blob: ab61e96e7e14e28acb4b6d1b154fd3b553325e1f [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2015 Broadcom
*/
#ifndef _VC4_DRV_H_
#define _VC4_DRV_H_
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/refcount.h>
#include <linux/uaccess.h>
#include <drm/drm_atomic.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_device.h>
#include <drm/drm_encoder.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_managed.h>
#include <drm/drm_mm.h>
#include <drm/drm_modeset_lock.h>
#include <kunit/test-bug.h>
#include "uapi/drm/vc4_drm.h"
struct drm_device;
struct drm_gem_object;
extern const struct drm_driver vc4_drm_driver;
extern const struct drm_driver vc5_drm_driver;
/* Don't forget to update vc4_bo.c: bo_type_names[] when adding to
* this.
*/
enum vc4_kernel_bo_type {
/* Any kernel allocation (gem_create_object hook) before it
* gets another type set.
*/
VC4_BO_TYPE_KERNEL,
VC4_BO_TYPE_V3D,
VC4_BO_TYPE_V3D_SHADER,
VC4_BO_TYPE_DUMB,
VC4_BO_TYPE_BIN,
VC4_BO_TYPE_RCL,
VC4_BO_TYPE_BCL,
VC4_BO_TYPE_KERNEL_CACHE,
VC4_BO_TYPE_COUNT
};
/* Performance monitor object. The perform lifetime is controlled by userspace
* using perfmon related ioctls. A perfmon can be attached to a submit_cl
* request, and when this is the case, HW perf counters will be activated just
* before the submit_cl is submitted to the GPU and disabled when the job is
* done. This way, only events related to a specific job will be counted.
*/
struct vc4_perfmon {
struct vc4_dev *dev;
/* Tracks the number of users of the perfmon, when this counter reaches
* zero the perfmon is destroyed.
*/
refcount_t refcnt;
/* Number of counters activated in this perfmon instance
* (should be less than DRM_VC4_MAX_PERF_COUNTERS).
*/
u8 ncounters;
/* Events counted by the HW perf counters. */
u8 events[DRM_VC4_MAX_PERF_COUNTERS];
/* Storage for counter values. Counters are incremented by the HW
* perf counter values every time the perfmon is attached to a GPU job.
* This way, perfmon users don't have to retrieve the results after
* each job if they want to track events covering several submissions.
* Note that counter values can't be reset, but you can fake a reset by
* destroying the perfmon and creating a new one.
*/
u64 counters[] __counted_by(ncounters);
};
struct vc4_dev {
struct drm_device base;
struct device *dev;
bool is_vc5;
unsigned int irq;
struct vc4_hvs *hvs;
struct vc4_v3d *v3d;
struct vc4_hang_state *hang_state;
/* The kernel-space BO cache. Tracks buffers that have been
* unreferenced by all other users (refcounts of 0!) but not
* yet freed, so we can do cheap allocations.
*/
struct vc4_bo_cache {
/* Array of list heads for entries in the BO cache,
* based on number of pages, so we can do O(1) lookups
* in the cache when allocating.
*/
struct list_head *size_list;
uint32_t size_list_size;
/* List of all BOs in the cache, ordered by age, so we
* can do O(1) lookups when trying to free old
* buffers.
*/
struct list_head time_list;
struct work_struct time_work;
struct timer_list time_timer;
} bo_cache;
u32 num_labels;
struct vc4_label {
const char *name;
u32 num_allocated;
u32 size_allocated;
} *bo_labels;
/* Protects bo_cache and bo_labels. */
struct mutex bo_lock;
/* Purgeable BO pool. All BOs in this pool can have their memory
* reclaimed if the driver is unable to allocate new BOs. We also
* keep stats related to the purge mechanism here.
*/
struct {
struct list_head list;
unsigned int num;
size_t size;
unsigned int purged_num;
size_t purged_size;
struct mutex lock;
} purgeable;
uint64_t dma_fence_context;
/* Sequence number for the last job queued in bin_job_list.
* Starts at 0 (no jobs emitted).
*/
uint64_t emit_seqno;
/* Sequence number for the last completed job on the GPU.
* Starts at 0 (no jobs completed).
*/
uint64_t finished_seqno;
/* List of all struct vc4_exec_info for jobs to be executed in
* the binner. The first job in the list is the one currently
* programmed into ct0ca for execution.
*/
struct list_head bin_job_list;
/* List of all struct vc4_exec_info for jobs that have
* completed binning and are ready for rendering. The first
* job in the list is the one currently programmed into ct1ca
* for execution.
*/
struct list_head render_job_list;
/* List of the finished vc4_exec_infos waiting to be freed by
* job_done_work.
*/
struct list_head job_done_list;
/* Spinlock used to synchronize the job_list and seqno
* accesses between the IRQ handler and GEM ioctls.
*/
spinlock_t job_lock;
wait_queue_head_t job_wait_queue;
struct work_struct job_done_work;
/* Used to track the active perfmon if any. Access to this field is
* protected by job_lock.
*/
struct vc4_perfmon *active_perfmon;
/* List of struct vc4_seqno_cb for callbacks to be made from a
* workqueue when the given seqno is passed.
*/
struct list_head seqno_cb_list;
/* The memory used for storing binner tile alloc, tile state,
* and overflow memory allocations. This is freed when V3D
* powers down.
*/
struct vc4_bo *bin_bo;
/* Size of blocks allocated within bin_bo. */
uint32_t bin_alloc_size;
/* Bitmask of the bin_alloc_size chunks in bin_bo that are
* used.
*/
uint32_t bin_alloc_used;
/* Bitmask of the current bin_alloc used for overflow memory. */
uint32_t bin_alloc_overflow;
/* Incremented when an underrun error happened after an atomic commit.
* This is particularly useful to detect when a specific modeset is too
* demanding in term of memory or HVS bandwidth which is hard to guess
* at atomic check time.
*/
atomic_t underrun;
struct work_struct overflow_mem_work;
int power_refcount;
/* Set to true when the load tracker is active. */
bool load_tracker_enabled;
/* Mutex controlling the power refcount. */
struct mutex power_lock;
struct {
struct timer_list timer;
struct work_struct reset_work;
} hangcheck;
struct drm_modeset_lock ctm_state_lock;
struct drm_private_obj ctm_manager;
struct drm_private_obj hvs_channels;
struct drm_private_obj load_tracker;
/* Mutex for binner bo allocation. */
struct mutex bin_bo_lock;
/* Reference count for our binner bo. */
struct kref bin_bo_kref;
};
#define to_vc4_dev(_dev) \
container_of_const(_dev, struct vc4_dev, base)
struct vc4_bo {
struct drm_gem_dma_object base;
/* seqno of the last job to render using this BO. */
uint64_t seqno;
/* seqno of the last job to use the RCL to write to this BO.
*
* Note that this doesn't include binner overflow memory
* writes.
*/
uint64_t write_seqno;
bool t_format;
/* List entry for the BO's position in either
* vc4_exec_info->unref_list or vc4_dev->bo_cache.time_list
*/
struct list_head unref_head;
/* Time in jiffies when the BO was put in vc4->bo_cache. */
unsigned long free_time;
/* List entry for the BO's position in vc4_dev->bo_cache.size_list */
struct list_head size_head;
/* Struct for shader validation state, if created by
* DRM_IOCTL_VC4_CREATE_SHADER_BO.
*/
struct vc4_validated_shader_info *validated_shader;
/* One of enum vc4_kernel_bo_type, or VC4_BO_TYPE_COUNT + i
* for user-allocated labels.
*/
int label;
/* Count the number of active users. This is needed to determine
* whether we can move the BO to the purgeable list or not (when the BO
* is used by the GPU or the display engine we can't purge it).
*/
refcount_t usecnt;
/* Store purgeable/purged state here */
u32 madv;
struct mutex madv_lock;
};
#define to_vc4_bo(_bo) \
container_of_const(to_drm_gem_dma_obj(_bo), struct vc4_bo, base)
struct vc4_fence {
struct dma_fence base;
struct drm_device *dev;
/* vc4 seqno for signaled() test */
uint64_t seqno;
};
#define to_vc4_fence(_fence) \
container_of_const(_fence, struct vc4_fence, base)
struct vc4_seqno_cb {
struct work_struct work;
uint64_t seqno;
void (*func)(struct vc4_seqno_cb *cb);
};
struct vc4_v3d {
struct vc4_dev *vc4;
struct platform_device *pdev;
void __iomem *regs;
struct clk *clk;
struct debugfs_regset32 regset;
};
struct vc4_hvs {
struct vc4_dev *vc4;
struct platform_device *pdev;
void __iomem *regs;
u32 __iomem *dlist;
struct clk *core_clk;
unsigned long max_core_rate;
/* Memory manager for CRTCs to allocate space in the display
* list. Units are dwords.
*/
struct drm_mm dlist_mm;
/* Memory manager for the LBM memory used by HVS scaling. */
struct drm_mm lbm_mm;
spinlock_t mm_lock;
struct drm_mm_node mitchell_netravali_filter;
struct debugfs_regset32 regset;
/*
* Even if HDMI0 on the RPi4 can output modes requiring a pixel
* rate higher than 297MHz, it needs some adjustments in the
* config.txt file to be able to do so and thus won't always be
* available.
*/
bool vc5_hdmi_enable_hdmi_20;
/*
* 4096x2160@60 requires a core overclock to work, so register
* whether that is sufficient.
*/
bool vc5_hdmi_enable_4096by2160;
};
#define HVS_NUM_CHANNELS 3
struct vc4_hvs_state {
struct drm_private_state base;
unsigned long core_clock_rate;
struct {
unsigned in_use: 1;
unsigned long fifo_load;
struct drm_crtc_commit *pending_commit;
} fifo_state[HVS_NUM_CHANNELS];
};
#define to_vc4_hvs_state(_state) \
container_of_const(_state, struct vc4_hvs_state, base)
struct vc4_hvs_state *vc4_hvs_get_global_state(struct drm_atomic_state *state);
struct vc4_hvs_state *vc4_hvs_get_old_global_state(const struct drm_atomic_state *state);
struct vc4_hvs_state *vc4_hvs_get_new_global_state(const struct drm_atomic_state *state);
struct vc4_plane {
struct drm_plane base;
};
#define to_vc4_plane(_plane) \
container_of_const(_plane, struct vc4_plane, base)
enum vc4_scaling_mode {
VC4_SCALING_NONE,
VC4_SCALING_TPZ,
VC4_SCALING_PPF,
};
struct vc4_plane_state {
struct drm_plane_state base;
/* System memory copy of the display list for this element, computed
* at atomic_check time.
*/
u32 *dlist;
u32 dlist_size; /* Number of dwords allocated for the display list */
u32 dlist_count; /* Number of used dwords in the display list. */
/* Offset in the dlist to various words, for pageflip or
* cursor updates.
*/
u32 pos0_offset;
u32 pos2_offset;
u32 ptr0_offset;
u32 lbm_offset;
/* Offset where the plane's dlist was last stored in the
* hardware at vc4_crtc_atomic_flush() time.
*/
u32 __iomem *hw_dlist;
/* Clipped coordinates of the plane on the display. */
int crtc_x, crtc_y, crtc_w, crtc_h;
/* Clipped area being scanned from in the FB. */
u32 src_x, src_y;
u32 src_w[2], src_h[2];
/* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
enum vc4_scaling_mode x_scaling[2], y_scaling[2];
bool is_unity;
bool is_yuv;
/* Offset to start scanning out from the start of the plane's
* BO.
*/
u32 offsets[3];
/* Our allocation in LBM for temporary storage during scaling. */
struct drm_mm_node lbm;
/* Set when the plane has per-pixel alpha content or does not cover
* the entire screen. This is a hint to the CRTC that it might need
* to enable background color fill.
*/
bool needs_bg_fill;
/* Mark the dlist as initialized. Useful to avoid initializing it twice
* when async update is not possible.
*/
bool dlist_initialized;
/* Load of this plane on the HVS block. The load is expressed in HVS
* cycles/sec.
*/
u64 hvs_load;
/* Memory bandwidth needed for this plane. This is expressed in
* bytes/sec.
*/
u64 membus_load;
};
#define to_vc4_plane_state(_state) \
container_of_const(_state, struct vc4_plane_state, base)
enum vc4_encoder_type {
VC4_ENCODER_TYPE_NONE,
VC4_ENCODER_TYPE_HDMI0,
VC4_ENCODER_TYPE_HDMI1,
VC4_ENCODER_TYPE_VEC,
VC4_ENCODER_TYPE_DSI0,
VC4_ENCODER_TYPE_DSI1,
VC4_ENCODER_TYPE_SMI,
VC4_ENCODER_TYPE_DPI,
VC4_ENCODER_TYPE_TXP,
};
struct vc4_encoder {
struct drm_encoder base;
enum vc4_encoder_type type;
u32 clock_select;
void (*pre_crtc_configure)(struct drm_encoder *encoder, struct drm_atomic_state *state);
void (*pre_crtc_enable)(struct drm_encoder *encoder, struct drm_atomic_state *state);
void (*post_crtc_enable)(struct drm_encoder *encoder, struct drm_atomic_state *state);
void (*post_crtc_disable)(struct drm_encoder *encoder, struct drm_atomic_state *state);
void (*post_crtc_powerdown)(struct drm_encoder *encoder, struct drm_atomic_state *state);
};
#define to_vc4_encoder(_encoder) \
container_of_const(_encoder, struct vc4_encoder, base)
static inline
struct drm_encoder *vc4_find_encoder_by_type(struct drm_device *drm,
enum vc4_encoder_type type)
{
struct drm_encoder *encoder;
drm_for_each_encoder(encoder, drm) {
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
if (vc4_encoder->type == type)
return encoder;
}
return NULL;
}
struct vc4_crtc_data {
const char *name;
const char *debugfs_name;
/* Bitmask of channels (FIFOs) of the HVS that the output can source from */
unsigned int hvs_available_channels;
/* Which output of the HVS this pixelvalve sources from. */
int hvs_output;
};
extern const struct vc4_crtc_data vc4_txp_crtc_data;
struct vc4_pv_data {
struct vc4_crtc_data base;
/* Depth of the PixelValve FIFO in bytes */
unsigned int fifo_depth;
/* Number of pixels output per clock period */
u8 pixels_per_clock;
enum vc4_encoder_type encoder_types[4];
};
extern const struct vc4_pv_data bcm2835_pv0_data;
extern const struct vc4_pv_data bcm2835_pv1_data;
extern const struct vc4_pv_data bcm2835_pv2_data;
extern const struct vc4_pv_data bcm2711_pv0_data;
extern const struct vc4_pv_data bcm2711_pv1_data;
extern const struct vc4_pv_data bcm2711_pv2_data;
extern const struct vc4_pv_data bcm2711_pv3_data;
extern const struct vc4_pv_data bcm2711_pv4_data;
struct vc4_crtc {
struct drm_crtc base;
struct platform_device *pdev;
const struct vc4_crtc_data *data;
void __iomem *regs;
/* Timestamp at start of vblank irq - unaffected by lock delays. */
ktime_t t_vblank;
u8 lut_r[256];
u8 lut_g[256];
u8 lut_b[256];
struct drm_pending_vblank_event *event;
struct debugfs_regset32 regset;
/**
* @feeds_txp: True if the CRTC feeds our writeback controller.
*/
bool feeds_txp;
/**
* @irq_lock: Spinlock protecting the resources shared between
* the atomic code and our vblank handler.
*/
spinlock_t irq_lock;
/**
* @current_dlist: Start offset of the display list currently
* set in the HVS for that CRTC. Protected by @irq_lock, and
* copied in vc4_hvs_update_dlist() for the CRTC interrupt
* handler to have access to that value.
*/
unsigned int current_dlist;
/**
* @current_hvs_channel: HVS channel currently assigned to the
* CRTC. Protected by @irq_lock, and copied in
* vc4_hvs_atomic_begin() for the CRTC interrupt handler to have
* access to that value.
*/
unsigned int current_hvs_channel;
};
#define to_vc4_crtc(_crtc) \
container_of_const(_crtc, struct vc4_crtc, base)
static inline const struct vc4_crtc_data *
vc4_crtc_to_vc4_crtc_data(const struct vc4_crtc *crtc)
{
return crtc->data;
}
static inline const struct vc4_pv_data *
vc4_crtc_to_vc4_pv_data(const struct vc4_crtc *crtc)
{
const struct vc4_crtc_data *data = vc4_crtc_to_vc4_crtc_data(crtc);
return container_of_const(data, struct vc4_pv_data, base);
}
struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
struct drm_crtc_state *state);
struct vc4_crtc_state {
struct drm_crtc_state base;
/* Dlist area for this CRTC configuration. */
struct drm_mm_node mm;
bool txp_armed;
unsigned int assigned_channel;
struct {
unsigned int left;
unsigned int right;
unsigned int top;
unsigned int bottom;
} margins;
unsigned long hvs_load;
/* Transitional state below, only valid during atomic commits */
bool update_muxing;
};
#define VC4_HVS_CHANNEL_DISABLED ((unsigned int)-1)
#define to_vc4_crtc_state(_state) \
container_of_const(_state, struct vc4_crtc_state, base)
#define V3D_READ(offset) \
({ \
kunit_fail_current_test("Accessing a register in a unit test!\n"); \
readl(vc4->v3d->regs + (offset)); \
})
#define V3D_WRITE(offset, val) \
do { \
kunit_fail_current_test("Accessing a register in a unit test!\n"); \
writel(val, vc4->v3d->regs + (offset)); \
} while (0)
#define HVS_READ(offset) \
({ \
kunit_fail_current_test("Accessing a register in a unit test!\n"); \
readl(hvs->regs + (offset)); \
})
#define HVS_WRITE(offset, val) \
do { \
kunit_fail_current_test("Accessing a register in a unit test!\n"); \
writel(val, hvs->regs + (offset)); \
} while (0)
#define VC4_REG32(reg) { .name = #reg, .offset = reg }
struct vc4_exec_info {
struct vc4_dev *dev;
/* Sequence number for this bin/render job. */
uint64_t seqno;
/* Latest write_seqno of any BO that binning depends on. */
uint64_t bin_dep_seqno;
struct dma_fence *fence;
/* Last current addresses the hardware was processing when the
* hangcheck timer checked on us.
*/
uint32_t last_ct0ca, last_ct1ca;
/* Kernel-space copy of the ioctl arguments */
struct drm_vc4_submit_cl *args;
/* This is the array of BOs that were looked up at the start of exec.
* Command validation will use indices into this array.
*/
struct drm_gem_object **bo;
uint32_t bo_count;
/* List of BOs that are being written by the RCL. Other than
* the binner temporary storage, this is all the BOs written
* by the job.
*/
struct drm_gem_dma_object *rcl_write_bo[4];
uint32_t rcl_write_bo_count;
/* Pointers for our position in vc4->job_list */
struct list_head head;
/* List of other BOs used in the job that need to be released
* once the job is complete.
*/
struct list_head unref_list;
/* Current unvalidated indices into @bo loaded by the non-hardware
* VC4_PACKET_GEM_HANDLES.
*/
uint32_t bo_index[2];
/* This is the BO where we store the validated command lists, shader
* records, and uniforms.
*/
struct drm_gem_dma_object *exec_bo;
/**
* This tracks the per-shader-record state (packet 64) that
* determines the length of the shader record and the offset
* it's expected to be found at. It gets read in from the
* command lists.
*/
struct vc4_shader_state {
uint32_t addr;
/* Maximum vertex index referenced by any primitive using this
* shader state.
*/
uint32_t max_index;
} *shader_state;
/** How many shader states the user declared they were using. */
uint32_t shader_state_size;
/** How many shader state records the validator has seen. */
uint32_t shader_state_count;
bool found_tile_binning_mode_config_packet;
bool found_start_tile_binning_packet;
bool found_increment_semaphore_packet;
bool found_flush;
uint8_t bin_tiles_x, bin_tiles_y;
/* Physical address of the start of the tile alloc array
* (where each tile's binned CL will start)
*/
uint32_t tile_alloc_offset;
/* Bitmask of which binner slots are freed when this job completes. */
uint32_t bin_slots;
/**
* Computed addresses pointing into exec_bo where we start the
* bin thread (ct0) and render thread (ct1).
*/
uint32_t ct0ca, ct0ea;
uint32_t ct1ca, ct1ea;
/* Pointer to the unvalidated bin CL (if present). */
void *bin_u;
/* Pointers to the shader recs. These paddr gets incremented as CL
* packets are relocated in validate_gl_shader_state, and the vaddrs
* (u and v) get incremented and size decremented as the shader recs
* themselves are validated.
*/
void *shader_rec_u;
void *shader_rec_v;
uint32_t shader_rec_p;
uint32_t shader_rec_size;
/* Pointers to the uniform data. These pointers are incremented, and
* size decremented, as each batch of uniforms is uploaded.
*/
void *uniforms_u;
void *uniforms_v;
uint32_t uniforms_p;
uint32_t uniforms_size;
/* Pointer to a performance monitor object if the user requested it,
* NULL otherwise.
*/
struct vc4_perfmon *perfmon;
/* Whether the exec has taken a reference to the binner BO, which should
* happen with a VC4_PACKET_TILE_BINNING_MODE_CONFIG packet.
*/
bool bin_bo_used;
};
/* Per-open file private data. Any driver-specific resource that has to be
* released when the DRM file is closed should be placed here.
*/
struct vc4_file {
struct vc4_dev *dev;
struct {
struct idr idr;
struct mutex lock;
} perfmon;
bool bin_bo_used;
};
static inline struct vc4_exec_info *
vc4_first_bin_job(struct vc4_dev *vc4)
{
return list_first_entry_or_null(&vc4->bin_job_list,
struct vc4_exec_info, head);
}
static inline struct vc4_exec_info *
vc4_first_render_job(struct vc4_dev *vc4)
{
return list_first_entry_or_null(&vc4->render_job_list,
struct vc4_exec_info, head);
}
static inline struct vc4_exec_info *
vc4_last_render_job(struct vc4_dev *vc4)
{
if (list_empty(&vc4->render_job_list))
return NULL;
return list_last_entry(&vc4->render_job_list,
struct vc4_exec_info, head);
}
/**
* struct vc4_texture_sample_info - saves the offsets into the UBO for texture
* setup parameters.
*
* This will be used at draw time to relocate the reference to the texture
* contents in p0, and validate that the offset combined with
* width/height/stride/etc. from p1 and p2/p3 doesn't sample outside the BO.
* Note that the hardware treats unprovided config parameters as 0, so not all
* of them need to be set up for every texure sample, and we'll store ~0 as
* the offset to mark the unused ones.
*
* See the VC4 3D architecture guide page 41 ("Texture and Memory Lookup Unit
* Setup") for definitions of the texture parameters.
*/
struct vc4_texture_sample_info {
bool is_direct;
uint32_t p_offset[4];
};
/**
* struct vc4_validated_shader_info - information about validated shaders that
* needs to be used from command list validation.
*
* For a given shader, each time a shader state record references it, we need
* to verify that the shader doesn't read more uniforms than the shader state
* record's uniform BO pointer can provide, and we need to apply relocations
* and validate the shader state record's uniforms that define the texture
* samples.
*/
struct vc4_validated_shader_info {
uint32_t uniforms_size;
uint32_t uniforms_src_size;
uint32_t num_texture_samples;
struct vc4_texture_sample_info *texture_samples;
uint32_t num_uniform_addr_offsets;
uint32_t *uniform_addr_offsets;
bool is_threaded;
};
/**
* __wait_for - magic wait macro
*
* Macro to help avoid open coding check/wait/timeout patterns. Note that it's
* important that we check the condition again after having timed out, since the
* timeout could be due to preemption or similar and we've never had a chance to
* check the condition before the timeout.
*/
#define __wait_for(OP, COND, US, Wmin, Wmax) ({ \
const ktime_t end__ = ktime_add_ns(ktime_get_raw(), 1000ll * (US)); \
long wait__ = (Wmin); /* recommended min for usleep is 10 us */ \
int ret__; \
might_sleep(); \
for (;;) { \
const bool expired__ = ktime_after(ktime_get_raw(), end__); \
OP; \
/* Guarantee COND check prior to timeout */ \
barrier(); \
if (COND) { \
ret__ = 0; \
break; \
} \
if (expired__) { \
ret__ = -ETIMEDOUT; \
break; \
} \
usleep_range(wait__, wait__ * 2); \
if (wait__ < (Wmax)) \
wait__ <<= 1; \
} \
ret__; \
})
#define _wait_for(COND, US, Wmin, Wmax) __wait_for(, (COND), (US), (Wmin), \
(Wmax))
#define wait_for(COND, MS) _wait_for((COND), (MS) * 1000, 10, 1000)
/* vc4_bo.c */
struct drm_gem_object *vc4_create_object(struct drm_device *dev, size_t size);
struct vc4_bo *vc4_bo_create(struct drm_device *dev, size_t size,
bool from_cache, enum vc4_kernel_bo_type type);
int vc4_bo_dumb_create(struct drm_file *file_priv,
struct drm_device *dev,
struct drm_mode_create_dumb *args);
int vc4_create_bo_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_create_shader_bo_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_mmap_bo_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_set_tiling_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_get_tiling_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_label_bo_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_bo_cache_init(struct drm_device *dev);
int vc4_bo_inc_usecnt(struct vc4_bo *bo);
void vc4_bo_dec_usecnt(struct vc4_bo *bo);
void vc4_bo_add_to_purgeable_pool(struct vc4_bo *bo);
void vc4_bo_remove_from_purgeable_pool(struct vc4_bo *bo);
int vc4_bo_debugfs_init(struct drm_minor *minor);
/* vc4_crtc.c */
extern struct platform_driver vc4_crtc_driver;
int vc4_crtc_disable_at_boot(struct drm_crtc *crtc);
int __vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
struct vc4_crtc *vc4_crtc, const struct vc4_crtc_data *data,
struct drm_plane *primary_plane,
const struct drm_crtc_funcs *crtc_funcs,
const struct drm_crtc_helper_funcs *crtc_helper_funcs,
bool feeds_txp);
int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
struct vc4_crtc *vc4_crtc, const struct vc4_crtc_data *data,
const struct drm_crtc_funcs *crtc_funcs,
const struct drm_crtc_helper_funcs *crtc_helper_funcs,
bool feeds_txp);
int vc4_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags,
struct drm_modeset_acquire_ctx *ctx);
int vc4_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state);
struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc);
void vc4_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state);
void vc4_crtc_reset(struct drm_crtc *crtc);
void vc4_crtc_handle_vblank(struct vc4_crtc *crtc);
void vc4_crtc_send_vblank(struct drm_crtc *crtc);
int vc4_crtc_late_register(struct drm_crtc *crtc);
void vc4_crtc_get_margins(struct drm_crtc_state *state,
unsigned int *left, unsigned int *right,
unsigned int *top, unsigned int *bottom);
/* vc4_debugfs.c */
void vc4_debugfs_init(struct drm_minor *minor);
#ifdef CONFIG_DEBUG_FS
void vc4_debugfs_add_regset32(struct drm_device *drm,
const char *filename,
struct debugfs_regset32 *regset);
#else
static inline void vc4_debugfs_add_regset32(struct drm_device *drm,
const char *filename,
struct debugfs_regset32 *regset)
{}
#endif
/* vc4_drv.c */
void __iomem *vc4_ioremap_regs(struct platform_device *dev, int index);
int vc4_dumb_fixup_args(struct drm_mode_create_dumb *args);
/* vc4_dpi.c */
extern struct platform_driver vc4_dpi_driver;
/* vc4_dsi.c */
extern struct platform_driver vc4_dsi_driver;
/* vc4_fence.c */
extern const struct dma_fence_ops vc4_fence_ops;
/* vc4_gem.c */
int vc4_gem_init(struct drm_device *dev);
int vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
void vc4_submit_next_bin_job(struct drm_device *dev);
void vc4_submit_next_render_job(struct drm_device *dev);
void vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec);
int vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno,
uint64_t timeout_ns, bool interruptible);
void vc4_job_handle_completed(struct vc4_dev *vc4);
int vc4_queue_seqno_cb(struct drm_device *dev,
struct vc4_seqno_cb *cb, uint64_t seqno,
void (*func)(struct vc4_seqno_cb *cb));
int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
/* vc4_hdmi.c */
extern struct platform_driver vc4_hdmi_driver;
/* vc4_vec.c */
extern struct platform_driver vc4_vec_driver;
/* vc4_txp.c */
extern struct platform_driver vc4_txp_driver;
/* vc4_irq.c */
void vc4_irq_enable(struct drm_device *dev);
void vc4_irq_disable(struct drm_device *dev);
int vc4_irq_install(struct drm_device *dev, int irq);
void vc4_irq_uninstall(struct drm_device *dev);
void vc4_irq_reset(struct drm_device *dev);
/* vc4_hvs.c */
extern struct platform_driver vc4_hvs_driver;
struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev);
void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int output);
int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output);
u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo);
int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state);
void vc4_hvs_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state);
void vc4_hvs_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state);
void vc4_hvs_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state);
void vc4_hvs_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state);
void vc4_hvs_dump_state(struct vc4_hvs *hvs);
void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel);
void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel);
int vc4_hvs_debugfs_init(struct drm_minor *minor);
/* vc4_kms.c */
int vc4_kms_load(struct drm_device *dev);
/* vc4_plane.c */
struct drm_plane *vc4_plane_init(struct drm_device *dev,
enum drm_plane_type type,
uint32_t possible_crtcs);
int vc4_plane_create_additional_planes(struct drm_device *dev);
u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist);
u32 vc4_plane_dlist_size(const struct drm_plane_state *state);
void vc4_plane_async_set_fb(struct drm_plane *plane,
struct drm_framebuffer *fb);
/* vc4_v3d.c */
extern struct platform_driver vc4_v3d_driver;
extern const struct of_device_id vc4_v3d_dt_match[];
int vc4_v3d_get_bin_slot(struct vc4_dev *vc4);
int vc4_v3d_bin_bo_get(struct vc4_dev *vc4, bool *used);
void vc4_v3d_bin_bo_put(struct vc4_dev *vc4);
int vc4_v3d_pm_get(struct vc4_dev *vc4);
void vc4_v3d_pm_put(struct vc4_dev *vc4);
int vc4_v3d_debugfs_init(struct drm_minor *minor);
/* vc4_validate.c */
int
vc4_validate_bin_cl(struct drm_device *dev,
void *validated,
void *unvalidated,
struct vc4_exec_info *exec);
int
vc4_validate_shader_recs(struct drm_device *dev, struct vc4_exec_info *exec);
struct drm_gem_dma_object *vc4_use_bo(struct vc4_exec_info *exec,
uint32_t hindex);
int vc4_get_rcl(struct drm_device *dev, struct vc4_exec_info *exec);
bool vc4_check_tex_size(struct vc4_exec_info *exec,
struct drm_gem_dma_object *fbo,
uint32_t offset, uint8_t tiling_format,
uint32_t width, uint32_t height, uint8_t cpp);
/* vc4_validate_shader.c */
struct vc4_validated_shader_info *
vc4_validate_shader(struct drm_gem_dma_object *shader_obj);
/* vc4_perfmon.c */
void vc4_perfmon_get(struct vc4_perfmon *perfmon);
void vc4_perfmon_put(struct vc4_perfmon *perfmon);
void vc4_perfmon_start(struct vc4_dev *vc4, struct vc4_perfmon *perfmon);
void vc4_perfmon_stop(struct vc4_dev *vc4, struct vc4_perfmon *perfmon,
bool capture);
struct vc4_perfmon *vc4_perfmon_find(struct vc4_file *vc4file, int id);
void vc4_perfmon_open_file(struct vc4_file *vc4file);
void vc4_perfmon_close_file(struct vc4_file *vc4file);
int vc4_perfmon_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_perfmon_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int vc4_perfmon_get_values_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
#endif /* _VC4_DRV_H_ */