blob: ebd943b9e357b539ebd82b4c845ddbc4b3ac9624 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* DRM driver for Solomon SSD13xx OLED displays
*
* Copyright 2022 Red Hat Inc.
* Author: Javier Martinez Canillas <javierm@redhat.com>
*
* Based on drivers/video/fbdev/ssd1307fb.c
* Copyright 2012 Free Electrons
*/
#include <linux/backlight.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/property.h>
#include <linux/pwm.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fbdev_generic.h>
#include <drm/drm_format_helper.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_gem_shmem_helper.h>
#include <drm/drm_managed.h>
#include <drm/drm_modes.h>
#include <drm/drm_rect.h>
#include <drm/drm_probe_helper.h>
#include "ssd130x.h"
#define DRIVER_NAME "ssd130x"
#define DRIVER_DESC "DRM driver for Solomon SSD13xx OLED displays"
#define DRIVER_DATE "20220131"
#define DRIVER_MAJOR 1
#define DRIVER_MINOR 0
#define SSD130X_PAGE_HEIGHT 8
#define SSD132X_SEGMENT_WIDTH 2
/* ssd13xx commands */
#define SSD13XX_CONTRAST 0x81
#define SSD13XX_SET_SEG_REMAP 0xa0
#define SSD13XX_SET_MULTIPLEX_RATIO 0xa8
#define SSD13XX_DISPLAY_OFF 0xae
#define SSD13XX_DISPLAY_ON 0xaf
#define SSD13XX_SET_SEG_REMAP_MASK GENMASK(0, 0)
#define SSD13XX_SET_SEG_REMAP_SET(val) FIELD_PREP(SSD13XX_SET_SEG_REMAP_MASK, (val))
/* ssd130x commands */
#define SSD130X_PAGE_COL_START_LOW 0x00
#define SSD130X_PAGE_COL_START_HIGH 0x10
#define SSD130X_SET_ADDRESS_MODE 0x20
#define SSD130X_SET_COL_RANGE 0x21
#define SSD130X_SET_PAGE_RANGE 0x22
#define SSD130X_SET_LOOKUP_TABLE 0x91
#define SSD130X_CHARGE_PUMP 0x8d
#define SSD130X_START_PAGE_ADDRESS 0xb0
#define SSD130X_SET_COM_SCAN_DIR 0xc0
#define SSD130X_SET_DISPLAY_OFFSET 0xd3
#define SSD130X_SET_CLOCK_FREQ 0xd5
#define SSD130X_SET_AREA_COLOR_MODE 0xd8
#define SSD130X_SET_PRECHARGE_PERIOD 0xd9
#define SSD130X_SET_COM_PINS_CONFIG 0xda
#define SSD130X_SET_VCOMH 0xdb
/* ssd130x commands accessors */
#define SSD130X_PAGE_COL_START_MASK GENMASK(3, 0)
#define SSD130X_PAGE_COL_START_HIGH_SET(val) FIELD_PREP(SSD130X_PAGE_COL_START_MASK, (val) >> 4)
#define SSD130X_PAGE_COL_START_LOW_SET(val) FIELD_PREP(SSD130X_PAGE_COL_START_MASK, (val))
#define SSD130X_START_PAGE_ADDRESS_MASK GENMASK(2, 0)
#define SSD130X_START_PAGE_ADDRESS_SET(val) FIELD_PREP(SSD130X_START_PAGE_ADDRESS_MASK, (val))
#define SSD130X_SET_COM_SCAN_DIR_MASK GENMASK(3, 3)
#define SSD130X_SET_COM_SCAN_DIR_SET(val) FIELD_PREP(SSD130X_SET_COM_SCAN_DIR_MASK, (val))
#define SSD130X_SET_CLOCK_DIV_MASK GENMASK(3, 0)
#define SSD130X_SET_CLOCK_DIV_SET(val) FIELD_PREP(SSD130X_SET_CLOCK_DIV_MASK, (val))
#define SSD130X_SET_CLOCK_FREQ_MASK GENMASK(7, 4)
#define SSD130X_SET_CLOCK_FREQ_SET(val) FIELD_PREP(SSD130X_SET_CLOCK_FREQ_MASK, (val))
#define SSD130X_SET_PRECHARGE_PERIOD1_MASK GENMASK(3, 0)
#define SSD130X_SET_PRECHARGE_PERIOD1_SET(val) FIELD_PREP(SSD130X_SET_PRECHARGE_PERIOD1_MASK, (val))
#define SSD130X_SET_PRECHARGE_PERIOD2_MASK GENMASK(7, 4)
#define SSD130X_SET_PRECHARGE_PERIOD2_SET(val) FIELD_PREP(SSD130X_SET_PRECHARGE_PERIOD2_MASK, (val))
#define SSD130X_SET_COM_PINS_CONFIG1_MASK GENMASK(4, 4)
#define SSD130X_SET_COM_PINS_CONFIG1_SET(val) FIELD_PREP(SSD130X_SET_COM_PINS_CONFIG1_MASK, (val))
#define SSD130X_SET_COM_PINS_CONFIG2_MASK GENMASK(5, 5)
#define SSD130X_SET_COM_PINS_CONFIG2_SET(val) FIELD_PREP(SSD130X_SET_COM_PINS_CONFIG2_MASK, (val))
#define SSD130X_SET_ADDRESS_MODE_HORIZONTAL 0x00
#define SSD130X_SET_ADDRESS_MODE_VERTICAL 0x01
#define SSD130X_SET_ADDRESS_MODE_PAGE 0x02
#define SSD130X_SET_AREA_COLOR_MODE_ENABLE 0x1e
#define SSD130X_SET_AREA_COLOR_MODE_LOW_POWER 0x05
/* ssd132x commands */
#define SSD132X_SET_COL_RANGE 0x15
#define SSD132X_SET_DEACTIVATE_SCROLL 0x2e
#define SSD132X_SET_ROW_RANGE 0x75
#define SSD132X_SET_DISPLAY_START 0xa1
#define SSD132X_SET_DISPLAY_OFFSET 0xa2
#define SSD132X_SET_DISPLAY_NORMAL 0xa4
#define SSD132X_SET_FUNCTION_SELECT_A 0xab
#define SSD132X_SET_PHASE_LENGTH 0xb1
#define SSD132X_SET_CLOCK_FREQ 0xb3
#define SSD132X_SET_GPIO 0xb5
#define SSD132X_SET_PRECHARGE_PERIOD 0xb6
#define SSD132X_SET_GRAY_SCALE_TABLE 0xb8
#define SSD132X_SELECT_DEFAULT_TABLE 0xb9
#define SSD132X_SET_PRECHARGE_VOLTAGE 0xbc
#define SSD130X_SET_VCOMH_VOLTAGE 0xbe
#define SSD132X_SET_FUNCTION_SELECT_B 0xd5
/* ssd133x commands */
#define SSD133X_SET_COL_RANGE 0x15
#define SSD133X_SET_ROW_RANGE 0x75
#define SSD133X_CONTRAST_A 0x81
#define SSD133X_CONTRAST_B 0x82
#define SSD133X_CONTRAST_C 0x83
#define SSD133X_SET_MASTER_CURRENT 0x87
#define SSD132X_SET_PRECHARGE_A 0x8a
#define SSD132X_SET_PRECHARGE_B 0x8b
#define SSD132X_SET_PRECHARGE_C 0x8c
#define SSD133X_SET_DISPLAY_START 0xa1
#define SSD133X_SET_DISPLAY_OFFSET 0xa2
#define SSD133X_SET_DISPLAY_NORMAL 0xa4
#define SSD133X_SET_MASTER_CONFIG 0xad
#define SSD133X_POWER_SAVE_MODE 0xb0
#define SSD133X_PHASES_PERIOD 0xb1
#define SSD133X_SET_CLOCK_FREQ 0xb3
#define SSD133X_SET_PRECHARGE_VOLTAGE 0xbb
#define SSD133X_SET_VCOMH_VOLTAGE 0xbe
#define MAX_CONTRAST 255
const struct ssd130x_deviceinfo ssd130x_variants[] = {
[SH1106_ID] = {
.default_vcomh = 0x40,
.default_dclk_div = 1,
.default_dclk_frq = 5,
.default_width = 132,
.default_height = 64,
.page_mode_only = 1,
.family_id = SSD130X_FAMILY,
},
[SSD1305_ID] = {
.default_vcomh = 0x34,
.default_dclk_div = 1,
.default_dclk_frq = 7,
.default_width = 132,
.default_height = 64,
.family_id = SSD130X_FAMILY,
},
[SSD1306_ID] = {
.default_vcomh = 0x20,
.default_dclk_div = 1,
.default_dclk_frq = 8,
.need_chargepump = 1,
.default_width = 128,
.default_height = 64,
.family_id = SSD130X_FAMILY,
},
[SSD1307_ID] = {
.default_vcomh = 0x20,
.default_dclk_div = 2,
.default_dclk_frq = 12,
.need_pwm = 1,
.default_width = 128,
.default_height = 39,
.family_id = SSD130X_FAMILY,
},
[SSD1309_ID] = {
.default_vcomh = 0x34,
.default_dclk_div = 1,
.default_dclk_frq = 10,
.default_width = 128,
.default_height = 64,
.family_id = SSD130X_FAMILY,
},
/* ssd132x family */
[SSD1322_ID] = {
.default_width = 480,
.default_height = 128,
.family_id = SSD132X_FAMILY,
},
[SSD1325_ID] = {
.default_width = 128,
.default_height = 80,
.family_id = SSD132X_FAMILY,
},
[SSD1327_ID] = {
.default_width = 128,
.default_height = 128,
.family_id = SSD132X_FAMILY,
},
/* ssd133x family */
[SSD1331_ID] = {
.default_width = 96,
.default_height = 64,
.family_id = SSD133X_FAMILY,
}
};
EXPORT_SYMBOL_NS_GPL(ssd130x_variants, DRM_SSD130X);
struct ssd130x_crtc_state {
struct drm_crtc_state base;
/* Buffer to store pixels in HW format and written to the panel */
u8 *data_array;
};
struct ssd130x_plane_state {
struct drm_shadow_plane_state base;
/* Intermediate buffer to convert pixels from XRGB8888 to HW format */
u8 *buffer;
};
static inline struct ssd130x_crtc_state *to_ssd130x_crtc_state(struct drm_crtc_state *state)
{
return container_of(state, struct ssd130x_crtc_state, base);
}
static inline struct ssd130x_plane_state *to_ssd130x_plane_state(struct drm_plane_state *state)
{
return container_of(state, struct ssd130x_plane_state, base.base);
}
static inline struct ssd130x_device *drm_to_ssd130x(struct drm_device *drm)
{
return container_of(drm, struct ssd130x_device, drm);
}
/*
* Helper to write data (SSD13XX_DATA) to the device.
*/
static int ssd130x_write_data(struct ssd130x_device *ssd130x, u8 *values, int count)
{
return regmap_bulk_write(ssd130x->regmap, SSD13XX_DATA, values, count);
}
/*
* Helper to write command (SSD13XX_COMMAND). The fist variadic argument
* is the command to write and the following are the command options.
*
* Note that the ssd13xx protocol requires each command and option to be
* written as a SSD13XX_COMMAND device register value. That is why a call
* to regmap_write(..., SSD13XX_COMMAND, ...) is done for each argument.
*/
static int ssd130x_write_cmd(struct ssd130x_device *ssd130x, int count,
/* u8 cmd, u8 option, ... */...)
{
va_list ap;
u8 value;
int ret;
va_start(ap, count);
do {
value = va_arg(ap, int);
ret = regmap_write(ssd130x->regmap, SSD13XX_COMMAND, value);
if (ret)
goto out_end;
} while (--count);
out_end:
va_end(ap);
return ret;
}
/* Set address range for horizontal/vertical addressing modes */
static int ssd130x_set_col_range(struct ssd130x_device *ssd130x,
u8 col_start, u8 cols)
{
u8 col_end = col_start + cols - 1;
int ret;
if (col_start == ssd130x->col_start && col_end == ssd130x->col_end)
return 0;
ret = ssd130x_write_cmd(ssd130x, 3, SSD130X_SET_COL_RANGE, col_start, col_end);
if (ret < 0)
return ret;
ssd130x->col_start = col_start;
ssd130x->col_end = col_end;
return 0;
}
static int ssd130x_set_page_range(struct ssd130x_device *ssd130x,
u8 page_start, u8 pages)
{
u8 page_end = page_start + pages - 1;
int ret;
if (page_start == ssd130x->page_start && page_end == ssd130x->page_end)
return 0;
ret = ssd130x_write_cmd(ssd130x, 3, SSD130X_SET_PAGE_RANGE, page_start, page_end);
if (ret < 0)
return ret;
ssd130x->page_start = page_start;
ssd130x->page_end = page_end;
return 0;
}
/* Set page and column start address for page addressing mode */
static int ssd130x_set_page_pos(struct ssd130x_device *ssd130x,
u8 page_start, u8 col_start)
{
int ret;
u32 page, col_low, col_high;
page = SSD130X_START_PAGE_ADDRESS |
SSD130X_START_PAGE_ADDRESS_SET(page_start);
col_low = SSD130X_PAGE_COL_START_LOW |
SSD130X_PAGE_COL_START_LOW_SET(col_start);
col_high = SSD130X_PAGE_COL_START_HIGH |
SSD130X_PAGE_COL_START_HIGH_SET(col_start);
ret = ssd130x_write_cmd(ssd130x, 3, page, col_low, col_high);
if (ret < 0)
return ret;
return 0;
}
static int ssd130x_pwm_enable(struct ssd130x_device *ssd130x)
{
struct device *dev = ssd130x->dev;
struct pwm_state pwmstate;
ssd130x->pwm = pwm_get(dev, NULL);
if (IS_ERR(ssd130x->pwm)) {
dev_err(dev, "Could not get PWM from firmware description!\n");
return PTR_ERR(ssd130x->pwm);
}
pwm_init_state(ssd130x->pwm, &pwmstate);
pwm_set_relative_duty_cycle(&pwmstate, 50, 100);
pwm_apply_might_sleep(ssd130x->pwm, &pwmstate);
/* Enable the PWM */
pwm_enable(ssd130x->pwm);
dev_dbg(dev, "Using PWM %s with a %lluns period.\n",
ssd130x->pwm->label, pwm_get_period(ssd130x->pwm));
return 0;
}
static void ssd130x_reset(struct ssd130x_device *ssd130x)
{
if (!ssd130x->reset)
return;
/* Reset the screen */
gpiod_set_value_cansleep(ssd130x->reset, 1);
udelay(4);
gpiod_set_value_cansleep(ssd130x->reset, 0);
udelay(4);
}
static int ssd130x_power_on(struct ssd130x_device *ssd130x)
{
struct device *dev = ssd130x->dev;
int ret;
ssd130x_reset(ssd130x);
ret = regulator_enable(ssd130x->vcc_reg);
if (ret) {
dev_err(dev, "Failed to enable VCC: %d\n", ret);
return ret;
}
if (ssd130x->device_info->need_pwm) {
ret = ssd130x_pwm_enable(ssd130x);
if (ret) {
dev_err(dev, "Failed to enable PWM: %d\n", ret);
regulator_disable(ssd130x->vcc_reg);
return ret;
}
}
return 0;
}
static void ssd130x_power_off(struct ssd130x_device *ssd130x)
{
pwm_disable(ssd130x->pwm);
pwm_put(ssd130x->pwm);
regulator_disable(ssd130x->vcc_reg);
}
static int ssd130x_init(struct ssd130x_device *ssd130x)
{
u32 precharge, dclk, com_invdir, compins, chargepump, seg_remap;
bool scan_mode;
int ret;
/* Set initial contrast */
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_CONTRAST, ssd130x->contrast);
if (ret < 0)
return ret;
/* Set segment re-map */
seg_remap = (SSD13XX_SET_SEG_REMAP |
SSD13XX_SET_SEG_REMAP_SET(ssd130x->seg_remap));
ret = ssd130x_write_cmd(ssd130x, 1, seg_remap);
if (ret < 0)
return ret;
/* Set COM direction */
com_invdir = (SSD130X_SET_COM_SCAN_DIR |
SSD130X_SET_COM_SCAN_DIR_SET(ssd130x->com_invdir));
ret = ssd130x_write_cmd(ssd130x, 1, com_invdir);
if (ret < 0)
return ret;
/* Set multiplex ratio value */
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_MULTIPLEX_RATIO, ssd130x->height - 1);
if (ret < 0)
return ret;
/* set display offset value */
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_DISPLAY_OFFSET, ssd130x->com_offset);
if (ret < 0)
return ret;
/* Set clock frequency */
dclk = (SSD130X_SET_CLOCK_DIV_SET(ssd130x->dclk_div - 1) |
SSD130X_SET_CLOCK_FREQ_SET(ssd130x->dclk_frq));
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_CLOCK_FREQ, dclk);
if (ret < 0)
return ret;
/* Set Area Color Mode ON/OFF & Low Power Display Mode */
if (ssd130x->area_color_enable || ssd130x->low_power) {
u32 mode = 0;
if (ssd130x->area_color_enable)
mode |= SSD130X_SET_AREA_COLOR_MODE_ENABLE;
if (ssd130x->low_power)
mode |= SSD130X_SET_AREA_COLOR_MODE_LOW_POWER;
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_AREA_COLOR_MODE, mode);
if (ret < 0)
return ret;
}
/* Set precharge period in number of ticks from the internal clock */
precharge = (SSD130X_SET_PRECHARGE_PERIOD1_SET(ssd130x->prechargep1) |
SSD130X_SET_PRECHARGE_PERIOD2_SET(ssd130x->prechargep2));
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_PRECHARGE_PERIOD, precharge);
if (ret < 0)
return ret;
/* Set COM pins configuration */
compins = BIT(1);
/*
* The COM scan mode field values are the inverse of the boolean DT
* property "solomon,com-seq". The value 0b means scan from COM0 to
* COM[N - 1] while 1b means scan from COM[N - 1] to COM0.
*/
scan_mode = !ssd130x->com_seq;
compins |= (SSD130X_SET_COM_PINS_CONFIG1_SET(scan_mode) |
SSD130X_SET_COM_PINS_CONFIG2_SET(ssd130x->com_lrremap));
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_COM_PINS_CONFIG, compins);
if (ret < 0)
return ret;
/* Set VCOMH */
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_VCOMH, ssd130x->vcomh);
if (ret < 0)
return ret;
/* Turn on the DC-DC Charge Pump */
chargepump = BIT(4);
if (ssd130x->device_info->need_chargepump)
chargepump |= BIT(2);
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_CHARGE_PUMP, chargepump);
if (ret < 0)
return ret;
/* Set lookup table */
if (ssd130x->lookup_table_set) {
int i;
ret = ssd130x_write_cmd(ssd130x, 1, SSD130X_SET_LOOKUP_TABLE);
if (ret < 0)
return ret;
for (i = 0; i < ARRAY_SIZE(ssd130x->lookup_table); i++) {
u8 val = ssd130x->lookup_table[i];
if (val < 31 || val > 63)
dev_warn(ssd130x->dev,
"lookup table index %d value out of range 31 <= %d <= 63\n",
i, val);
ret = ssd130x_write_cmd(ssd130x, 1, val);
if (ret < 0)
return ret;
}
}
/* Switch to page addressing mode */
if (ssd130x->page_address_mode)
return ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_ADDRESS_MODE,
SSD130X_SET_ADDRESS_MODE_PAGE);
/* Switch to horizontal addressing mode */
return ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_ADDRESS_MODE,
SSD130X_SET_ADDRESS_MODE_HORIZONTAL);
}
static int ssd132x_init(struct ssd130x_device *ssd130x)
{
int ret;
/* Set initial contrast */
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_CONTRAST, 0x80);
if (ret < 0)
return ret;
/* Set column start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_COL_RANGE, 0x00,
ssd130x->width / SSD132X_SEGMENT_WIDTH - 1);
if (ret < 0)
return ret;
/* Set row start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_ROW_RANGE, 0x00, ssd130x->height - 1);
if (ret < 0)
return ret;
/*
* Horizontal Address Increment
* Re-map for Column Address, Nibble and COM
* COM Split Odd Even
*/
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_SEG_REMAP, 0x53);
if (ret < 0)
return ret;
/* Set display start and offset */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_DISPLAY_START, 0x00);
if (ret < 0)
return ret;
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_DISPLAY_OFFSET, 0x00);
if (ret < 0)
return ret;
/* Set display mode normal */
ret = ssd130x_write_cmd(ssd130x, 1, SSD132X_SET_DISPLAY_NORMAL);
if (ret < 0)
return ret;
/* Set multiplex ratio value */
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_MULTIPLEX_RATIO, ssd130x->height - 1);
if (ret < 0)
return ret;
/* Set phase length */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PHASE_LENGTH, 0x55);
if (ret < 0)
return ret;
/* Select default linear gray scale table */
ret = ssd130x_write_cmd(ssd130x, 1, SSD132X_SELECT_DEFAULT_TABLE);
if (ret < 0)
return ret;
/* Set clock frequency */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_CLOCK_FREQ, 0x01);
if (ret < 0)
return ret;
/* Enable internal VDD regulator */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_FUNCTION_SELECT_A, 0x1);
if (ret < 0)
return ret;
/* Set pre-charge period */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_PERIOD, 0x01);
if (ret < 0)
return ret;
/* Set pre-charge voltage */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_VOLTAGE, 0x08);
if (ret < 0)
return ret;
/* Set VCOMH voltage */
ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_VCOMH_VOLTAGE, 0x07);
if (ret < 0)
return ret;
/* Enable second pre-charge and internal VSL */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_FUNCTION_SELECT_B, 0x62);
if (ret < 0)
return ret;
return 0;
}
static int ssd133x_init(struct ssd130x_device *ssd130x)
{
int ret;
/* Set color A contrast */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_CONTRAST_A, 0x91);
if (ret < 0)
return ret;
/* Set color B contrast */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_CONTRAST_B, 0x50);
if (ret < 0)
return ret;
/* Set color C contrast */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_CONTRAST_C, 0x7d);
if (ret < 0)
return ret;
/* Set master current */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_MASTER_CURRENT, 0x06);
if (ret < 0)
return ret;
/* Set column start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_COL_RANGE, 0x00, ssd130x->width - 1);
if (ret < 0)
return ret;
/* Set row start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_ROW_RANGE, 0x00, ssd130x->height - 1);
if (ret < 0)
return ret;
/*
* Horizontal Address Increment
* Normal order SA,SB,SC (e.g. RGB)
* COM Split Odd Even
* 256 color format
*/
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_SEG_REMAP, 0x20);
if (ret < 0)
return ret;
/* Set display start and offset */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_DISPLAY_START, 0x00);
if (ret < 0)
return ret;
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_DISPLAY_OFFSET, 0x00);
if (ret < 0)
return ret;
/* Set display mode normal */
ret = ssd130x_write_cmd(ssd130x, 1, SSD133X_SET_DISPLAY_NORMAL);
if (ret < 0)
return ret;
/* Set multiplex ratio value */
ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_MULTIPLEX_RATIO, ssd130x->height - 1);
if (ret < 0)
return ret;
/* Set master configuration */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_MASTER_CONFIG, 0x8e);
if (ret < 0)
return ret;
/* Set power mode */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_POWER_SAVE_MODE, 0x0b);
if (ret < 0)
return ret;
/* Set Phase 1 and 2 period */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_PHASES_PERIOD, 0x31);
if (ret < 0)
return ret;
/* Set clock divider */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_CLOCK_FREQ, 0xf0);
if (ret < 0)
return ret;
/* Set pre-charge A */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_A, 0x64);
if (ret < 0)
return ret;
/* Set pre-charge B */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_B, 0x78);
if (ret < 0)
return ret;
/* Set pre-charge C */
ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_C, 0x64);
if (ret < 0)
return ret;
/* Set pre-charge level */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_PRECHARGE_VOLTAGE, 0x3a);
if (ret < 0)
return ret;
/* Set VCOMH voltage */
ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_VCOMH_VOLTAGE, 0x3e);
if (ret < 0)
return ret;
return 0;
}
static int ssd130x_update_rect(struct ssd130x_device *ssd130x,
struct drm_rect *rect, u8 *buf,
u8 *data_array)
{
unsigned int x = rect->x1;
unsigned int y = rect->y1;
unsigned int width = drm_rect_width(rect);
unsigned int height = drm_rect_height(rect);
unsigned int line_length = DIV_ROUND_UP(width, 8);
unsigned int page_height = SSD130X_PAGE_HEIGHT;
unsigned int pages = DIV_ROUND_UP(height, page_height);
struct drm_device *drm = &ssd130x->drm;
u32 array_idx = 0;
int ret, i, j, k;
drm_WARN_ONCE(drm, y % page_height != 0, "y must be aligned to screen page\n");
/*
* The screen is divided in pages, each having a height of 8
* pixels, and the width of the screen. When sending a byte of
* data to the controller, it gives the 8 bits for the current
* column. I.e, the first byte are the 8 bits of the first
* column, then the 8 bits for the second column, etc.
*
*
* Representation of the screen, assuming it is 5 bits
* wide. Each letter-number combination is a bit that controls
* one pixel.
*
* A0 A1 A2 A3 A4
* B0 B1 B2 B3 B4
* C0 C1 C2 C3 C4
* D0 D1 D2 D3 D4
* E0 E1 E2 E3 E4
* F0 F1 F2 F3 F4
* G0 G1 G2 G3 G4
* H0 H1 H2 H3 H4
*
* If you want to update this screen, you need to send 5 bytes:
* (1) A0 B0 C0 D0 E0 F0 G0 H0
* (2) A1 B1 C1 D1 E1 F1 G1 H1
* (3) A2 B2 C2 D2 E2 F2 G2 H2
* (4) A3 B3 C3 D3 E3 F3 G3 H3
* (5) A4 B4 C4 D4 E4 F4 G4 H4
*/
if (!ssd130x->page_address_mode) {
u8 page_start;
/* Set address range for horizontal addressing mode */
ret = ssd130x_set_col_range(ssd130x, ssd130x->col_offset + x, width);
if (ret < 0)
return ret;
page_start = ssd130x->page_offset + y / page_height;
ret = ssd130x_set_page_range(ssd130x, page_start, pages);
if (ret < 0)
return ret;
}
for (i = 0; i < pages; i++) {
int m = page_height;
/* Last page may be partial */
if (page_height * (y / page_height + i + 1) > ssd130x->height)
m = ssd130x->height % page_height;
for (j = 0; j < width; j++) {
u8 data = 0;
for (k = 0; k < m; k++) {
u32 idx = (page_height * i + k) * line_length + j / 8;
u8 byte = buf[idx];
u8 bit = (byte >> (j % 8)) & 1;
data |= bit << k;
}
data_array[array_idx++] = data;
}
/*
* In page addressing mode, the start address needs to be reset,
* and each page then needs to be written out separately.
*/
if (ssd130x->page_address_mode) {
ret = ssd130x_set_page_pos(ssd130x,
ssd130x->page_offset + i,
ssd130x->col_offset + x);
if (ret < 0)
return ret;
ret = ssd130x_write_data(ssd130x, data_array, width);
if (ret < 0)
return ret;
array_idx = 0;
}
}
/* Write out update in one go if we aren't using page addressing mode */
if (!ssd130x->page_address_mode)
ret = ssd130x_write_data(ssd130x, data_array, width * pages);
return ret;
}
static int ssd132x_update_rect(struct ssd130x_device *ssd130x,
struct drm_rect *rect, u8 *buf,
u8 *data_array)
{
unsigned int x = rect->x1;
unsigned int y = rect->y1;
unsigned int segment_width = SSD132X_SEGMENT_WIDTH;
unsigned int width = drm_rect_width(rect);
unsigned int height = drm_rect_height(rect);
unsigned int columns = DIV_ROUND_UP(width, segment_width);
unsigned int rows = height;
struct drm_device *drm = &ssd130x->drm;
u32 array_idx = 0;
unsigned int i, j;
int ret;
drm_WARN_ONCE(drm, x % segment_width != 0, "x must be aligned to screen segment\n");
/*
* The screen is divided in Segment and Common outputs, where
* COM0 to COM[N - 1] are the rows and SEG0 to SEG[M - 1] are
* the columns.
*
* Each Segment has a 4-bit pixel and each Common output has a
* row of pixels. When using the (default) horizontal address
* increment mode, each byte of data sent to the controller has
* two Segments (e.g: SEG0 and SEG1) that are stored in the lower
* and higher nibbles of a single byte representing one column.
* That is, the first byte are SEG0 (D0[3:0]) and SEG1 (D0[7:4]),
* the second byte are SEG2 (D1[3:0]) and SEG3 (D1[7:4]) and so on.
*/
/* Set column start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_COL_RANGE, x / segment_width, columns - 1);
if (ret < 0)
return ret;
/* Set row start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_ROW_RANGE, y, rows - 1);
if (ret < 0)
return ret;
for (i = 0; i < height; i++) {
/* Process pair of pixels and combine them into a single byte */
for (j = 0; j < width; j += segment_width) {
u8 n1 = buf[i * width + j];
u8 n2 = buf[i * width + j + 1];
data_array[array_idx++] = (n2 << 4) | n1;
}
}
/* Write out update in one go since horizontal addressing mode is used */
ret = ssd130x_write_data(ssd130x, data_array, columns * rows);
return ret;
}
static int ssd133x_update_rect(struct ssd130x_device *ssd130x,
struct drm_rect *rect, u8 *data_array,
unsigned int pitch)
{
unsigned int x = rect->x1;
unsigned int y = rect->y1;
unsigned int columns = drm_rect_width(rect);
unsigned int rows = drm_rect_height(rect);
int ret;
/*
* The screen is divided in Segment and Common outputs, where
* COM0 to COM[N - 1] are the rows and SEG0 to SEG[M - 1] are
* the columns.
*
* Each Segment has a 8-bit pixel and each Common output has a
* row of pixels. When using the (default) horizontal address
* increment mode, each byte of data sent to the controller has
* a Segment (e.g: SEG0).
*
* When using the 256 color depth format, each pixel contains 3
* sub-pixels for color A, B and C. These have 3 bit, 3 bit and
* 2 bits respectively.
*/
/* Set column start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_COL_RANGE, x, columns - 1);
if (ret < 0)
return ret;
/* Set row start and end */
ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_ROW_RANGE, y, rows - 1);
if (ret < 0)
return ret;
/* Write out update in one go since horizontal addressing mode is used */
ret = ssd130x_write_data(ssd130x, data_array, pitch * rows);
return ret;
}
static void ssd130x_clear_screen(struct ssd130x_device *ssd130x, u8 *data_array)
{
unsigned int pages = DIV_ROUND_UP(ssd130x->height, SSD130X_PAGE_HEIGHT);
unsigned int width = ssd130x->width;
int ret, i;
if (!ssd130x->page_address_mode) {
memset(data_array, 0, width * pages);
/* Set address range for horizontal addressing mode */
ret = ssd130x_set_col_range(ssd130x, ssd130x->col_offset, width);
if (ret < 0)
return;
ret = ssd130x_set_page_range(ssd130x, ssd130x->page_offset, pages);
if (ret < 0)
return;
/* Write out update in one go if we aren't using page addressing mode */
ssd130x_write_data(ssd130x, data_array, width * pages);
} else {
/*
* In page addressing mode, the start address needs to be reset,
* and each page then needs to be written out separately.
*/
memset(data_array, 0, width);
for (i = 0; i < pages; i++) {
ret = ssd130x_set_page_pos(ssd130x,
ssd130x->page_offset + i,
ssd130x->col_offset);
if (ret < 0)
return;
ret = ssd130x_write_data(ssd130x, data_array, width);
if (ret < 0)
return;
}
}
}
static void ssd132x_clear_screen(struct ssd130x_device *ssd130x, u8 *data_array)
{
unsigned int columns = DIV_ROUND_UP(ssd130x->height, SSD132X_SEGMENT_WIDTH);
unsigned int height = ssd130x->height;
memset(data_array, 0, columns * height);
/* Write out update in one go since horizontal addressing mode is used */
ssd130x_write_data(ssd130x, data_array, columns * height);
}
static void ssd133x_clear_screen(struct ssd130x_device *ssd130x, u8 *data_array)
{
const struct drm_format_info *fi = drm_format_info(DRM_FORMAT_RGB332);
unsigned int pitch;
if (!fi)
return;
pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width);
memset(data_array, 0, pitch * ssd130x->height);
/* Write out update in one go since horizontal addressing mode is used */
ssd130x_write_data(ssd130x, data_array, pitch * ssd130x->height);
}
static int ssd130x_fb_blit_rect(struct drm_framebuffer *fb,
const struct iosys_map *vmap,
struct drm_rect *rect,
u8 *buf, u8 *data_array,
struct drm_format_conv_state *fmtcnv_state)
{
struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev);
struct iosys_map dst;
unsigned int dst_pitch;
int ret = 0;
/* Align y to display page boundaries */
rect->y1 = round_down(rect->y1, SSD130X_PAGE_HEIGHT);
rect->y2 = min_t(unsigned int, round_up(rect->y2, SSD130X_PAGE_HEIGHT), ssd130x->height);
dst_pitch = DIV_ROUND_UP(drm_rect_width(rect), 8);
ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
if (ret)
return ret;
iosys_map_set_vaddr(&dst, buf);
drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, vmap, fb, rect, fmtcnv_state);
drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
ssd130x_update_rect(ssd130x, rect, buf, data_array);
return ret;
}
static int ssd132x_fb_blit_rect(struct drm_framebuffer *fb,
const struct iosys_map *vmap,
struct drm_rect *rect, u8 *buf,
u8 *data_array,
struct drm_format_conv_state *fmtcnv_state)
{
struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev);
unsigned int dst_pitch = drm_rect_width(rect);
struct iosys_map dst;
int ret = 0;
/* Align x to display segment boundaries */
rect->x1 = round_down(rect->x1, SSD132X_SEGMENT_WIDTH);
rect->x2 = min_t(unsigned int, round_up(rect->x2, SSD132X_SEGMENT_WIDTH),
ssd130x->width);
ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
if (ret)
return ret;
iosys_map_set_vaddr(&dst, buf);
drm_fb_xrgb8888_to_gray8(&dst, &dst_pitch, vmap, fb, rect, fmtcnv_state);
drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
ssd132x_update_rect(ssd130x, rect, buf, data_array);
return ret;
}
static int ssd133x_fb_blit_rect(struct drm_framebuffer *fb,
const struct iosys_map *vmap,
struct drm_rect *rect, u8 *data_array,
struct drm_format_conv_state *fmtcnv_state)
{
struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev);
const struct drm_format_info *fi = drm_format_info(DRM_FORMAT_RGB332);
unsigned int dst_pitch;
struct iosys_map dst;
int ret = 0;
if (!fi)
return -EINVAL;
dst_pitch = drm_format_info_min_pitch(fi, 0, drm_rect_width(rect));
ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
if (ret)
return ret;
iosys_map_set_vaddr(&dst, data_array);
drm_fb_xrgb8888_to_rgb332(&dst, &dst_pitch, vmap, fb, rect, fmtcnv_state);
drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
ssd133x_update_rect(ssd130x, rect, data_array, dst_pitch);
return ret;
}
static int ssd130x_primary_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *drm = plane->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct ssd130x_plane_state *ssd130x_state = to_ssd130x_plane_state(plane_state);
struct drm_shadow_plane_state *shadow_plane_state = &ssd130x_state->base;
struct drm_crtc *crtc = plane_state->crtc;
struct drm_crtc_state *crtc_state = NULL;
const struct drm_format_info *fi;
unsigned int pitch;
int ret;
if (crtc)
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
ret = drm_atomic_helper_check_plane_state(plane_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, false);
if (ret)
return ret;
else if (!plane_state->visible)
return 0;
fi = drm_format_info(DRM_FORMAT_R1);
if (!fi)
return -EINVAL;
pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width);
if (plane_state->fb->format != fi) {
void *buf;
/* format conversion necessary; reserve buffer */
buf = drm_format_conv_state_reserve(&shadow_plane_state->fmtcnv_state,
pitch, GFP_KERNEL);
if (!buf)
return -ENOMEM;
}
ssd130x_state->buffer = kcalloc(pitch, ssd130x->height, GFP_KERNEL);
if (!ssd130x_state->buffer)
return -ENOMEM;
return 0;
}
static int ssd132x_primary_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *drm = plane->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct ssd130x_plane_state *ssd130x_state = to_ssd130x_plane_state(plane_state);
struct drm_shadow_plane_state *shadow_plane_state = &ssd130x_state->base;
struct drm_crtc *crtc = plane_state->crtc;
struct drm_crtc_state *crtc_state = NULL;
const struct drm_format_info *fi;
unsigned int pitch;
int ret;
if (crtc)
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
ret = drm_atomic_helper_check_plane_state(plane_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, false);
if (ret)
return ret;
else if (!plane_state->visible)
return 0;
fi = drm_format_info(DRM_FORMAT_R8);
if (!fi)
return -EINVAL;
pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width);
if (plane_state->fb->format != fi) {
void *buf;
/* format conversion necessary; reserve buffer */
buf = drm_format_conv_state_reserve(&shadow_plane_state->fmtcnv_state,
pitch, GFP_KERNEL);
if (!buf)
return -ENOMEM;
}
ssd130x_state->buffer = kcalloc(pitch, ssd130x->height, GFP_KERNEL);
if (!ssd130x_state->buffer)
return -ENOMEM;
return 0;
}
static int ssd133x_primary_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_crtc *crtc = plane_state->crtc;
struct drm_crtc_state *crtc_state = NULL;
int ret;
if (crtc)
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
ret = drm_atomic_helper_check_plane_state(plane_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, false);
if (ret)
return ret;
else if (!plane_state->visible)
return 0;
return 0;
}
static void ssd130x_primary_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(state, plane);
struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc);
struct ssd130x_crtc_state *ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state);
struct ssd130x_plane_state *ssd130x_plane_state = to_ssd130x_plane_state(plane_state);
struct drm_framebuffer *fb = plane_state->fb;
struct drm_atomic_helper_damage_iter iter;
struct drm_device *drm = plane->dev;
struct drm_rect dst_clip;
struct drm_rect damage;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state);
drm_atomic_for_each_plane_damage(&iter, &damage) {
dst_clip = plane_state->dst;
if (!drm_rect_intersect(&dst_clip, &damage))
continue;
ssd130x_fb_blit_rect(fb, &shadow_plane_state->data[0], &dst_clip,
ssd130x_plane_state->buffer,
ssd130x_crtc_state->data_array,
&shadow_plane_state->fmtcnv_state);
}
drm_dev_exit(idx);
}
static void ssd132x_primary_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(state, plane);
struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc);
struct ssd130x_crtc_state *ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state);
struct ssd130x_plane_state *ssd130x_plane_state = to_ssd130x_plane_state(plane_state);
struct drm_framebuffer *fb = plane_state->fb;
struct drm_atomic_helper_damage_iter iter;
struct drm_device *drm = plane->dev;
struct drm_rect dst_clip;
struct drm_rect damage;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state);
drm_atomic_for_each_plane_damage(&iter, &damage) {
dst_clip = plane_state->dst;
if (!drm_rect_intersect(&dst_clip, &damage))
continue;
ssd132x_fb_blit_rect(fb, &shadow_plane_state->data[0], &dst_clip,
ssd130x_plane_state->buffer,
ssd130x_crtc_state->data_array,
&shadow_plane_state->fmtcnv_state);
}
drm_dev_exit(idx);
}
static void ssd133x_primary_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(state, plane);
struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc);
struct ssd130x_crtc_state *ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state);
struct drm_framebuffer *fb = plane_state->fb;
struct drm_atomic_helper_damage_iter iter;
struct drm_device *drm = plane->dev;
struct drm_rect dst_clip;
struct drm_rect damage;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state);
drm_atomic_for_each_plane_damage(&iter, &damage) {
dst_clip = plane_state->dst;
if (!drm_rect_intersect(&dst_clip, &damage))
continue;
ssd133x_fb_blit_rect(fb, &shadow_plane_state->data[0], &dst_clip,
ssd130x_crtc_state->data_array,
&shadow_plane_state->fmtcnv_state);
}
drm_dev_exit(idx);
}
static void ssd130x_primary_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *drm = plane->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_crtc_state *crtc_state;
struct ssd130x_crtc_state *ssd130x_crtc_state;
int idx;
if (!plane_state->crtc)
return;
crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc);
ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state);
if (!drm_dev_enter(drm, &idx))
return;
ssd130x_clear_screen(ssd130x, ssd130x_crtc_state->data_array);
drm_dev_exit(idx);
}
static void ssd132x_primary_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *drm = plane->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_crtc_state *crtc_state;
struct ssd130x_crtc_state *ssd130x_crtc_state;
int idx;
if (!plane_state->crtc)
return;
crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc);
ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state);
if (!drm_dev_enter(drm, &idx))
return;
ssd132x_clear_screen(ssd130x, ssd130x_crtc_state->data_array);
drm_dev_exit(idx);
}
static void ssd133x_primary_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *drm = plane->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_crtc_state *crtc_state;
struct ssd130x_crtc_state *ssd130x_crtc_state;
int idx;
if (!plane_state->crtc)
return;
crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc);
ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state);
if (!drm_dev_enter(drm, &idx))
return;
ssd133x_clear_screen(ssd130x, ssd130x_crtc_state->data_array);
drm_dev_exit(idx);
}
/* Called during init to allocate the plane's atomic state. */
static void ssd130x_primary_plane_reset(struct drm_plane *plane)
{
struct ssd130x_plane_state *ssd130x_state;
WARN_ON(plane->state);
ssd130x_state = kzalloc(sizeof(*ssd130x_state), GFP_KERNEL);
if (!ssd130x_state)
return;
__drm_gem_reset_shadow_plane(plane, &ssd130x_state->base);
}
static struct drm_plane_state *ssd130x_primary_plane_duplicate_state(struct drm_plane *plane)
{
struct drm_shadow_plane_state *new_shadow_plane_state;
struct ssd130x_plane_state *old_ssd130x_state;
struct ssd130x_plane_state *ssd130x_state;
if (WARN_ON(!plane->state))
return NULL;
old_ssd130x_state = to_ssd130x_plane_state(plane->state);
ssd130x_state = kmemdup(old_ssd130x_state, sizeof(*ssd130x_state), GFP_KERNEL);
if (!ssd130x_state)
return NULL;
/* The buffer is not duplicated and is allocated in .atomic_check */
ssd130x_state->buffer = NULL;
new_shadow_plane_state = &ssd130x_state->base;
__drm_gem_duplicate_shadow_plane_state(plane, new_shadow_plane_state);
return &new_shadow_plane_state->base;
}
static void ssd130x_primary_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct ssd130x_plane_state *ssd130x_state = to_ssd130x_plane_state(state);
kfree(ssd130x_state->buffer);
__drm_gem_destroy_shadow_plane_state(&ssd130x_state->base);
kfree(ssd130x_state);
}
static const struct drm_plane_helper_funcs ssd130x_primary_plane_helper_funcs[] = {
[SSD130X_FAMILY] = {
DRM_GEM_SHADOW_PLANE_HELPER_FUNCS,
.atomic_check = ssd130x_primary_plane_atomic_check,
.atomic_update = ssd130x_primary_plane_atomic_update,
.atomic_disable = ssd130x_primary_plane_atomic_disable,
},
[SSD132X_FAMILY] = {
DRM_GEM_SHADOW_PLANE_HELPER_FUNCS,
.atomic_check = ssd132x_primary_plane_atomic_check,
.atomic_update = ssd132x_primary_plane_atomic_update,
.atomic_disable = ssd132x_primary_plane_atomic_disable,
},
[SSD133X_FAMILY] = {
DRM_GEM_SHADOW_PLANE_HELPER_FUNCS,
.atomic_check = ssd133x_primary_plane_atomic_check,
.atomic_update = ssd133x_primary_plane_atomic_update,
.atomic_disable = ssd133x_primary_plane_atomic_disable,
}
};
static const struct drm_plane_funcs ssd130x_primary_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.reset = ssd130x_primary_plane_reset,
.atomic_duplicate_state = ssd130x_primary_plane_duplicate_state,
.atomic_destroy_state = ssd130x_primary_plane_destroy_state,
.destroy = drm_plane_cleanup,
};
static enum drm_mode_status ssd130x_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct ssd130x_device *ssd130x = drm_to_ssd130x(crtc->dev);
if (mode->hdisplay != ssd130x->mode.hdisplay &&
mode->vdisplay != ssd130x->mode.vdisplay)
return MODE_ONE_SIZE;
else if (mode->hdisplay != ssd130x->mode.hdisplay)
return MODE_ONE_WIDTH;
else if (mode->vdisplay != ssd130x->mode.vdisplay)
return MODE_ONE_HEIGHT;
return MODE_OK;
}
static int ssd130x_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *drm = crtc->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(crtc_state);
unsigned int pages = DIV_ROUND_UP(ssd130x->height, SSD130X_PAGE_HEIGHT);
int ret;
ret = drm_crtc_helper_atomic_check(crtc, state);
if (ret)
return ret;
ssd130x_state->data_array = kmalloc(ssd130x->width * pages, GFP_KERNEL);
if (!ssd130x_state->data_array)
return -ENOMEM;
return 0;
}
static int ssd132x_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *drm = crtc->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(crtc_state);
unsigned int columns = DIV_ROUND_UP(ssd130x->width, SSD132X_SEGMENT_WIDTH);
int ret;
ret = drm_crtc_helper_atomic_check(crtc, state);
if (ret)
return ret;
ssd130x_state->data_array = kmalloc(columns * ssd130x->height, GFP_KERNEL);
if (!ssd130x_state->data_array)
return -ENOMEM;
return 0;
}
static int ssd133x_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *drm = crtc->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(crtc_state);
const struct drm_format_info *fi = drm_format_info(DRM_FORMAT_RGB332);
unsigned int pitch;
int ret;
if (!fi)
return -EINVAL;
ret = drm_crtc_helper_atomic_check(crtc, state);
if (ret)
return ret;
pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width);
ssd130x_state->data_array = kmalloc(pitch * ssd130x->height, GFP_KERNEL);
if (!ssd130x_state->data_array)
return -ENOMEM;
return 0;
}
/* Called during init to allocate the CRTC's atomic state. */
static void ssd130x_crtc_reset(struct drm_crtc *crtc)
{
struct ssd130x_crtc_state *ssd130x_state;
WARN_ON(crtc->state);
ssd130x_state = kzalloc(sizeof(*ssd130x_state), GFP_KERNEL);
if (!ssd130x_state)
return;
__drm_atomic_helper_crtc_reset(crtc, &ssd130x_state->base);
}
static struct drm_crtc_state *ssd130x_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct ssd130x_crtc_state *old_ssd130x_state;
struct ssd130x_crtc_state *ssd130x_state;
if (WARN_ON(!crtc->state))
return NULL;
old_ssd130x_state = to_ssd130x_crtc_state(crtc->state);
ssd130x_state = kmemdup(old_ssd130x_state, sizeof(*ssd130x_state), GFP_KERNEL);
if (!ssd130x_state)
return NULL;
/* The buffer is not duplicated and is allocated in .atomic_check */
ssd130x_state->data_array = NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &ssd130x_state->base);
return &ssd130x_state->base;
}
static void ssd130x_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(state);
kfree(ssd130x_state->data_array);
__drm_atomic_helper_crtc_destroy_state(state);
kfree(ssd130x_state);
}
/*
* The CRTC is always enabled. Screen updates are performed by
* the primary plane's atomic_update function. Disabling clears
* the screen in the primary plane's atomic_disable function.
*/
static const struct drm_crtc_helper_funcs ssd130x_crtc_helper_funcs[] = {
[SSD130X_FAMILY] = {
.mode_valid = ssd130x_crtc_mode_valid,
.atomic_check = ssd130x_crtc_atomic_check,
},
[SSD132X_FAMILY] = {
.mode_valid = ssd130x_crtc_mode_valid,
.atomic_check = ssd132x_crtc_atomic_check,
},
[SSD133X_FAMILY] = {
.mode_valid = ssd130x_crtc_mode_valid,
.atomic_check = ssd133x_crtc_atomic_check,
},
};
static const struct drm_crtc_funcs ssd130x_crtc_funcs = {
.reset = ssd130x_crtc_reset,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = ssd130x_crtc_duplicate_state,
.atomic_destroy_state = ssd130x_crtc_destroy_state,
};
static void ssd130x_encoder_atomic_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_device *drm = encoder->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
int ret;
ret = ssd130x_power_on(ssd130x);
if (ret)
return;
ret = ssd130x_init(ssd130x);
if (ret)
goto power_off;
ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_ON);
backlight_enable(ssd130x->bl_dev);
return;
power_off:
ssd130x_power_off(ssd130x);
return;
}
static void ssd132x_encoder_atomic_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_device *drm = encoder->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
int ret;
ret = ssd130x_power_on(ssd130x);
if (ret)
return;
ret = ssd132x_init(ssd130x);
if (ret)
goto power_off;
ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_ON);
backlight_enable(ssd130x->bl_dev);
return;
power_off:
ssd130x_power_off(ssd130x);
}
static void ssd133x_encoder_atomic_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_device *drm = encoder->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
int ret;
ret = ssd130x_power_on(ssd130x);
if (ret)
return;
ret = ssd133x_init(ssd130x);
if (ret)
goto power_off;
ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_ON);
backlight_enable(ssd130x->bl_dev);
return;
power_off:
ssd130x_power_off(ssd130x);
}
static void ssd130x_encoder_atomic_disable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct drm_device *drm = encoder->dev;
struct ssd130x_device *ssd130x = drm_to_ssd130x(drm);
backlight_disable(ssd130x->bl_dev);
ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_OFF);
ssd130x_power_off(ssd130x);
}
static const struct drm_encoder_helper_funcs ssd130x_encoder_helper_funcs[] = {
[SSD130X_FAMILY] = {
.atomic_enable = ssd130x_encoder_atomic_enable,
.atomic_disable = ssd130x_encoder_atomic_disable,
},
[SSD132X_FAMILY] = {
.atomic_enable = ssd132x_encoder_atomic_enable,
.atomic_disable = ssd130x_encoder_atomic_disable,
},
[SSD133X_FAMILY] = {
.atomic_enable = ssd133x_encoder_atomic_enable,
.atomic_disable = ssd130x_encoder_atomic_disable,
}
};
static const struct drm_encoder_funcs ssd130x_encoder_funcs = {
.destroy = drm_encoder_cleanup,
};
static int ssd130x_connector_get_modes(struct drm_connector *connector)
{
struct ssd130x_device *ssd130x = drm_to_ssd130x(connector->dev);
struct drm_display_mode *mode;
struct device *dev = ssd130x->dev;
mode = drm_mode_duplicate(connector->dev, &ssd130x->mode);
if (!mode) {
dev_err(dev, "Failed to duplicated mode\n");
return 0;
}
drm_mode_probed_add(connector, mode);
drm_set_preferred_mode(connector, mode->hdisplay, mode->vdisplay);
/* There is only a single mode */
return 1;
}
static const struct drm_connector_helper_funcs ssd130x_connector_helper_funcs = {
.get_modes = ssd130x_connector_get_modes,
};
static const struct drm_connector_funcs ssd130x_connector_funcs = {
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_mode_config_funcs ssd130x_mode_config_funcs = {
.fb_create = drm_gem_fb_create_with_dirty,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
static const uint32_t ssd130x_formats[] = {
DRM_FORMAT_XRGB8888,
};
DEFINE_DRM_GEM_FOPS(ssd130x_fops);
static const struct drm_driver ssd130x_drm_driver = {
DRM_GEM_SHMEM_DRIVER_OPS,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.driver_features = DRIVER_ATOMIC | DRIVER_GEM | DRIVER_MODESET,
.fops = &ssd130x_fops,
};
static int ssd130x_update_bl(struct backlight_device *bdev)
{
struct ssd130x_device *ssd130x = bl_get_data(bdev);
int brightness = backlight_get_brightness(bdev);
int ret;
ssd130x->contrast = brightness;
ret = ssd130x_write_cmd(ssd130x, 1, SSD13XX_CONTRAST);
if (ret < 0)
return ret;
ret = ssd130x_write_cmd(ssd130x, 1, ssd130x->contrast);
if (ret < 0)
return ret;
return 0;
}
static const struct backlight_ops ssd130xfb_bl_ops = {
.update_status = ssd130x_update_bl,
};
static void ssd130x_parse_properties(struct ssd130x_device *ssd130x)
{
struct device *dev = ssd130x->dev;
if (device_property_read_u32(dev, "solomon,width", &ssd130x->width))
ssd130x->width = ssd130x->device_info->default_width;
if (device_property_read_u32(dev, "solomon,height", &ssd130x->height))
ssd130x->height = ssd130x->device_info->default_height;
if (device_property_read_u32(dev, "solomon,page-offset", &ssd130x->page_offset))
ssd130x->page_offset = 1;
if (device_property_read_u32(dev, "solomon,col-offset", &ssd130x->col_offset))
ssd130x->col_offset = 0;
if (device_property_read_u32(dev, "solomon,com-offset", &ssd130x->com_offset))
ssd130x->com_offset = 0;
if (device_property_read_u32(dev, "solomon,prechargep1", &ssd130x->prechargep1))
ssd130x->prechargep1 = 2;
if (device_property_read_u32(dev, "solomon,prechargep2", &ssd130x->prechargep2))
ssd130x->prechargep2 = 2;
if (!device_property_read_u8_array(dev, "solomon,lookup-table",
ssd130x->lookup_table,
ARRAY_SIZE(ssd130x->lookup_table)))
ssd130x->lookup_table_set = 1;
ssd130x->seg_remap = !device_property_read_bool(dev, "solomon,segment-no-remap");
ssd130x->com_seq = device_property_read_bool(dev, "solomon,com-seq");
ssd130x->com_lrremap = device_property_read_bool(dev, "solomon,com-lrremap");
ssd130x->com_invdir = device_property_read_bool(dev, "solomon,com-invdir");
ssd130x->area_color_enable =
device_property_read_bool(dev, "solomon,area-color-enable");
ssd130x->low_power = device_property_read_bool(dev, "solomon,low-power");
ssd130x->contrast = 127;
ssd130x->vcomh = ssd130x->device_info->default_vcomh;
/* Setup display timing */
if (device_property_read_u32(dev, "solomon,dclk-div", &ssd130x->dclk_div))
ssd130x->dclk_div = ssd130x->device_info->default_dclk_div;
if (device_property_read_u32(dev, "solomon,dclk-frq", &ssd130x->dclk_frq))
ssd130x->dclk_frq = ssd130x->device_info->default_dclk_frq;
}
static int ssd130x_init_modeset(struct ssd130x_device *ssd130x)
{
enum ssd130x_family_ids family_id = ssd130x->device_info->family_id;
struct drm_display_mode *mode = &ssd130x->mode;
struct device *dev = ssd130x->dev;
struct drm_device *drm = &ssd130x->drm;
unsigned long max_width, max_height;
struct drm_plane *primary_plane;
struct drm_crtc *crtc;
struct drm_encoder *encoder;
struct drm_connector *connector;
int ret;
/*
* Modesetting
*/
ret = drmm_mode_config_init(drm);
if (ret) {
dev_err(dev, "DRM mode config init failed: %d\n", ret);
return ret;
}
mode->type = DRM_MODE_TYPE_DRIVER;
mode->clock = 1;
mode->hdisplay = mode->htotal = ssd130x->width;
mode->hsync_start = mode->hsync_end = ssd130x->width;
mode->vdisplay = mode->vtotal = ssd130x->height;
mode->vsync_start = mode->vsync_end = ssd130x->height;
mode->width_mm = 27;
mode->height_mm = 27;
max_width = max_t(unsigned long, mode->hdisplay, DRM_SHADOW_PLANE_MAX_WIDTH);
max_height = max_t(unsigned long, mode->vdisplay, DRM_SHADOW_PLANE_MAX_HEIGHT);
drm->mode_config.min_width = mode->hdisplay;
drm->mode_config.max_width = max_width;
drm->mode_config.min_height = mode->vdisplay;
drm->mode_config.max_height = max_height;
drm->mode_config.preferred_depth = 24;
drm->mode_config.funcs = &ssd130x_mode_config_funcs;
/* Primary plane */
primary_plane = &ssd130x->primary_plane;
ret = drm_universal_plane_init(drm, primary_plane, 0, &ssd130x_primary_plane_funcs,
ssd130x_formats, ARRAY_SIZE(ssd130x_formats),
NULL, DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
dev_err(dev, "DRM primary plane init failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &ssd130x_primary_plane_helper_funcs[family_id]);
drm_plane_enable_fb_damage_clips(primary_plane);
/* CRTC */
crtc = &ssd130x->crtc;
ret = drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
&ssd130x_crtc_funcs, NULL);
if (ret) {
dev_err(dev, "DRM crtc init failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &ssd130x_crtc_helper_funcs[family_id]);
/* Encoder */
encoder = &ssd130x->encoder;
ret = drm_encoder_init(drm, encoder, &ssd130x_encoder_funcs,
DRM_MODE_ENCODER_NONE, NULL);
if (ret) {
dev_err(dev, "DRM encoder init failed: %d\n", ret);
return ret;
}
drm_encoder_helper_add(encoder, &ssd130x_encoder_helper_funcs[family_id]);
encoder->possible_crtcs = drm_crtc_mask(crtc);
/* Connector */
connector = &ssd130x->connector;
ret = drm_connector_init(drm, connector, &ssd130x_connector_funcs,
DRM_MODE_CONNECTOR_Unknown);
if (ret) {
dev_err(dev, "DRM connector init failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &ssd130x_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
dev_err(dev, "DRM attach connector to encoder failed: %d\n", ret);
return ret;
}
drm_mode_config_reset(drm);
return 0;
}
static int ssd130x_get_resources(struct ssd130x_device *ssd130x)
{
struct device *dev = ssd130x->dev;
ssd130x->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(ssd130x->reset))
return dev_err_probe(dev, PTR_ERR(ssd130x->reset),
"Failed to get reset gpio\n");
ssd130x->vcc_reg = devm_regulator_get(dev, "vcc");
if (IS_ERR(ssd130x->vcc_reg))
return dev_err_probe(dev, PTR_ERR(ssd130x->vcc_reg),
"Failed to get VCC regulator\n");
return 0;
}
struct ssd130x_device *ssd130x_probe(struct device *dev, struct regmap *regmap)
{
struct ssd130x_device *ssd130x;
struct backlight_device *bl;
struct drm_device *drm;
int ret;
ssd130x = devm_drm_dev_alloc(dev, &ssd130x_drm_driver,
struct ssd130x_device, drm);
if (IS_ERR(ssd130x))
return ERR_PTR(dev_err_probe(dev, PTR_ERR(ssd130x),
"Failed to allocate DRM device\n"));
drm = &ssd130x->drm;
ssd130x->dev = dev;
ssd130x->regmap = regmap;
ssd130x->device_info = device_get_match_data(dev);
if (ssd130x->device_info->page_mode_only)
ssd130x->page_address_mode = 1;
ssd130x_parse_properties(ssd130x);
ret = ssd130x_get_resources(ssd130x);
if (ret)
return ERR_PTR(ret);
bl = devm_backlight_device_register(dev, dev_name(dev), dev, ssd130x,
&ssd130xfb_bl_ops, NULL);
if (IS_ERR(bl))
return ERR_PTR(dev_err_probe(dev, PTR_ERR(bl),
"Unable to register backlight device\n"));
bl->props.brightness = ssd130x->contrast;
bl->props.max_brightness = MAX_CONTRAST;
ssd130x->bl_dev = bl;
ret = ssd130x_init_modeset(ssd130x);
if (ret)
return ERR_PTR(ret);
ret = drm_dev_register(drm, 0);
if (ret)
return ERR_PTR(dev_err_probe(dev, ret, "DRM device register failed\n"));
drm_fbdev_generic_setup(drm, 32);
return ssd130x;
}
EXPORT_SYMBOL_GPL(ssd130x_probe);
void ssd130x_remove(struct ssd130x_device *ssd130x)
{
drm_dev_unplug(&ssd130x->drm);
drm_atomic_helper_shutdown(&ssd130x->drm);
}
EXPORT_SYMBOL_GPL(ssd130x_remove);
void ssd130x_shutdown(struct ssd130x_device *ssd130x)
{
drm_atomic_helper_shutdown(&ssd130x->drm);
}
EXPORT_SYMBOL_GPL(ssd130x_shutdown);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Javier Martinez Canillas <javierm@redhat.com>");
MODULE_LICENSE("GPL v2");