |
| else if (idle_mask[1]) |
| dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n", |
| message, idle_mask[1], idle_mask[0]); |
| else |
| dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]); |
| } |
| |
| static void hpriv_release(struct kref *ref) |
| { |
| u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0}; |
| bool reset_device, device_is_idle = true; |
| struct hl_fpriv *hpriv; |
| struct hl_device *hdev; |
| |
| hpriv = container_of(ref, struct hl_fpriv, refcount); |
| |
| hdev = hpriv->hdev; |
| |
| hdev->asic_funcs->send_device_activity(hdev, false); |
| |
| hl_debugfs_remove_file(hpriv); |
| |
| mutex_destroy(&hpriv->ctx_lock); |
| mutex_destroy(&hpriv->restore_phase_mutex); |
| |
| /* There should be no memory buffers at this point and handles IDR can be destroyed */ |
| hl_mem_mgr_idr_destroy(&hpriv->mem_mgr); |
| |
| /* Device should be reset if reset-upon-device-release is enabled, or if there is a pending |
| * reset that waits for device release. |
| */ |
| reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active; |
| |
| /* Check the device idle status and reset if not idle. |
| * Skip it if already in reset, or if device is going to be reset in any case. |
| */ |
| if (!hdev->reset_info.in_reset && !reset_device && !hdev->pldm) |
| device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask, |
| HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL); |
| if (!device_is_idle) { |
| print_idle_status_mask(hdev, "device is not idle after user context is closed", |
| idle_mask); |
| reset_device = true; |
| } |
| |
| /* We need to remove the user from the list to make sure the reset process won't |
| * try to kill the user process. Because, if we got here, it means there are no |
| * more driver/device resources that the user process is occupying so there is |
| * no need to kill it |
| * |
| * However, we can't set the compute_ctx to NULL at this stage. This is to prevent |
| * a race between the release and opening the device again. We don't want to let |
| * a user open the device while there a reset is about to happen. |
| */ |
| mutex_lock(&hdev->fpriv_list_lock); |
| list_del(&hpriv->dev_node); |
| mutex_unlock(&hdev->fpriv_list_lock); |
| |
| put_pid(hpriv->taskpid); |
| |
| if (reset_device) { |
| hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE); |
| } else { |
| /* Scrubbing is handled within hl_device_reset(), so here need to do it directly */ |
| int rc = hdev->asic_funcs->scrub_device_mem(hdev); |
| |
| if (rc) { |
| dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc); |
| hl_device_reset(hdev, HL_DRV_RESET_HARD); |
| } |
| } |
| |
| /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different |
| * thread, we don't care because the in_reset is marked so if a user will try to open |
| * the device it will fail on that, even if compute_ctx is false. |
| */ |
| mutex_lock(&hdev->fpriv_list_lock); |
| hdev->is_compute_ctx_active = false; |
| mutex_unlock(&hdev->fpriv_list_lock); |
| |
| hdev->compute_ctx_in_release = 0; |
| |
| /* release the eventfd */ |
| if (hpriv->notifier_event.eventfd) |
| eventfd_ctx_put(hpriv->notifier_event.eventfd); |
| |
| mutex_destroy(&hpriv->notifier_event.lock); |
| |
| kfree(hpriv); |
| } |
| |
| void hl_hpriv_get(struct hl_fpriv *hpriv) |
| { |
| kref_get(&hpriv->refcount); |
| } |
| |
| int hl_hpriv_put(struct hl_fpriv *hpriv) |
| { |
| return kref_put(&hpriv->refcount, hpriv_release); |
| } |
| |
| static void print_device_in_use_info(struct hl_device *hdev, const char *message) |
| { |
| u32 active_cs_num, dmabuf_export_cnt; |
| bool unknown_reason = true; |
| char buf[128]; |
| size_t size; |
| int offset; |
| |
| size = sizeof(buf); |
| offset = 0; |
| |
| active_cs_num = hl_get_active_cs_num(hdev); |
| if (active_cs_num) { |
| unknown_reason = false; |
| offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num); |
| } |
| |
| dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt); |
| if (dmabuf_export_cnt) { |
| unknown_reason = false; |
| offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]", |
| dmabuf_export_cnt); |
| } |
| |
| if (unknown_reason) |
| scnprintf(buf + offset, size - offset, " [unknown reason]"); |
| |
| dev_notice(hdev->dev, "%s%s\n", message, buf); |
| } |
| |
| /* |
| * hl_device_release() - release function for habanalabs device. |
| * @ddev: pointer to DRM device structure. |
| * @file: pointer to DRM file private data structure. |
| * |
| * Called when process closes an habanalabs device |
| */ |
| void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv) |
| { |
| struct hl_fpriv *hpriv = file_priv->driver_priv; |
| struct hl_device *hdev = to_hl_device(ddev); |
| |
| if (!hdev) { |
| pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n"); |
| put_pid(hpriv->taskpid); |
| } |
| |
| hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr); |
| |
| /* Memory buffers might be still in use at this point and thus the handles IDR destruction |
| * is postponed to hpriv_release(). |
| */ |
| hl_mem_mgr_fini(&hpriv->mem_mgr); |
| |
| hdev->compute_ctx_in_release = 1; |
| |
| if (!hl_hpriv_put(hpriv)) { |
| print_device_in_use_info(hdev, "User process closed FD but device still in use"); |
| hl_device_reset(hdev, HL_DRV_RESET_HARD); |
| } |
| |
| hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif; |
| } |
| |
| static int hl_device_release_ctrl(struct inode *inode, struct file *filp) |
| { |
| struct hl_fpriv *hpriv = filp->private_data; |
| struct hl_device *hdev = hpriv->hdev; |
| |
| filp->private_data = NULL; |
| |
| if (!hdev) { |
| pr_err("Closing FD after device was removed\n"); |
| goto out; |
| } |
| |
| mutex_lock(&hdev->fpriv_ctrl_list_lock); |
| list_del(&hpriv->dev_node); |
| mutex_unlock(&hdev->fpriv_ctrl_list_lock); |
| out: |
| put_pid(hpriv->taskpid); |
| |
| kfree(hpriv); |
| |
| return 0; |
| } |
| |
| static int __hl_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| unsigned long vm_pgoff; |
| |
| if (!hdev) { |
| pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n"); |
| return -ENODEV; |
| } |
| |
| vm_pgoff = vma->vm_pgoff; |
| |
| switch (vm_pgoff & HL_MMAP_TYPE_MASK) { |
| case HL_MMAP_TYPE_BLOCK: |
| vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff); |
| return hl_hw_block_mmap(hpriv, vma); |
| |
| case HL_MMAP_TYPE_CB: |
| case HL_MMAP_TYPE_TS_BUFF: |
| return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL); |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * hl_mmap - mmap function for habanalabs device |
| * |
| * @*filp: pointer to file structure |
| * @*vma: pointer to vm_area_struct of the process |
| * |
| * Called when process does an mmap on habanalabs device. Call the relevant mmap |
| * function at the end of the common code. |
| */ |
| int hl_mmap(struct file *filp, struct vm_area_struct *vma) |
| { |
| struct drm_file *file_priv = filp->private_data; |
| struct hl_fpriv *hpriv = file_priv->driver_priv; |
| |
| return __hl_mmap(hpriv, vma); |
| } |
| |
| static const struct file_operations hl_ctrl_ops = { |
| .owner = THIS_MODULE, |
| .open = hl_device_open_ctrl, |
| .release = hl_device_release_ctrl, |
| .unlocked_ioctl = hl_ioctl_control, |
| .compat_ioctl = hl_ioctl_control |
| }; |
| |
| static void device_release_func(struct device *dev) |
| { |
| kfree(dev); |
| } |
| |
| /* |
| * device_init_cdev - Initialize cdev and device for habanalabs device |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @class: pointer to the class object of the device |
| * @minor: minor number of the specific device |
| * @fops: file operations to install for this device |
| * @name: name of the device as it will appear in the filesystem |
| * @cdev: pointer to the char device object that will be initialized |
| * @dev: pointer to the device object that will be initialized |
| * |
| * Initialize a cdev and a Linux device for habanalabs's device. |
| */ |
| static int device_init_cdev(struct hl_device *hdev, const struct class *class, |
| int minor, const struct file_operations *fops, |
| char *name, struct cdev *cdev, |
| struct device **dev) |
| { |
| cdev_init(cdev, fops); |
| cdev->owner = THIS_MODULE; |
| |
| *dev = kzalloc(sizeof(**dev), GFP_KERNEL); |
| if (!*dev) |
| return -ENOMEM; |
| |
| device_initialize(*dev); |
| (*dev)->devt = MKDEV(hdev->major, minor); |
| (*dev)->class = class; |
| (*dev)->release = device_release_func; |
| dev_set_drvdata(*dev, hdev); |
| dev_set_name(*dev, "%s", name); |
| |
| return 0; |
| } |
| |
| static int cdev_sysfs_debugfs_add(struct hl_device *hdev) |
| { |
| const struct class *accel_class = hdev->drm.accel->kdev->class; |
| char name[32]; |
| int rc; |
| |
| hdev->cdev_idx = hdev->drm.accel->index; |
| |
| /* Initialize cdev and device structures for the control device */ |
| snprintf(name, sizeof(name), "accel_controlD%d", hdev->cdev_idx); |
| rc = device_init_cdev(hdev, accel_class, hdev->cdev_idx, &hl_ctrl_ops, name, |
| &hdev->cdev_ctrl, &hdev->dev_ctrl); |
| if (rc) |
| return rc; |
| |
| rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl); |
| if (rc) { |
| dev_err(hdev->dev_ctrl, |
| "failed to add an accel control char device to the system\n"); |
| goto free_ctrl_device; |
| } |
| |
| rc = hl_sysfs_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize sysfs\n"); |
| goto delete_ctrl_cdev_device; |
| } |
| |
| hl_debugfs_add_device(hdev); |
| |
| hdev->cdev_sysfs_debugfs_created = true; |
| |
| return 0; |
| |
| delete_ctrl_cdev_device: |
| cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); |
| free_ctrl_device: |
| put_device(hdev->dev_ctrl); |
| return rc; |
| } |
| |
| static void cdev_sysfs_debugfs_remove(struct hl_device *hdev) |
| { |
| if (!hdev->cdev_sysfs_debugfs_created) |
| return; |
| |
| hl_sysfs_fini(hdev); |
| |
| cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); |
| put_device(hdev->dev_ctrl); |
| } |
| |
| static void device_hard_reset_pending(struct work_struct *work) |
| { |
| struct hl_device_reset_work *device_reset_work = |
| container_of(work, struct hl_device_reset_work, reset_work.work); |
| struct hl_device *hdev = device_reset_work->hdev; |
| u32 flags; |
| int rc; |
| |
| flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR; |
| |
| rc = hl_device_reset(hdev, flags); |
| |
| if ((rc == -EBUSY) && !hdev->device_fini_pending) { |
| struct hl_ctx *ctx = hl_get_compute_ctx(hdev); |
| |
| if (ctx) { |
| /* The read refcount value should subtracted by one, because the read is |
| * protected with hl_get_compute_ctx(). |
| */ |
| dev_info(hdev->dev, |
| "Could not reset device (compute_ctx refcount %u). will try again in %u seconds", |
| kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC); |
| hl_ctx_put(ctx); |
| } else { |
| dev_info(hdev->dev, "Could not reset device. will try again in %u seconds", |
| HL_PENDING_RESET_PER_SEC); |
| } |
| |
| queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work, |
| msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000)); |
| } |
| } |
| |
| static void device_release_watchdog_func(struct work_struct *work) |
| { |
| struct hl_device_reset_work *watchdog_work = |
| container_of(work, struct hl_device_reset_work, reset_work.work); |
| struct hl_device *hdev = watchdog_work->hdev; |
| u32 flags; |
| |
| dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n"); |
| |
| flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR; |
| |
| hl_device_reset(hdev, flags); |
| } |
| |
| /* |
| * device_early_init - do some early initialization for the habanalabs device |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Install the relevant function pointers and call the early_init function, |
| * if such a function exists |
| */ |
| static int device_early_init(struct hl_device *hdev) |
| { |
| int i, rc; |
| char workq_name[32]; |
| |
| switch (hdev->asic_type) { |
| case ASIC_GOYA: |
| goya_set_asic_funcs(hdev); |
| strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name)); |
| break; |
| case ASIC_GAUDI: |
| gaudi_set_asic_funcs(hdev); |
| strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name)); |
| break; |
| case ASIC_GAUDI_SEC: |
| gaudi_set_asic_funcs(hdev); |
| strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name)); |
| break; |
| case ASIC_GAUDI2: |
| gaudi2_set_asic_funcs(hdev); |
| strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name)); |
| break; |
| case ASIC_GAUDI2B: |
| gaudi2_set_asic_funcs(hdev); |
| strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name)); |
| break; |
| case ASIC_GAUDI2C: |
| gaudi2_set_asic_funcs(hdev); |
| strscpy(hdev->asic_name, "GAUDI2C", sizeof(hdev->asic_name)); |
| break; |
| default: |
| dev_err(hdev->dev, "Unrecognized ASIC type %d\n", |
| hdev->asic_type); |
| return -EINVAL; |
| } |
| |
| rc = hdev->asic_funcs->early_init(hdev); |
| if (rc) |
| return rc; |
| |
| rc = hl_asid_init(hdev); |
| if (rc) |
| goto early_fini; |
| |
| if (hdev->asic_prop.completion_queues_count) { |
| hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count, |
| sizeof(struct workqueue_struct *), |
| GFP_KERNEL); |
| if (!hdev->cq_wq) { |
| rc = -ENOMEM; |
| goto asid_fini; |
| } |
| } |
| |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) { |
| snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i); |
| hdev->cq_wq[i] = create_singlethread_workqueue(workq_name); |
| if (hdev->cq_wq[i] == NULL) { |
| dev_err(hdev->dev, "Failed to allocate CQ workqueue\n"); |
| rc = -ENOMEM; |
| goto free_cq_wq; |
| } |
| } |
| |
| snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx); |
| hdev->eq_wq = create_singlethread_workqueue(workq_name); |
| if (hdev->eq_wq == NULL) { |
| dev_err(hdev->dev, "Failed to allocate EQ workqueue\n"); |
| rc = -ENOMEM; |
| goto free_cq_wq; |
| } |
| |
| snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx); |
| hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); |
| if (!hdev->cs_cmplt_wq) { |
| dev_err(hdev->dev, |
| "Failed to allocate CS completions workqueue\n"); |
| rc = -ENOMEM; |
| goto free_eq_wq; |
| } |
| |
| snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx); |
| hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); |
| if (!hdev->ts_free_obj_wq) { |
| dev_err(hdev->dev, |
| "Failed to allocate Timestamp registration free workqueue\n"); |
| rc = -ENOMEM; |
| goto free_cs_cmplt_wq; |
| } |
| |
| snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx); |
| hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); |
| if (!hdev->prefetch_wq) { |
| dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n"); |
| rc = -ENOMEM; |
| goto free_ts_free_wq; |
| } |
| |
| hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL); |
| if (!hdev->hl_chip_info) { |
| rc = -ENOMEM; |
| goto free_prefetch_wq; |
| } |
| |
| rc = hl_mmu_if_set_funcs(hdev); |
| if (rc) |
| goto free_chip_info; |
| |
| hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr); |
| |
| snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx); |
| hdev->reset_wq = create_singlethread_workqueue(workq_name); |
| if (!hdev->reset_wq) { |
| rc = -ENOMEM; |
| dev_err(hdev->dev, "Failed to create device reset WQ\n"); |
| goto free_cb_mgr; |
| } |
| |
| INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending); |
| hdev->device_reset_work.hdev = hdev; |
| hdev->device_fini_pending = 0; |
| |
| INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work, |
| device_release_watchdog_func); |
| hdev->device_release_watchdog_work.hdev = hdev; |
| |
| mutex_init(&hdev->send_cpu_message_lock); |
| mutex_init(&hdev->debug_lock); |
| INIT_LIST_HEAD(&hdev->cs_mirror_list); |
| spin_lock_init(&hdev->cs_mirror_lock); |
| spin_lock_init(&hdev->reset_info.lock); |
| INIT_LIST_HEAD(&hdev->fpriv_list); |
| INIT_LIST_HEAD(&hdev->fpriv_ctrl_list); |
| mutex_init(&hdev->fpriv_list_lock); |
| mutex_init(&hdev->fpriv_ctrl_list_lock); |
| mutex_init(&hdev->clk_throttling.lock); |
| |
| return 0; |
| |
| free_cb_mgr: |
| hl_mem_mgr_fini(&hdev->kernel_mem_mgr); |
| hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr); |
| free_chip_info: |
| kfree(hdev->hl_chip_info); |
| free_prefetch_wq: |
| destroy_workqueue(hdev->prefetch_wq); |
| free_ts_free_wq: |
| destroy_workqueue(hdev->ts_free_obj_wq); |
| free_cs_cmplt_wq: |
| destroy_workqueue(hdev->cs_cmplt_wq); |
| free_eq_wq: |
| destroy_workqueue(hdev->eq_wq); |
| free_cq_wq: |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| if (hdev->cq_wq[i]) |
| destroy_workqueue(hdev->cq_wq[i]); |
| kfree(hdev->cq_wq); |
| asid_fini: |
| hl_asid_fini(hdev); |
| early_fini: |
| if (hdev->asic_funcs->early_fini) |
| hdev->asic_funcs->early_fini(hdev); |
| |
| return rc; |
| } |
| |
| /* |
| * device_early_fini - finalize all that was done in device_early_init |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| */ |
| static void device_early_fini(struct hl_device *hdev) |
| { |
| int i; |
| |
| mutex_destroy(&hdev->debug_lock); |
| mutex_destroy(&hdev->send_cpu_message_lock); |
| |
| mutex_destroy(&hdev->fpriv_list_lock); |
| mutex_destroy(&hdev->fpriv_ctrl_list_lock); |
| |
| mutex_destroy(&hdev->clk_throttling.lock); |
| |
| hl_mem_mgr_fini(&hdev->kernel_mem_mgr); |
| hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr); |
| |
| kfree(hdev->hl_chip_info); |
| |
| destroy_workqueue(hdev->prefetch_wq); |
| destroy_workqueue(hdev->ts_free_obj_wq); |
| destroy_workqueue(hdev->cs_cmplt_wq); |
| destroy_workqueue(hdev->eq_wq); |
| destroy_workqueue(hdev->reset_wq); |
| |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| destroy_workqueue(hdev->cq_wq[i]); |
| kfree(hdev->cq_wq); |
| |
| hl_asid_fini(hdev); |
| |
| if (hdev->asic_funcs->early_fini) |
| hdev->asic_funcs->early_fini(hdev); |
| } |
| |
| static bool is_pci_link_healthy(struct hl_device *hdev) |
| { |
| u16 device_id; |
| |
| if (!hdev->pdev) |
| return false; |
| |
| pci_read_config_word(hdev->pdev, PCI_DEVICE_ID, &device_id); |
| |
| return (device_id == hdev->pdev->device); |
| } |
| |
| static int hl_device_eq_heartbeat_check(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| if (!prop->cpucp_info.eq_health_check_supported) |
| return 0; |
| |
| if (hdev->eq_heartbeat_received) { |
| hdev->eq_heartbeat_received = false; |
| } else { |
| dev_err(hdev->dev, "EQ heartbeat event was not received!\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void hl_device_heartbeat(struct work_struct *work) |
| { |
| struct hl_device *hdev = container_of(work, struct hl_device, |
| work_heartbeat.work); |
| struct hl_info_fw_err_info info = {0}; |
| u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE; |
| |
| /* Start heartbeat checks only after driver has enabled events from FW */ |
| if (!hl_device_operational(hdev, NULL) || !hdev->init_done) |
| goto reschedule; |
| |
| /* |
| * For EQ health check need to check if driver received the heartbeat eq event |
| * in order to validate the eq is working. |
| * Only if both the EQ is healthy and we managed to send the next heartbeat reschedule. |
| */ |
| if ((!hl_device_eq_heartbeat_check(hdev)) && (!hdev->asic_funcs->send_heartbeat(hdev))) |
| goto reschedule; |
| |
| if (hl_device_operational(hdev, NULL)) |
| dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n", |
| is_pci_link_healthy(hdev) ? "healthy" : "broken"); |
| |
| info.err_type = HL_INFO_FW_HEARTBEAT_ERR; |
| info.event_mask = &event_mask; |
| hl_handle_fw_err(hdev, &info); |
| hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask); |
| |
| return; |
| |
| reschedule: |
| /* |
| * prev_reset_trigger tracks consecutive fatal h/w errors until first |
| * heartbeat immediately post reset. |
| * If control reached here, then at least one heartbeat work has been |
| * scheduled since last reset/init cycle. |
| * So if the device is not already in reset cycle, reset the flag |
| * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR |
| * status for at least one heartbeat. From this point driver restarts |
| * tracking future consecutive fatal errors. |
| */ |
| if (!hdev->reset_info.in_reset) |
| hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT; |
| |
| schedule_delayed_work(&hdev->work_heartbeat, |
| usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); |
| } |
| |
| /* |
| * device_late_init - do late stuff initialization for the habanalabs device |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Do stuff that either needs the device H/W queues to be active or needs |
| * to happen after all the rest of the initialization is finished |
| */ |
| static int device_late_init(struct hl_device *hdev) |
| { |
| int rc; |
| |
| if (hdev->asic_funcs->late_init) { |
| rc = hdev->asic_funcs->late_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, |
| "failed late initialization for the H/W\n"); |
| return rc; |
| } |
| } |
| |
| hdev->high_pll = hdev->asic_prop.high_pll; |
| |
| if (hdev->heartbeat) { |
| /* |
| * Before scheduling the heartbeat driver will check if eq event has received. |
| * for the first schedule we need to set the indication as true then for the next |
| * one this indication will be true only if eq event was sent by FW. |
| */ |
| hdev->eq_heartbeat_received = true; |
| |
| INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat); |
| |
| schedule_delayed_work(&hdev->work_heartbeat, |
| usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); |
| } |
| |
| hdev->late_init_done = true; |
| |
| return 0; |
| } |
| |
| /* |
| * device_late_fini - finalize all that was done in device_late_init |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| */ |
| static void device_late_fini(struct hl_device *hdev) |
| { |
| if (!hdev->late_init_done) |
| return; |
| |
| if (hdev->heartbeat) |
| cancel_delayed_work_sync(&hdev->work_heartbeat); |
| |
| if (hdev->asic_funcs->late_fini) |
| hdev->asic_funcs->late_fini(hdev); |
| |
| hdev->late_init_done = false; |
| } |
| |
| int hl_device_utilization(struct hl_device *hdev, u32 *utilization) |
| { |
| u64 max_power, curr_power, dc_power, dividend, divisor; |
| int rc; |
| |
| max_power = hdev->max_power; |
| dc_power = hdev->asic_prop.dc_power_default; |
| divisor = max_power - dc_power; |
| if (!divisor) { |
| dev_warn(hdev->dev, "device utilization is not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| rc = hl_fw_cpucp_power_get(hdev, &curr_power); |
| |
| if (rc) |
| return rc; |
| |
| curr_power = clamp(curr_power, dc_power, max_power); |
| |
| dividend = (curr_power - dc_power) * 100; |
| *utilization = (u32) div_u64(dividend, divisor); |
| |
| return 0; |
| } |
| |
| int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable) |
| { |
| int rc = 0; |
| |
| mutex_lock(&hdev->debug_lock); |
| |
| if (!enable) { |
| if (!hdev->in_debug) { |
| dev_err(hdev->dev, |
| "Failed to disable debug mode because device was not in debug mode\n"); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| if (!hdev->reset_info.hard_reset_pending) |
| hdev->asic_funcs->halt_coresight(hdev, ctx); |
| |
| hdev->in_debug = 0; |
| |
| goto out; |
| } |
| |
| if (hdev->in_debug) { |
| dev_err(hdev->dev, |
| "Failed to enable debug mode because device is already in debug mode\n"); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| hdev->in_debug = 1; |
| |
| out: |
| mutex_unlock(&hdev->debug_lock); |
| |
| return rc; |
| } |
| |
| static void take_release_locks(struct hl_device *hdev) |
| { |
| /* Flush anyone that is inside the critical section of enqueue |
| * jobs to the H/W |
| */ |
| hdev->asic_funcs->hw_queues_lock(hdev); |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| |
| /* Flush processes that are sending message to CPU */ |
| mutex_lock(&hdev->send_cpu_message_lock); |
| mutex_unlock(&hdev->send_cpu_message_lock); |
| |
| /* Flush anyone that is inside device open */ |
| mutex_lock(&hdev->fpriv_list_lock); |
| mutex_unlock(&hdev->fpriv_list_lock); |
| mutex_lock(&hdev->fpriv_ctrl_list_lock); |
| mutex_unlock(&hdev->fpriv_ctrl_list_lock); |
| } |
| |
| static void hl_abort_waiting_for_completions(struct hl_device *hdev) |
| { |
| hl_abort_waiting_for_cs_completions(hdev); |
| |
| /* Release all pending user interrupts, each pending user interrupt |
| * holds a reference to a user context. |
| */ |
| hl_release_pending_user_interrupts(hdev); |
| } |
| |
| static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset, |
| bool skip_wq_flush) |
| { |
| if (hard_reset) |
| device_late_fini(hdev); |
| |
| /* |
| * Halt the engines and disable interrupts so we won't get any more |
| * completions from H/W and we won't have any accesses from the |
| * H/W to the host machine |
| */ |
| hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset); |
| |
| /* Go over all the queues, release all CS and their jobs */ |
| hl_cs_rollback_all(hdev, skip_wq_flush); |
| |
| /* flush the MMU prefetch workqueue */ |
| flush_workqueue(hdev->prefetch_wq); |
| |
| hl_abort_waiting_for_completions(hdev); |
| } |
| |
| /* |
| * hl_device_suspend - initiate device suspend |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Puts the hw in the suspend state (all asics). |
| * Returns 0 for success or an error on failure. |
| * Called at driver suspend. |
| */ |
| int hl_device_suspend(struct hl_device *hdev) |
| { |
| int rc; |
| |
| pci_save_state(hdev->pdev); |
| |
| /* Block future CS/VM/JOB completion operations */ |
| spin_lock(&hdev->reset_info.lock); |
| if (hdev->reset_info.in_reset) { |
| spin_unlock(&hdev->reset_info.lock); |
| dev_err(hdev->dev, "Can't suspend while in reset\n"); |
| return -EIO; |
| } |
| hdev->reset_info.in_reset = 1; |
| spin_unlock(&hdev->reset_info.lock); |
| |
| /* This blocks all other stuff that is not blocked by in_reset */ |
| hdev->disabled = true; |
| |
| take_release_locks(hdev); |
| |
| rc = hdev->asic_funcs->suspend(hdev); |
| if (rc) |
| dev_err(hdev->dev, |
| "Failed to disable PCI access of device CPU\n"); |
| |
| /* Shut down the device */ |
| pci_disable_device(hdev->pdev); |
| pci_set_power_state(hdev->pdev, PCI_D3hot); |
| |
| return 0; |
| } |
| |
| /* |
| * hl_device_resume - initiate device resume |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Bring the hw back to operating state (all asics). |
| * Returns 0 for success or an error on failure. |
| * Called at driver resume. |
| */ |
| int hl_device_resume(struct hl_device *hdev) |
| { |
| int rc; |
| |
| pci_set_power_state(hdev->pdev, PCI_D0); |
| pci_restore_state(hdev->pdev); |
| rc = pci_enable_device_mem(hdev->pdev); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to enable PCI device in resume\n"); |
| return rc; |
| } |
| |
| pci_set_master(hdev->pdev); |
| |
| rc = hdev->asic_funcs->resume(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to resume device after suspend\n"); |
| goto disable_device; |
| } |
| |
| |
| /* 'in_reset' was set to true during suspend, now we must clear it in order |
| * for hard reset to be performed |
| */ |
| spin_lock(&hdev->reset_info.lock); |
| hdev->reset_info.in_reset = 0; |
| spin_unlock(&hdev->reset_info.lock); |
| |
| rc = hl_device_reset(hdev, HL_DRV_RESET_HARD); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to reset device during resume\n"); |
| goto disable_device; |
| } |
| |
| return 0; |
| |
| disable_device: |
| pci_disable_device(hdev->pdev); |
| |
| return rc; |
| } |
| |
| static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev) |
| { |
| struct task_struct *task = NULL; |
| struct list_head *hpriv_list; |
| struct hl_fpriv *hpriv; |
| struct mutex *hpriv_lock; |
| u32 pending_cnt; |
| |
| hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock; |
| hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list; |
| |
| /* Giving time for user to close FD, and for processes that are inside |
| * hl_device_open to finish |
| */ |
| if (!list_empty(hpriv_list)) |
| ssleep(1); |
| |
| if (timeout) { |
| pending_cnt = timeout; |
| } else { |
| if (hdev->process_kill_trial_cnt) { |
| /* Processes have been already killed */ |
| pending_cnt = 1; |
| goto wait_for_processes; |
| } else { |
| /* Wait a small period after process kill */ |
| pending_cnt = HL_PENDING_RESET_PER_SEC; |
| } |
| } |
| |
| mutex_lock(hpriv_lock); |
| |
| /* This section must be protected because we are dereferencing |
| * pointers that are freed if the process exits |
| */ |
| list_for_each_entry(hpriv, hpriv_list, dev_node) { |
| task = get_pid_task(hpriv->taskpid, PIDTYPE_PID); |
| if (task) { |
| dev_info(hdev->dev, "Killing user process pid=%d\n", |
| task_pid_nr(task)); |
| send_sig(SIGKILL, task, 1); |
| usleep_range(1000, 10000); |
| |
| put_task_struct(task); |
| } else { |
| dev_dbg(hdev->dev, |
| "Can't get task struct for user process %d, process was killed from outside the driver\n", |
| pid_nr(hpriv->taskpid)); |
| } |
| } |
| |
| mutex_unlock(hpriv_lock); |
| |
| /* |
| * We killed the open users, but that doesn't mean they are closed. |
| * It could be that they are running a long cleanup phase in the driver |
| * e.g. MMU unmappings, or running other long teardown flow even before |
| * our cleanup. |
| * Therefore we need to wait again to make sure they are closed before |
| * continuing with the reset. |
| */ |
| |
| wait_for_processes: |
| while ((!list_empty(hpriv_list)) && (pending_cnt)) { |
| dev_dbg(hdev->dev, |
| "Waiting for all unmap operations to finish before hard reset\n"); |
| |
| pending_cnt--; |
| |
| ssleep(1); |
| } |
| |
| /* All processes exited successfully */ |
| if (list_empty(hpriv_list)) |
| return 0; |
| |
| /* Give up waiting for processes to exit */ |
| if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS) |
| return -ETIME; |
| |
| hdev->process_kill_trial_cnt++; |
| |
| return -EBUSY; |
| } |
| |
| static void device_disable_open_processes(struct hl_device *hdev, bool control_dev) |
| { |
| struct list_head *hpriv_list; |
| struct hl_fpriv *hpriv; |
| struct mutex *hpriv_lock; |
| |
| hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock; |
| hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list; |
| |
| mutex_lock(hpriv_lock); |
| list_for_each_entry(hpriv, hpriv_list, dev_node) |
| hpriv->hdev = NULL; |
| mutex_unlock(hpriv_lock); |
| } |
| |
| static void send_disable_pci_access(struct hl_device *hdev, u32 flags) |
| { |
| /* If reset is due to heartbeat, device CPU is no responsive in |
| * which case no point sending PCI disable message to it. |
| */ |
| if ((flags & HL_DRV_RESET_HARD) && |
| !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) { |
| /* Disable PCI access from device F/W so he won't send |
| * us additional interrupts. We disable MSI/MSI-X at |
| * the halt_engines function and we can't have the F/W |
| * sending us interrupts after that. We need to disable |
| * the access here because if the device is marked |
| * disable, the message won't be send. Also, in case |
| * of heartbeat, the device CPU is marked as disable |
| * so this message won't be sent |
| */ |
| if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) { |
| dev_warn(hdev->dev, "Failed to disable FW's PCI access\n"); |
| return; |
| } |
| |
| /* verify that last EQs are handled before disabled is set */ |
| if (hdev->cpu_queues_enable) |
| synchronize_irq(pci_irq_vector(hdev->pdev, |
| hdev->asic_prop.eq_interrupt_id)); |
| } |
| } |
| |
| static void handle_reset_trigger(struct hl_device *hdev, u32 flags) |
| { |
| u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT; |
| |
| /* No consecutive mechanism when user context exists */ |
| if (hdev->is_compute_ctx_active) |
| return; |
| |
| /* |
| * 'reset cause' is being updated here, because getting here |
| * means that it's the 1st time and the last time we're here |
| * ('in_reset' makes sure of it). This makes sure that |
| * 'reset_cause' will continue holding its 1st recorded reason! |
| */ |
| if (flags & HL_DRV_RESET_HEARTBEAT) { |
| hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT; |
| cur_reset_trigger = HL_DRV_RESET_HEARTBEAT; |
| } else if (flags & HL_DRV_RESET_TDR) { |
| hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR; |
| cur_reset_trigger = HL_DRV_RESET_TDR; |
| } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) { |
| hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; |
| cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR; |
| } else { |
| hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; |
| } |
| |
| /* |
| * If reset cause is same twice, then reset_trigger_repeated |
| * is set and if this reset is due to a fatal FW error |
| * device is set to an unstable state. |
| */ |
| if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) { |
| hdev->reset_info.prev_reset_trigger = cur_reset_trigger; |
| hdev->reset_info.reset_trigger_repeated = 0; |
| } else { |
| hdev->reset_info.reset_trigger_repeated = 1; |
| } |
| } |
| |
| /* |
| * hl_device_reset - reset the device |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @flags: reset flags. |
| * |
| * Block future CS and wait for pending CS to be enqueued |
| * Call ASIC H/W fini |
| * Flush all completions |
| * Re-initialize all internal data structures |
| * Call ASIC H/W init, late_init |
| * Test queues |
| * Enable device |
| * |
| * Returns 0 for success or an error on failure. |
| */ |
| int hl_device_reset(struct hl_device *hdev, u32 flags) |
| { |
| bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release, |
| schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread; |
| u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0}; |
| struct hl_ctx *ctx; |
| int i, rc, hw_fini_rc; |
| |
| if (!hdev->init_done) { |
| dev_err(hdev->dev, "Can't reset before initialization is done\n"); |
| return 0; |
| } |
| |
| hard_reset = !!(flags & HL_DRV_RESET_HARD); |
| from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR); |
| fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW); |
| from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE); |
| delay_reset = !!(flags & HL_DRV_RESET_DELAY); |
| from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR); |
| reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release; |
| |
| if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) { |
| dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n"); |
| return 0; |
| } |
| |
| if (!hard_reset && !hdev->asic_prop.supports_compute_reset) { |
| dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n"); |
| hard_reset = true; |
| } |
| |
| if (reset_upon_device_release) { |
| if (hard_reset) { |
| dev_crit(hdev->dev, |
| "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n"); |
| return -EINVAL; |
| } |
| |
| goto do_reset; |
| } |
| |
| if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) { |
| dev_dbg(hdev->dev, |
| "asic doesn't allow inference soft reset - do hard-reset instead\n"); |
| hard_reset = true; |
| } |
| |
| do_reset: |
| /* Re-entry of reset thread */ |
| if (from_hard_reset_thread && hdev->process_kill_trial_cnt) |
| goto kill_processes; |
| |
| /* |
| * Prevent concurrency in this function - only one reset should be |
| * done at any given time. We need to perform this only if we didn't |
| * get here from a dedicated hard reset thread. |
| */ |
| if (!from_hard_reset_thread) { |
| /* Block future CS/VM/JOB completion operations */ |
| spin_lock(&hdev->reset_info.lock); |
| if (hdev->reset_info.in_reset) { |
| /* We allow scheduling of a hard reset only during a compute reset */ |
| if (hard_reset && hdev->reset_info.in_compute_reset) |
| hdev->reset_info.hard_reset_schedule_flags = flags; |
| spin_unlock(&hdev->reset_info.lock); |
| return 0; |
| } |
| |
| /* This still allows the completion of some KDMA ops |
| * Update this before in_reset because in_compute_reset implies we are in reset |
| */ |
| hdev->reset_info.in_compute_reset = !hard_reset; |
| |
| hdev->reset_info.in_reset = 1; |
| |
| spin_unlock(&hdev->reset_info.lock); |
| |
| /* Cancel the device release watchdog work if required. |
| * In case of reset-upon-device-release while the release watchdog work is |
| * scheduled due to a hard-reset, do hard-reset instead of compute-reset. |
| */ |
| if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) { |
| struct hl_device_reset_work *watchdog_work = |
| &hdev->device_release_watchdog_work; |
| |
| hdev->reset_info.watchdog_active = 0; |
| if (!from_watchdog_thread) |
| cancel_delayed_work_sync(&watchdog_work->reset_work); |
| |
| if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) { |
| hdev->reset_info.in_compute_reset = 0; |
| flags |= HL_DRV_RESET_HARD; |
| flags &= ~HL_DRV_RESET_DEV_RELEASE; |
| hard_reset = true; |
| } |
| } |
| |
| if (delay_reset) |
| usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1); |
| |
| escalate_reset_flow: |
| handle_reset_trigger(hdev, flags); |
| send_disable_pci_access(hdev, flags); |
| |
| /* This also blocks future CS/VM/JOB completion operations */ |
| hdev->disabled = true; |
| |
| take_release_locks(hdev); |
| |
| if (hard_reset) |
| dev_info(hdev->dev, "Going to reset device\n"); |
| else if (reset_upon_device_release) |
| dev_dbg(hdev->dev, "Going to reset device after release by user\n"); |
| else |
| dev_dbg(hdev->dev, "Going to reset engines of inference device\n"); |
| } |
| |
| if ((hard_reset) && (!from_hard_reset_thread)) { |
| hdev->reset_info.hard_reset_pending = true; |
| |
| hdev->process_kill_trial_cnt = 0; |
| |
| hdev->device_reset_work.flags = flags; |
| |
| /* |
| * Because the reset function can't run from heartbeat work, |
| * we need to call the reset function from a dedicated work. |
| */ |
| queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0); |
| |
| return 0; |
| } |
| |
| cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release); |
| |
| kill_processes: |
| if (hard_reset) { |
| /* Kill processes here after CS rollback. This is because the |
| * process can't really exit until all its CSs are done, which |
| * is what we do in cs rollback |
| */ |
| rc = device_kill_open_processes(hdev, 0, false); |
| |
| if (rc == -EBUSY) { |
| if (hdev->device_fini_pending) { |
| dev_crit(hdev->dev, |
| "%s Failed to kill all open processes, stopping hard reset\n", |
| dev_name(&(hdev)->pdev->dev)); |
| goto out_err; |
| } |
| |
| /* signal reset thread to reschedule */ |
| return rc; |
| } |
| |
| if (rc) { |
| dev_crit(hdev->dev, |
| "%s Failed to kill all open processes, stopping hard reset\n", |
| dev_name(&(hdev)->pdev->dev)); |
| goto out_err; |
| } |
| |
| /* Flush the Event queue workers to make sure no other thread is |
| * reading or writing to registers during the reset |
| */ |
| flush_workqueue(hdev->eq_wq); |
| } |
| |
| /* Reset the H/W. It will be in idle state after this returns */ |
| hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset); |
| |
| if (hard_reset) { |
| hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE; |
| |
| /* Release kernel context */ |
| if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1) |
| hdev->kernel_ctx = NULL; |
| |
| hl_vm_fini(hdev); |
| hl_mmu_fini(hdev); |
| hl_eq_reset(hdev, &hdev->event_queue); |
| } |
| |
| /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */ |
| hl_hw_queue_reset(hdev, hard_reset); |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| hl_cq_reset(hdev, &hdev->completion_queue[i]); |
| |
| /* Make sure the context switch phase will run again */ |
| ctx = hl_get_compute_ctx(hdev); |
| if (ctx) { |
| atomic_set(&ctx->thread_ctx_switch_token, 1); |
| ctx->thread_ctx_switch_wait_token = 0; |
| hl_ctx_put(ctx); |
| } |
| |
| if (hw_fini_rc) { |
| rc = hw_fini_rc; |
| goto out_err; |
| } |
| /* Finished tear-down, starting to re-initialize */ |
| |
| if (hard_reset) { |
| hdev->device_cpu_disabled = false; |
| hdev->reset_info.hard_reset_pending = false; |
| |
| /* |
| * Put the device in an unusable state if there are 2 back to back resets due to |
| * fatal errors. |
| */ |
| if (hdev->reset_info.reset_trigger_repeated && |
| (hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_FW_FATAL_ERR || |
| hdev->reset_info.prev_reset_trigger == |
| HL_DRV_RESET_HEARTBEAT)) { |
| dev_crit(hdev->dev, |
| "%s Consecutive fatal errors, stopping hard reset\n", |
| dev_name(&(hdev)->pdev->dev)); |
| rc = -EIO; |
| goto out_err; |
| } |
| |
| if (hdev->kernel_ctx) { |
| dev_crit(hdev->dev, |
| "%s kernel ctx was alive during hard reset, something is terribly wrong\n", |
| dev_name(&(hdev)->pdev->dev)); |
| rc = -EBUSY; |
| goto out_err; |
| } |
| |
| rc = hl_mmu_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to initialize MMU S/W after hard reset\n"); |
| goto out_err; |
| } |
| |
| /* Allocate the kernel context */ |
| hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), |
| GFP_KERNEL); |
| if (!hdev->kernel_ctx) { |
| rc = -ENOMEM; |
| hl_mmu_fini(hdev); |
| goto out_err; |
| } |
| |
| hdev->is_compute_ctx_active = false; |
| |
| rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); |
| if (rc) { |
| dev_err(hdev->dev, |
| "failed to init kernel ctx in hard reset\n"); |
| kfree(hdev->kernel_ctx); |
| hdev->kernel_ctx = NULL; |
| hl_mmu_fini(hdev); |
| goto out_err; |
| } |
| } |
| |
| /* Device is now enabled as part of the initialization requires |
| * communication with the device firmware to get information that |
| * is required for the initialization itself |
| */ |
| hdev->disabled = false; |
| |
| /* F/W security enabled indication might be updated after hard-reset */ |
| if (hard_reset) { |
| rc = hl_fw_read_preboot_status(hdev); |
| if (rc) |
| goto out_err; |
| } |
| |
| rc = hdev->asic_funcs->hw_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize the H/W after reset\n"); |
| goto out_err; |
| } |
| |
| /* If device is not idle fail the reset process */ |
| if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask, |
| HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) { |
| print_idle_status_mask(hdev, "device is not idle after reset", idle_mask); |
| rc = -EIO; |
| goto out_err; |
| } |
| |
| /* Check that the communication with the device is working */ |
| rc = hdev->asic_funcs->test_queues(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to detect if device is alive after reset\n"); |
| goto out_err; |
| } |
| |
| if (hard_reset) { |
| rc = device_late_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed late init after hard reset\n"); |
| goto out_err; |
| } |
| |
| rc = hl_vm_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to init memory module after hard reset\n"); |
| goto out_err; |
| } |
| |
| if (!hdev->asic_prop.fw_security_enabled) |
| hl_fw_set_max_power(hdev); |
| } else { |
| rc = hdev->asic_funcs->compute_reset_late_init(hdev); |
| if (rc) { |
| if (reset_upon_device_release) |
| dev_err(hdev->dev, |
| "Failed late init in reset after device release\n"); |
| else |
| dev_err(hdev->dev, "Failed late init after compute reset\n"); |
| goto out_err; |
| } |
| } |
| |
| rc = hdev->asic_funcs->scrub_device_mem(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc); |
| goto out_err; |
| } |
| |
| spin_lock(&hdev->reset_info.lock); |
| hdev->reset_info.in_compute_reset = 0; |
| |
| /* Schedule hard reset only if requested and if not already in hard reset. |
| * We keep 'in_reset' enabled, so no other reset can go in during the hard |
| * reset schedule |
| */ |
| if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags) |
| schedule_hard_reset = true; |
| else |
| hdev->reset_info.in_reset = 0; |
| |
| spin_unlock(&hdev->reset_info.lock); |
| |
| hdev->reset_info.needs_reset = false; |
| |
| if (hard_reset) |
| dev_info(hdev->dev, |
| "Successfully finished resetting the %s device\n", |
| dev_name(&(hdev)->pdev->dev)); |
| else |
| dev_dbg(hdev->dev, |
| "Successfully finished resetting the %s device\n", |
| dev_name(&(hdev)->pdev->dev)); |
| |
| if (hard_reset) { |
| hdev->reset_info.hard_reset_cnt++; |
| |
| /* After reset is done, we are ready to receive events from |
| * the F/W. We can't do it before because we will ignore events |
| * and if those events are fatal, we won't know about it and |
| * the device will be operational although it shouldn't be |
| */ |
| hdev->asic_funcs->enable_events_from_fw(hdev); |
| } else { |
| if (!reset_upon_device_release) |
| hdev->reset_info.compute_reset_cnt++; |
| |
| if (schedule_hard_reset) { |
| dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n"); |
| flags = hdev->reset_info.hard_reset_schedule_flags; |
| hdev->reset_info.hard_reset_schedule_flags = 0; |
| hard_reset = true; |
| goto escalate_reset_flow; |
| } |
| } |
| |
| return 0; |
| |
| out_err: |
| hdev->disabled = true; |
| |
| spin_lock(&hdev->reset_info.lock); |
| hdev->reset_info.in_compute_reset = 0; |
| |
| if (hard_reset) { |
| dev_err(hdev->dev, |
| "%s Failed to reset! Device is NOT usable\n", |
| dev_name(&(hdev)->pdev->dev)); |
| hdev->reset_info.hard_reset_cnt++; |
| } else { |
| if (reset_upon_device_release) { |
| dev_err(hdev->dev, "Failed to reset device after user release\n"); |
| flags &= ~HL_DRV_RESET_DEV_RELEASE; |
| } else { |
| dev_err(hdev->dev, "Failed to do compute reset\n"); |
| hdev->reset_info.compute_reset_cnt++; |
| } |
| |
| spin_unlock(&hdev->reset_info.lock); |
| flags |= HL_DRV_RESET_HARD; |
| hard_reset = true; |
| goto escalate_reset_flow; |
| } |
| |
| hdev->reset_info.in_reset = 0; |
| |
| spin_unlock(&hdev->reset_info.lock); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_device_cond_reset() - conditionally reset the device. |
| * @hdev: pointer to habanalabs device structure. |
| * @reset_flags: reset flags. |
| * @event_mask: events to notify user about. |
| * |
| * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device |
| * unless another reset precedes it. |
| */ |
| int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask) |
| { |
| struct hl_ctx *ctx = NULL; |
| |
| /* F/W reset cannot be postponed */ |
| if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW) |
| goto device_reset; |
| |
| /* Device release watchdog is relevant only if user exists and gets a reset notification */ |
| if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) { |
| dev_err(hdev->dev, "Resetting device without a reset indication to user\n"); |
| goto device_reset; |
| } |
| |
| ctx = hl_get_compute_ctx(hdev); |
| if (!ctx) |
| goto device_reset; |
| |
| /* |
| * There is no point in postponing the reset if user is not registered for events. |
| * However if no eventfd_ctx exists but the device release watchdog is already scheduled, it |
| * just implies that user has unregistered as part of handling a previous event. In this |
| * case an immediate reset is not required. |
| */ |
| if (!ctx->hpriv->notifier_event.eventfd && !hdev->reset_info.watchdog_active) |
| goto device_reset; |
| |
| /* Schedule the device release watchdog work unless reset is already in progress or if the |
| * work is already scheduled. |
| */ |
| spin_lock(&hdev->reset_info.lock); |
| if (hdev->reset_info.in_reset) { |
| spin_unlock(&hdev->reset_info.lock); |
| goto device_reset; |
| } |
| |
| if (hdev->reset_info.watchdog_active) { |
| hdev->device_release_watchdog_work.flags |= flags; |
| goto out; |
| } |
| |
| hdev->device_release_watchdog_work.flags = flags; |
| dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n", |
| hdev->device_release_watchdog_timeout_sec); |
| schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work, |
| msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000)); |
| hdev->reset_info.watchdog_active = 1; |
| out: |
| spin_unlock(&hdev->reset_info.lock); |
| |
| hl_notifier_event_send_all(hdev, event_mask); |
| |
| hl_ctx_put(ctx); |
| |
| hl_abort_waiting_for_completions(hdev); |
| |
| return 0; |
| |
| device_reset: |
| if (event_mask) |
| hl_notifier_event_send_all(hdev, event_mask); |
| if (ctx) |
| hl_ctx_put(ctx); |
| |
| return hl_device_reset(hdev, flags | HL_DRV_RESET_HARD); |
| } |
| |
| static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask) |
| { |
| mutex_lock(¬ifier_event->lock); |
| notifier_event->events_mask |= event_mask; |
| |
| if (notifier_event->eventfd) |
| eventfd_signal(notifier_event->eventfd); |
| |
| mutex_unlock(¬ifier_event->lock); |
| } |
| |
| /* |
| * hl_notifier_event_send_all - notify all user processes via eventfd |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @event_mask: the occurred event/s |
| * Returns 0 for success or an error on failure. |
| */ |
| void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask) |
| { |
| struct hl_fpriv *hpriv; |
| |
| if (!event_mask) { |
| dev_warn(hdev->dev, "Skip sending zero event"); |
| return; |
| } |
| |
| mutex_lock(&hdev->fpriv_list_lock); |
| |
| list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) |
| hl_notifier_event_send(&hpriv->notifier_event, event_mask); |
| |
| mutex_unlock(&hdev->fpriv_list_lock); |
| } |
| |
| /* |
| * hl_device_init - main initialization function for habanalabs device |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Allocate an id for the device, do early initialization and then call the |
| * ASIC specific initialization functions. Finally, create the cdev and the |
| * Linux device to expose it to the user |
| */ |
| int hl_device_init(struct hl_device *hdev) |
| { |
| int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt; |
| struct hl_ts_free_jobs *free_jobs_data; |
| bool expose_interfaces_on_err = false; |
| void *p; |
| |
| /* Initialize ASIC function pointers and perform early init */ |
| rc = device_early_init(hdev); |
| if (rc) |
| goto out_disabled; |
| |
| user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count + |
| hdev->asic_prop.user_interrupt_count; |
| |
| if (user_interrupt_cnt) { |
| hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt), |
| GFP_KERNEL); |
| if (!hdev->user_interrupt) { |
| rc = -ENOMEM; |
| goto early_fini; |
| } |
| |
| /* Timestamp records supported only if CQ supported in device */ |
| if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) { |
| for (i = 0 ; i < user_interrupt_cnt ; i++) { |
| p = vzalloc(TIMESTAMP_FREE_NODES_NUM * |
| sizeof(struct timestamp_reg_free_node)); |
| if (!p) { |
| rc = -ENOMEM; |
| goto free_usr_intr_mem; |
| } |
| free_jobs_data = &hdev->user_interrupt[i].ts_free_jobs_data; |
| free_jobs_data->free_nodes_pool = p; |
| free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM; |
| free_jobs_data->next_avail_free_node_idx = 0; |
| } |
| } |
| } |
| |
| free_jobs_data = &hdev->common_user_cq_interrupt.ts_free_jobs_data; |
| p = vzalloc(TIMESTAMP_FREE_NODES_NUM * |
| sizeof(struct timestamp_reg_free_node)); |
| if (!p) { |
| rc = -ENOMEM; |
| goto free_usr_intr_mem; |
| } |
| |
| free_jobs_data->free_nodes_pool = p; |
| free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM; |
| free_jobs_data->next_avail_free_node_idx = 0; |
| |
| /* |
| * Start calling ASIC initialization. First S/W then H/W and finally |
| * late init |
| */ |
| rc = hdev->asic_funcs->sw_init(hdev); |
| if (rc) |
| goto free_common_usr_intr_mem; |
| |
| |
| /* initialize completion structure for multi CS wait */ |
| hl_multi_cs_completion_init(hdev); |
| |
| /* |
| * Initialize the H/W queues. Must be done before hw_init, because |
| * there the addresses of the kernel queue are being written to the |
| * registers of the device |
| */ |
| rc = hl_hw_queues_create(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize kernel queues\n"); |
| goto sw_fini; |
| } |
| |
| cq_cnt = hdev->asic_prop.completion_queues_count; |
| |
| /* |
| * Initialize the completion queues. Must be done before hw_init, |
| * because there the addresses of the completion queues are being |
| * passed as arguments to request_irq |
| */ |
| if (cq_cnt) { |
| hdev->completion_queue = kcalloc(cq_cnt, |
| sizeof(*hdev->completion_queue), |
| GFP_KERNEL); |
| |
| if (!hdev->completion_queue) { |
| dev_err(hdev->dev, |
| "failed to allocate completion queues\n"); |
| rc = -ENOMEM; |
| goto hw_queues_destroy; |
| } |
| } |
| |
| for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) { |
| rc = hl_cq_init(hdev, &hdev->completion_queue[i], |
| hdev->asic_funcs->get_queue_id_for_cq(hdev, i)); |
| if (rc) { |
| dev_err(hdev->dev, |
| "failed to initialize completion queue\n"); |
| goto cq_fini; |
| } |
| hdev->completion_queue[i].cq_idx = i; |
| } |
| |
| hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs, |
| sizeof(struct hl_cs *), GFP_KERNEL); |
| if (!hdev->shadow_cs_queue) { |
| rc = -ENOMEM; |
| goto cq_fini; |
| } |
| |
| /* |
| * Initialize the event queue. Must be done before hw_init, |
| * because there the address of the event queue is being |
| * passed as argument to request_irq |
| */ |
| rc = hl_eq_init(hdev, &hdev->event_queue); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize event queue\n"); |
| goto free_shadow_cs_queue; |
| } |
| |
| /* MMU S/W must be initialized before kernel context is created */ |
| rc = hl_mmu_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n"); |
| goto eq_fini; |
| } |
| |
| /* Allocate the kernel context */ |
| hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); |
| if (!hdev->kernel_ctx) { |
| rc = -ENOMEM; |
| goto mmu_fini; |
| } |
| |
| hdev->is_compute_ctx_active = false; |
| |
| hdev->asic_funcs->state_dump_init(hdev); |
| |
| hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC; |
| |
| hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL; |
| |
| rc = hl_debugfs_device_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize debugfs entry structure\n"); |
| kfree(hdev->kernel_ctx); |
| goto mmu_fini; |
| } |
| |
| /* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after |
| * hl_debugfs_device_init(). |
| */ |
| rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize kernel context\n"); |
| kfree(hdev->kernel_ctx); |
| goto debugfs_device_fini; |
| } |
| |
| rc = hl_cb_pool_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize CB pool\n"); |
| goto release_ctx; |
| } |
| |
| rc = hl_dec_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to initialize the decoder module\n"); |
| goto cb_pool_fini; |
| } |
| |
| /* |
| * From this point, override rc (=0) in case of an error to allow debugging |
| * (by adding char devices and creating sysfs/debugfs files as part of the error flow). |
| */ |
| expose_interfaces_on_err = true; |
| |
| /* Device is now enabled as part of the initialization requires |
| * communication with the device firmware to get information that |
| * is required for the initialization itself |
| */ |
| hdev->disabled = false; |
| |
| rc = hdev->asic_funcs->hw_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "failed to initialize the H/W\n"); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| /* Check that the communication with the device is working */ |
| rc = hdev->asic_funcs->test_queues(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to detect if device is alive\n"); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| rc = device_late_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed late initialization\n"); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n", |
| hdev->asic_name, |
| hdev->asic_prop.dram_size / SZ_1G); |
| |
| rc = hl_vm_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to initialize memory module\n"); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| /* |
| * Expose devices and sysfs/debugfs files to user. |
| * From here there is no need to expose them in case of an error. |
| */ |
| expose_interfaces_on_err = false; |
| |
| rc = drm_dev_register(&hdev->drm, 0); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to register DRM device, rc %d\n", rc); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| rc = cdev_sysfs_debugfs_add(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n"); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| /* Need to call this again because the max power might change, |
| * depending on card type for certain ASICs |
| */ |
| if (hdev->asic_prop.set_max_power_on_device_init && |
| !hdev->asic_prop.fw_security_enabled) |
| hl_fw_set_max_power(hdev); |
| |
| /* |
| * hl_hwmon_init() must be called after device_late_init(), because only |
| * there we get the information from the device about which |
| * hwmon-related sensors the device supports. |
| * Furthermore, it must be done after adding the device to the system. |
| */ |
| rc = hl_hwmon_init(hdev); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to initialize hwmon\n"); |
| rc = 0; |
| goto out_disabled; |
| } |
| |
| dev_notice(hdev->dev, |
| "Successfully added device %s to habanalabs driver\n", |
| dev_name(&(hdev)->pdev->dev)); |
| |
| /* After initialization is done, we are ready to receive events from |
| * the F/W. We can't do it before because we will ignore events and if |
| * those events are fatal, we won't know about it and the device will |
| * be operational although it shouldn't be |
| */ |
| hdev->asic_funcs->enable_events_from_fw(hdev); |
| |
| hdev->init_done = true; |
| |
| return 0; |
| |
| cb_pool_fini: |
| hl_cb_pool_fini(hdev); |
| release_ctx: |
| if (hl_ctx_put(hdev->kernel_ctx) != 1) |
| dev_err(hdev->dev, |
| "kernel ctx is still alive on initialization failure\n"); |
| debugfs_device_fini: |
| hl_debugfs_device_fini(hdev); |
| mmu_fini: |
| hl_mmu_fini(hdev); |
| eq_fini: |
| hl_eq_fini(hdev, &hdev->event_queue); |
| free_shadow_cs_queue: |
| kfree(hdev->shadow_cs_queue); |
| cq_fini: |
| for (i = 0 ; i < cq_ready_cnt ; i++) |
| hl_cq_fini(hdev, &hdev->completion_queue[i]); |
| kfree(hdev->completion_queue); |
| hw_queues_destroy: |
| hl_hw_queues_destroy(hdev); |
| sw_fini: |
| hdev->asic_funcs->sw_fini(hdev); |
| free_common_usr_intr_mem: |
| vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool); |
| free_usr_intr_mem: |
| if (user_interrupt_cnt) { |
| for (i = 0 ; i < user_interrupt_cnt ; i++) { |
| if (!hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool) |
| break; |
| vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool); |
| } |
| kfree(hdev->user_interrupt); |
| } |
| early_fini: |
| device_early_fini(hdev); |
| out_disabled: |
| hdev->disabled = true; |
| if (expose_interfaces_on_err) { |
| drm_dev_register(&hdev->drm, 0); |
| cdev_sysfs_debugfs_add(hdev); |
| } |
| |
| pr_err("Failed to initialize accel%d. Device %s is NOT usable!\n", |
| hdev->cdev_idx, dev_name(&hdev->pdev->dev)); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_device_fini - main tear-down function for habanalabs device |
| * |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Destroy the device, call ASIC fini functions and release the id |
| */ |
| void hl_device_fini(struct hl_device *hdev) |
| { |
| u32 user_interrupt_cnt; |
| bool device_in_reset; |
| ktime_t timeout; |
| u64 reset_sec; |
| int i, rc; |
| |
| dev_info(hdev->dev, "Removing device %s\n", dev_name(&(hdev)->pdev->dev)); |
| |
| hdev->device_fini_pending = 1; |
| flush_delayed_work(&hdev->device_reset_work.reset_work); |
| |
| if (hdev->pldm) |
| reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT; |
| else |
| reset_sec = HL_HARD_RESET_MAX_TIMEOUT; |
| |
| /* |
| * This function is competing with the reset function, so try to |
| * take the reset atomic and if we are already in middle of reset, |
| * wait until reset function is finished. Reset function is designed |
| * to always finish. However, in Gaudi, because of all the network |
| * ports, the hard reset could take between 10-30 seconds |
| */ |
| |
| timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000); |
| |
| spin_lock(&hdev->reset_info.lock); |
| device_in_reset = !!hdev->reset_info.in_reset; |
| if (!device_in_reset) |
| hdev->reset_info.in_reset = 1; |
| spin_unlock(&hdev->reset_info.lock); |
| |
| while (device_in_reset) { |
| usleep_range(50, 200); |
| |
| spin_lock(&hdev->reset_info.lock); |
| device_in_reset = !!hdev->reset_info.in_reset; |
| if (!device_in_reset) |
| hdev->reset_info.in_reset = 1; |
| spin_unlock(&hdev->reset_info.lock); |
| |
| if (ktime_compare(ktime_get(), timeout) > 0) { |
| dev_crit(hdev->dev, |
| "%s Failed to remove device because reset function did not finish\n", |
| dev_name(&(hdev)->pdev->dev)); |
| return; |
| } |
| } |
| |
| cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work); |
| |
| /* Disable PCI access from device F/W so it won't send us additional |
| * interrupts. We disable MSI/MSI-X at the halt_engines function and we |
| * can't have the F/W sending us interrupts after that. We need to |
| * disable the access here because if the device is marked disable, the |
| * message won't be send. Also, in case of heartbeat, the device CPU is |
| * marked as disable so this message won't be sent |
| */ |
| hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); |
| |
| /* Mark device as disabled */ |
| hdev->disabled = true; |
| |
| take_release_locks(hdev); |
| |
| hdev->reset_info.hard_reset_pending = true; |
| |
| hl_hwmon_fini(hdev); |
| |
| cleanup_resources(hdev, true, false, false); |
| |
| /* Kill processes here after CS rollback. This is because the process |
| * can't really exit until all its CSs are done, which is what we |
| * do in cs rollback |
| */ |
| dev_info(hdev->dev, |
| "Waiting for all processes to exit (timeout of %u seconds)", |
| HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI); |
| |
| hdev->process_kill_trial_cnt = 0; |
| rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false); |
| if (rc) { |
| dev_crit(hdev->dev, "Failed to kill all open processes (%d)\n", rc); |
| device_disable_open_processes(hdev, false); |
| } |
| |
| hdev->process_kill_trial_cnt = 0; |
| rc = device_kill_open_processes(hdev, 0, true); |
| if (rc) { |
| dev_crit(hdev->dev, "Failed to kill all control device open processes (%d)\n", rc); |
| device_disable_open_processes(hdev, true); |
| } |
| |
| hl_cb_pool_fini(hdev); |
| |
| /* Reset the H/W. It will be in idle state after this returns */ |
| rc = hdev->asic_funcs->hw_fini(hdev, true, false); |
| if (rc) |
| dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc); |
| |
| hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE; |
| |
| /* Release kernel context */ |
| if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1)) |
| dev_err(hdev->dev, "kernel ctx is still alive\n"); |
| |
| hl_dec_fini(hdev); |
| |
| hl_vm_fini(hdev); |
| |
| hl_mmu_fini(hdev); |
| |
| vfree(hdev->captured_err_info.page_fault_info.user_mappings); |
| |
| hl_eq_fini(hdev, &hdev->event_queue); |
| |
| kfree(hdev->shadow_cs_queue); |
| |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| hl_cq_fini(hdev, &hdev->completion_queue[i]); |
| kfree(hdev->completion_queue); |
| |
| user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count + |
| hdev->asic_prop.user_interrupt_count; |
| |
| if (user_interrupt_cnt) { |
| if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) { |
| for (i = 0 ; i < user_interrupt_cnt ; i++) |
| vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool); |
| } |
| |
| kfree(hdev->user_interrupt); |
| } |
| |
| vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool); |
| |
| hl_hw_queues_destroy(hdev); |
| |
| /* Call ASIC S/W finalize function */ |
| hdev->asic_funcs->sw_fini(hdev); |
| |
| device_early_fini(hdev); |
| |
| /* Hide devices and sysfs/debugfs files from user */ |
| cdev_sysfs_debugfs_remove(hdev); |
| drm_dev_unregister(&hdev->drm); |
| |
| hl_debugfs_device_fini(hdev); |
| |
| pr_info("removed device successfully\n"); |
| } |
| |
| /* |
| * MMIO register access helper functions. |
| */ |
| |
| /* |
| * hl_rreg - Read an MMIO register |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @reg: MMIO register offset (in bytes) |
| * |
| * Returns the value of the MMIO register we are asked to read |
| * |
| */ |
| inline u32 hl_rreg(struct hl_device *hdev, u32 reg) |
| { |
| u32 val = readl(hdev->rmmio + reg); |
| |
| if (unlikely(trace_habanalabs_rreg32_enabled())) |
| trace_habanalabs_rreg32(hdev->dev, reg, val); |
| |
| return val; |
| } |
| |
| /* |
| * hl_wreg - Write to an MMIO register |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @reg: MMIO register offset (in bytes) |
| * @val: 32-bit value |
| * |
| * Writes the 32-bit value into the MMIO register |
| * |
| */ |
| inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val) |
| { |
| if (unlikely(trace_habanalabs_wreg32_enabled())) |
| trace_habanalabs_wreg32(hdev->dev, reg, val); |
| |
| writel(val, hdev->rmmio + reg); |
| } |
| |
| void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, |
| u8 flags) |
| { |
| struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info; |
| |
| if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) { |
| dev_err(hdev->dev, |
| "Number of possible razwi initiators (%u) exceeded limit (%u)\n", |
| num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR); |
| return; |
| } |
| |
| /* In case it's the first razwi since the device was opened, capture its parameters */ |
| if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1)) |
| return; |
| |
| razwi_info->razwi.timestamp = ktime_to_ns(ktime_get()); |
| razwi_info->razwi.addr = addr; |
| razwi_info->razwi.num_of_possible_engines = num_of_engines; |
| memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0], |
| num_of_engines * sizeof(u16)); |
| razwi_info->razwi.flags = flags; |
| |
| razwi_info->razwi_info_available = true; |
| } |
| |
| void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, |
| u8 flags, u64 *event_mask) |
| { |
| hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags); |
| |
| if (event_mask) |
| *event_mask |= HL_NOTIFIER_EVENT_RAZWI; |
| } |
| |
| static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu) |
| { |
| struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info; |
| struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; |
| struct hl_vm_hash_node *hnode; |
| struct hl_userptr *userptr; |
| enum vm_type *vm_type; |
| struct hl_ctx *ctx; |
| u32 map_idx = 0; |
| int i; |
| |
| /* Reset previous session count*/ |
| pgf_info->num_of_user_mappings = 0; |
| |
| ctx = hl_get_compute_ctx(hdev); |
| if (!ctx) { |
| dev_err(hdev->dev, "Can't get user context for user mappings\n"); |
| return; |
| } |
| |
| mutex_lock(&ctx->mem_hash_lock); |
| hash_for_each(ctx->mem_hash, i, hnode, node) { |
| vm_type = hnode->ptr; |
| if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) || |
| ((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu)) |
| pgf_info->num_of_user_mappings++; |
| |
| } |
| |
| if (!pgf_info->num_of_user_mappings) |
| goto finish; |
| |
| /* In case we already allocated in previous session, need to release it before |
| * allocating new buffer. |
| */ |
| vfree(pgf_info->user_mappings); |
| pgf_info->user_mappings = |
| vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping)); |
| if (!pgf_info->user_mappings) { |
| pgf_info->num_of_user_mappings = 0; |
| goto finish; |
| } |
| |
| hash_for_each(ctx->mem_hash, i, hnode, node) { |
| vm_type = hnode->ptr; |
| if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) { |
| userptr = hnode->ptr; |
| pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr; |
| pgf_info->user_mappings[map_idx].size = userptr->size; |
| map_idx++; |
| } else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) { |
| phys_pg_pack = hnode->ptr; |
| pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr; |
| pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size; |
| map_idx++; |
| } |
| } |
| finish: |
| mutex_unlock(&ctx->mem_hash_lock); |
| hl_ctx_put(ctx); |
| } |
| |
| void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu) |
| { |
| struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info; |
| |
| /* Capture only the first page fault */ |
| if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1)) |
| return; |
| |
| pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get()); |
| pgf_info->page_fault.addr = addr; |
| pgf_info->page_fault.engine_id = eng_id; |
| hl_capture_user_mappings(hdev, is_pmmu); |
| |
| pgf_info->page_fault_info_available = true; |
| } |
| |
| void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, |
| u64 *event_mask) |
| { |
| hl_capture_page_fault(hdev, addr, eng_id, is_pmmu); |
| |
| if (event_mask) |
| *event_mask |= HL_NOTIFIER_EVENT_PAGE_FAULT; |
| } |
| |
| static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id) |
| { |
| struct hw_err_info *info = &hdev->captured_err_info.hw_err; |
| |
| /* Capture only the first HW err */ |
| if (atomic_cmpxchg(&info->event_detected, 0, 1)) |
| return; |
| |
| info->event.timestamp = ktime_to_ns(ktime_get()); |
| info->event.event_id = event_id; |
| |
| info->event_info_available = true; |
| } |
| |
| void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask) |
| { |
| hl_capture_hw_err(hdev, event_id); |
| |
| if (event_mask) |
| *event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR; |
| } |
| |
| static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info) |
| { |
| struct fw_err_info *info = &hdev->captured_err_info.fw_err; |
| |
| /* Capture only the first FW error */ |
| if (atomic_cmpxchg(&info->event_detected, 0, 1)) |
| return; |
| |
| info->event.timestamp = ktime_to_ns(ktime_get()); |
| info->event.err_type = fw_info->err_type; |
| if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR) |
| info->event.event_id = fw_info->event_id; |
| |
| info->event_info_available = true; |
| } |
| |
| void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info) |
| { |
| hl_capture_fw_err(hdev, info); |
| |
| if (info->event_mask) |
| *info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR; |
| } |
| |
| void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count) |
| { |
| struct engine_err_info *info = &hdev->captured_err_info.engine_err; |
| |
| /* Capture only the first engine error */ |
| if (atomic_cmpxchg(&info->event_detected, 0, 1)) |
| return; |
| |
| info->event.timestamp = ktime_to_ns(ktime_get()); |
| info->event.engine_id = engine_id; |
| info->event.error_count = error_count; |
| info->event_info_available = true; |
| } |
| |
| void hl_enable_err_info_capture(struct hl_error_info *captured_err_info) |
| { |
| vfree(captured_err_info->page_fault_info.user_mappings); |
| memset(captured_err_info, 0, sizeof(struct hl_error_info)); |
| atomic_set(&captured_err_info->cs_timeout.write_enable, 1); |
| captured_err_info->undef_opcode.write_enable = true; |
| } |
| |
| void hl_init_cpu_for_irq(struct hl_device *hdev) |
| { |
| #ifdef CONFIG_NUMA |
| struct cpumask *available_mask = &hdev->irq_affinity_mask; |
| int numa_node = hdev->pdev->dev.numa_node, i; |
| static struct cpumask cpu_mask; |
| |
| if (numa_node < 0) |
| return; |
| |
| if (!cpumask_and(&cpu_mask, cpumask_of_node(numa_node), cpu_online_mask)) { |
| dev_err(hdev->dev, "No available affinities in current numa node\n"); |
| return; |
| } |
| |
| /* Remove HT siblings */ |
| for_each_cpu(i, &cpu_mask) |
| cpumask_set_cpu(cpumask_first(topology_sibling_cpumask(i)), available_mask); |
| #endif |
| } |
| |
| void hl_set_irq_affinity(struct hl_device *hdev, int irq) |
| { |
| if (cpumask_empty(&hdev->irq_affinity_mask)) { |
| dev_dbg(hdev->dev, "affinity mask is empty\n"); |
| return; |
| } |
| |
| if (irq_set_affinity_and_hint(irq, &hdev->irq_affinity_mask)) |
| dev_err(hdev->dev, "Failed setting irq %d affinity\n", irq); |
| } |