blob: 5d42ab9b176a389be85102b6dc94a271ffcf1ec5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* IIO core driver for Bosch BMI323 6-Axis IMU.
*
* Copyright (C) 2023, Jagath Jog J <jagathjog1996@gmail.com>
*
* Datasheet: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi323-ds000.pdf
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>
#include <asm/unaligned.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "bmi323.h"
enum bmi323_sensor_type {
BMI323_ACCEL,
BMI323_GYRO,
BMI323_SENSORS_CNT,
};
enum bmi323_opr_mode {
ACC_GYRO_MODE_DISABLE = 0x00,
GYRO_DRIVE_MODE_ENABLED = 0x01,
ACC_GYRO_MODE_DUTYCYCLE = 0x03,
ACC_GYRO_MODE_CONTINOUS = 0x04,
ACC_GYRO_MODE_HIGH_PERF = 0x07,
};
enum bmi323_state {
BMI323_IDLE,
BMI323_BUFFER_DRDY_TRIGGERED,
BMI323_BUFFER_FIFO,
};
enum bmi323_irq_pin {
BMI323_IRQ_DISABLED,
BMI323_IRQ_INT1,
BMI323_IRQ_INT2,
};
enum bmi323_3db_bw {
BMI323_BW_ODR_BY_2,
BMI323_BW_ODR_BY_4,
};
enum bmi323_scan {
BMI323_ACCEL_X,
BMI323_ACCEL_Y,
BMI323_ACCEL_Z,
BMI323_GYRO_X,
BMI323_GYRO_Y,
BMI323_GYRO_Z,
BMI323_CHAN_MAX
};
struct bmi323_hw {
u8 data;
u8 config;
const int (*scale_table)[2];
int scale_table_len;
};
/*
* The accelerometer supports +-2G/4G/8G/16G ranges, and the resolution of
* each sample is 16 bits, signed.
* At +-8G the scale can calculated by
* ((8 + 8) * 9.80665 / (2^16 - 1)) * 10^6 = 2394.23819 scale in micro
*
*/
static const int bmi323_accel_scale[][2] = {
{ 0, 598 },
{ 0, 1197 },
{ 0, 2394 },
{ 0, 4788 },
};
static const int bmi323_gyro_scale[][2] = {
{ 0, 66 },
{ 0, 133 },
{ 0, 266 },
{ 0, 532 },
{ 0, 1065 },
};
static const int bmi323_accel_gyro_avrg[] = {0, 2, 4, 8, 16, 32, 64};
static const struct bmi323_hw bmi323_hw[2] = {
[BMI323_ACCEL] = {
.data = BMI323_ACCEL_X_REG,
.config = BMI323_ACC_CONF_REG,
.scale_table = bmi323_accel_scale,
.scale_table_len = ARRAY_SIZE(bmi323_accel_scale),
},
[BMI323_GYRO] = {
.data = BMI323_GYRO_X_REG,
.config = BMI323_GYRO_CONF_REG,
.scale_table = bmi323_gyro_scale,
.scale_table_len = ARRAY_SIZE(bmi323_gyro_scale),
},
};
struct bmi323_data {
struct device *dev;
struct regmap *regmap;
struct iio_mount_matrix orientation;
enum bmi323_irq_pin irq_pin;
struct iio_trigger *trig;
bool drdy_trigger_enabled;
enum bmi323_state state;
s64 fifo_tstamp, old_fifo_tstamp;
u32 odrns[BMI323_SENSORS_CNT];
u32 odrhz[BMI323_SENSORS_CNT];
unsigned int feature_events;
/*
* Lock to protect the members of device's private data from concurrent
* access and also to serialize the access of extended registers.
* See bmi323_write_ext_reg(..) for more info.
*/
struct mutex mutex;
int watermark;
__le16 fifo_buff[BMI323_FIFO_FULL_IN_WORDS] __aligned(IIO_DMA_MINALIGN);
struct {
__le16 channels[BMI323_CHAN_MAX];
s64 ts __aligned(8);
} buffer;
__le16 steps_count[BMI323_STEP_LEN];
};
static const struct iio_mount_matrix *
bmi323_get_mount_matrix(const struct iio_dev *idev,
const struct iio_chan_spec *chan)
{
struct bmi323_data *data = iio_priv(idev);
return &data->orientation;
}
static const struct iio_chan_spec_ext_info bmi323_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, bmi323_get_mount_matrix),
{ }
};
static const struct iio_event_spec bmi323_step_wtrmrk_event = {
.type = IIO_EV_TYPE_CHANGE,
.dir = IIO_EV_DIR_NONE,
.mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE),
};
static const struct iio_event_spec bmi323_accel_event[] = {
{
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_FALLING,
.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_PERIOD) |
BIT(IIO_EV_INFO_HYSTERESIS) |
BIT(IIO_EV_INFO_ENABLE),
},
{
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_PERIOD) |
BIT(IIO_EV_INFO_HYSTERESIS) |
BIT(IIO_EV_INFO_ENABLE),
},
{
.type = IIO_EV_TYPE_GESTURE,
.dir = IIO_EV_DIR_SINGLETAP,
.mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_RESET_TIMEOUT),
},
{
.type = IIO_EV_TYPE_GESTURE,
.dir = IIO_EV_DIR_DOUBLETAP,
.mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_RESET_TIMEOUT) |
BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
},
};
#define BMI323_ACCEL_CHANNEL(_type, _axis, _index) { \
.type = _type, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
.ext_info = bmi323_ext_info, \
.event_spec = bmi323_accel_event, \
.num_event_specs = ARRAY_SIZE(bmi323_accel_event), \
}
#define BMI323_GYRO_CHANNEL(_type, _axis, _index) { \
.type = _type, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
.ext_info = bmi323_ext_info, \
}
static const struct iio_chan_spec bmi323_channels[] = {
BMI323_ACCEL_CHANNEL(IIO_ACCEL, X, BMI323_ACCEL_X),
BMI323_ACCEL_CHANNEL(IIO_ACCEL, Y, BMI323_ACCEL_Y),
BMI323_ACCEL_CHANNEL(IIO_ACCEL, Z, BMI323_ACCEL_Z),
BMI323_GYRO_CHANNEL(IIO_ANGL_VEL, X, BMI323_GYRO_X),
BMI323_GYRO_CHANNEL(IIO_ANGL_VEL, Y, BMI323_GYRO_Y),
BMI323_GYRO_CHANNEL(IIO_ANGL_VEL, Z, BMI323_GYRO_Z),
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = -1,
},
{
.type = IIO_STEPS,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_ENABLE),
.scan_index = -1,
.event_spec = &bmi323_step_wtrmrk_event,
.num_event_specs = 1,
},
IIO_CHAN_SOFT_TIMESTAMP(BMI323_CHAN_MAX),
};
static const int bmi323_acc_gyro_odr[][2] = {
{ 0, 781250 },
{ 1, 562500 },
{ 3, 125000 },
{ 6, 250000 },
{ 12, 500000 },
{ 25, 0 },
{ 50, 0 },
{ 100, 0 },
{ 200, 0 },
{ 400, 0 },
{ 800, 0 },
};
static const int bmi323_acc_gyro_odrns[] = {
1280 * MEGA,
640 * MEGA,
320 * MEGA,
160 * MEGA,
80 * MEGA,
40 * MEGA,
20 * MEGA,
10 * MEGA,
5 * MEGA,
2500 * KILO,
1250 * KILO,
};
static enum bmi323_sensor_type bmi323_iio_to_sensor(enum iio_chan_type iio_type)
{
switch (iio_type) {
case IIO_ACCEL:
return BMI323_ACCEL;
case IIO_ANGL_VEL:
return BMI323_GYRO;
default:
return -EINVAL;
}
}
static int bmi323_set_mode(struct bmi323_data *data,
enum bmi323_sensor_type sensor,
enum bmi323_opr_mode mode)
{
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, bmi323_hw[sensor].config,
BMI323_ACC_GYRO_CONF_MODE_MSK,
FIELD_PREP(BMI323_ACC_GYRO_CONF_MODE_MSK,
mode));
}
/*
* When writing data to extended register there must be no communication to
* any other register before write transaction is complete.
* See datasheet section 6.2 Extended Register Map Description.
*/
static int bmi323_write_ext_reg(struct bmi323_data *data, unsigned int ext_addr,
unsigned int ext_data)
{
int ret, feature_status;
ret = regmap_read(data->regmap, BMI323_FEAT_DATA_STATUS,
&feature_status);
if (ret)
return ret;
if (!FIELD_GET(BMI323_FEAT_DATA_TX_RDY_MSK, feature_status))
return -EBUSY;
ret = regmap_write(data->regmap, BMI323_FEAT_DATA_ADDR, ext_addr);
if (ret)
return ret;
return regmap_write(data->regmap, BMI323_FEAT_DATA_TX, ext_data);
}
/*
* When reading data from extended register there must be no communication to
* any other register before read transaction is complete.
* See datasheet section 6.2 Extended Register Map Description.
*/
static int bmi323_read_ext_reg(struct bmi323_data *data, unsigned int ext_addr,
unsigned int *ext_data)
{
int ret, feature_status;
ret = regmap_read(data->regmap, BMI323_FEAT_DATA_STATUS,
&feature_status);
if (ret)
return ret;
if (!FIELD_GET(BMI323_FEAT_DATA_TX_RDY_MSK, feature_status))
return -EBUSY;
ret = regmap_write(data->regmap, BMI323_FEAT_DATA_ADDR, ext_addr);
if (ret)
return ret;
return regmap_read(data->regmap, BMI323_FEAT_DATA_TX, ext_data);
}
static int bmi323_update_ext_reg(struct bmi323_data *data,
unsigned int ext_addr,
unsigned int mask, unsigned int ext_data)
{
unsigned int value;
int ret;
ret = bmi323_read_ext_reg(data, ext_addr, &value);
if (ret)
return ret;
set_mask_bits(&value, mask, ext_data);
return bmi323_write_ext_reg(data, ext_addr, value);
}
static int bmi323_get_error_status(struct bmi323_data *data)
{
int error, ret;
guard(mutex)(&data->mutex);
ret = regmap_read(data->regmap, BMI323_ERR_REG, &error);
if (ret)
return ret;
if (error)
dev_err(data->dev, "Sensor error 0x%x\n", error);
return error;
}
static int bmi323_feature_engine_events(struct bmi323_data *data,
const unsigned int event_mask,
bool state)
{
unsigned int value;
int ret;
ret = regmap_read(data->regmap, BMI323_FEAT_IO0_REG, &value);
if (ret)
return ret;
/* Register must be cleared before changing an active config */
ret = regmap_write(data->regmap, BMI323_FEAT_IO0_REG, 0);
if (ret)
return ret;
if (state)
value |= event_mask;
else
value &= ~event_mask;
ret = regmap_write(data->regmap, BMI323_FEAT_IO0_REG, value);
if (ret)
return ret;
return regmap_write(data->regmap, BMI323_FEAT_IO_STATUS_REG,
BMI323_FEAT_IO_STATUS_MSK);
}
static int bmi323_step_wtrmrk_en(struct bmi323_data *data, int state)
{
enum bmi323_irq_pin step_irq;
int ret;
guard(mutex)(&data->mutex);
if (!FIELD_GET(BMI323_FEAT_IO0_STP_CNT_MSK, data->feature_events))
return -EINVAL;
if (state)
step_irq = data->irq_pin;
else
step_irq = BMI323_IRQ_DISABLED;
ret = bmi323_update_ext_reg(data, BMI323_STEP_SC1_REG,
BMI323_STEP_SC1_WTRMRK_MSK,
FIELD_PREP(BMI323_STEP_SC1_WTRMRK_MSK,
state ? 1 : 0));
if (ret)
return ret;
return regmap_update_bits(data->regmap, BMI323_INT_MAP1_REG,
BMI323_STEP_CNT_MSK,
FIELD_PREP(BMI323_STEP_CNT_MSK, step_irq));
}
static int bmi323_motion_config_reg(enum iio_event_direction dir)
{
switch (dir) {
case IIO_EV_DIR_RISING:
return BMI323_ANYMO1_REG;
case IIO_EV_DIR_FALLING:
return BMI323_NOMO1_REG;
default:
return -EINVAL;
}
}
static int bmi323_motion_event_en(struct bmi323_data *data,
enum iio_event_direction dir, int state)
{
unsigned int state_value = state ? BMI323_FEAT_XYZ_MSK : 0;
int config, ret, msk, raw, field_value;
enum bmi323_irq_pin motion_irq;
int irq_msk, irq_field_val;
if (state)
motion_irq = data->irq_pin;
else
motion_irq = BMI323_IRQ_DISABLED;
switch (dir) {
case IIO_EV_DIR_RISING:
msk = BMI323_FEAT_IO0_XYZ_MOTION_MSK;
raw = 512;
config = BMI323_ANYMO1_REG;
irq_msk = BMI323_MOTION_MSK;
irq_field_val = FIELD_PREP(BMI323_MOTION_MSK, motion_irq);
field_value = FIELD_PREP(BMI323_FEAT_IO0_XYZ_MOTION_MSK,
state_value);
break;
case IIO_EV_DIR_FALLING:
msk = BMI323_FEAT_IO0_XYZ_NOMOTION_MSK;
raw = 0;
config = BMI323_NOMO1_REG;
irq_msk = BMI323_NOMOTION_MSK;
irq_field_val = FIELD_PREP(BMI323_NOMOTION_MSK, motion_irq);
field_value = FIELD_PREP(BMI323_FEAT_IO0_XYZ_NOMOTION_MSK,
state_value);
break;
default:
return -EINVAL;
}
guard(mutex)(&data->mutex);
ret = bmi323_feature_engine_events(data, msk, state);
if (ret)
return ret;
ret = bmi323_update_ext_reg(data, config,
BMI323_MO1_REF_UP_MSK,
FIELD_PREP(BMI323_MO1_REF_UP_MSK, 0));
if (ret)
return ret;
/* Set initial value to avoid interrupts while enabling*/
ret = bmi323_update_ext_reg(data, config,
BMI323_MO1_SLOPE_TH_MSK,
FIELD_PREP(BMI323_MO1_SLOPE_TH_MSK, raw));
if (ret)
return ret;
ret = regmap_update_bits(data->regmap, BMI323_INT_MAP1_REG, irq_msk,
irq_field_val);
if (ret)
return ret;
set_mask_bits(&data->feature_events, msk, field_value);
return 0;
}
static int bmi323_tap_event_en(struct bmi323_data *data,
enum iio_event_direction dir, int state)
{
enum bmi323_irq_pin tap_irq;
int ret, tap_enabled;
guard(mutex)(&data->mutex);
if (data->odrhz[BMI323_ACCEL] < 200) {
dev_err(data->dev, "Invalid accelerometer parameter\n");
return -EINVAL;
}
switch (dir) {
case IIO_EV_DIR_SINGLETAP:
ret = bmi323_feature_engine_events(data,
BMI323_FEAT_IO0_S_TAP_MSK,
state);
if (ret)
return ret;
set_mask_bits(&data->feature_events, BMI323_FEAT_IO0_S_TAP_MSK,
FIELD_PREP(BMI323_FEAT_IO0_S_TAP_MSK, state));
break;
case IIO_EV_DIR_DOUBLETAP:
ret = bmi323_feature_engine_events(data,
BMI323_FEAT_IO0_D_TAP_MSK,
state);
if (ret)
return ret;
set_mask_bits(&data->feature_events, BMI323_FEAT_IO0_D_TAP_MSK,
FIELD_PREP(BMI323_FEAT_IO0_D_TAP_MSK, state));
break;
default:
return -EINVAL;
}
tap_enabled = FIELD_GET(BMI323_FEAT_IO0_S_TAP_MSK |
BMI323_FEAT_IO0_D_TAP_MSK,
data->feature_events);
if (tap_enabled)
tap_irq = data->irq_pin;
else
tap_irq = BMI323_IRQ_DISABLED;
ret = regmap_update_bits(data->regmap, BMI323_INT_MAP2_REG,
BMI323_TAP_MSK,
FIELD_PREP(BMI323_TAP_MSK, tap_irq));
if (ret)
return ret;
if (!state)
return 0;
ret = bmi323_update_ext_reg(data, BMI323_TAP1_REG,
BMI323_TAP1_MAX_PEAKS_MSK,
FIELD_PREP(BMI323_TAP1_MAX_PEAKS_MSK,
0x04));
if (ret)
return ret;
ret = bmi323_update_ext_reg(data, BMI323_TAP1_REG,
BMI323_TAP1_AXIS_SEL_MSK,
FIELD_PREP(BMI323_TAP1_AXIS_SEL_MSK,
BMI323_AXIS_XYZ_MSK));
if (ret)
return ret;
return bmi323_update_ext_reg(data, BMI323_TAP1_REG,
BMI323_TAP1_TIMOUT_MSK,
FIELD_PREP(BMI323_TAP1_TIMOUT_MSK,
0));
}
static ssize_t in_accel_gesture_tap_wait_dur_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmi323_data *data = iio_priv(indio_dev);
unsigned int reg_value, raw;
int ret, val[2];
scoped_guard(mutex, &data->mutex) {
ret = bmi323_read_ext_reg(data, BMI323_TAP2_REG, &reg_value);
if (ret)
return ret;
}
raw = FIELD_GET(BMI323_TAP2_MAX_DUR_MSK, reg_value);
val[0] = raw / BMI323_MAX_GES_DUR_SCALE;
val[1] = BMI323_RAW_TO_MICRO(raw, BMI323_MAX_GES_DUR_SCALE);
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(val),
val);
}
static ssize_t in_accel_gesture_tap_wait_dur_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmi323_data *data = iio_priv(indio_dev);
int ret, val_int, val_fract, raw;
ret = iio_str_to_fixpoint(buf, 100000, &val_int, &val_fract);
if (ret)
return ret;
raw = BMI323_INT_MICRO_TO_RAW(val_int, val_fract,
BMI323_MAX_GES_DUR_SCALE);
if (!in_range(raw, 0, 64))
return -EINVAL;
guard(mutex)(&data->mutex);
ret = bmi323_update_ext_reg(data, BMI323_TAP2_REG,
BMI323_TAP2_MAX_DUR_MSK,
FIELD_PREP(BMI323_TAP2_MAX_DUR_MSK, raw));
if (ret)
return ret;
return len;
}
/*
* Maximum duration from first tap within the second tap is expected to happen.
* This timeout is applicable only if gesture_tap_wait_timeout is enabled.
*/
static IIO_DEVICE_ATTR_RW(in_accel_gesture_tap_wait_dur, 0);
static ssize_t in_accel_gesture_tap_wait_timeout_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmi323_data *data = iio_priv(indio_dev);
unsigned int reg_value, raw;
int ret;
scoped_guard(mutex, &data->mutex) {
ret = bmi323_read_ext_reg(data, BMI323_TAP1_REG, &reg_value);
if (ret)
return ret;
}
raw = FIELD_GET(BMI323_TAP1_TIMOUT_MSK, reg_value);
return iio_format_value(buf, IIO_VAL_INT, 1, &raw);
}
static ssize_t in_accel_gesture_tap_wait_timeout_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmi323_data *data = iio_priv(indio_dev);
bool val;
int ret;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
guard(mutex)(&data->mutex);
ret = bmi323_update_ext_reg(data, BMI323_TAP1_REG,
BMI323_TAP1_TIMOUT_MSK,
FIELD_PREP(BMI323_TAP1_TIMOUT_MSK, val));
if (ret)
return ret;
return len;
}
/* Enable/disable gesture confirmation with wait time */
static IIO_DEVICE_ATTR_RW(in_accel_gesture_tap_wait_timeout, 0);
static IIO_CONST_ATTR(in_accel_gesture_tap_wait_dur_available,
"[0.0 0.04 2.52]");
static IIO_CONST_ATTR(in_accel_gesture_doubletap_tap2_min_delay_available,
"[0.005 0.005 0.075]");
static IIO_CONST_ATTR(in_accel_gesture_tap_reset_timeout_available,
"[0.04 0.04 0.6]");
static IIO_CONST_ATTR(in_accel_gesture_tap_value_available, "[0.0 0.002 1.99]");
static IIO_CONST_ATTR(in_accel_mag_value_available, "[0.0 0.002 7.99]");
static IIO_CONST_ATTR(in_accel_mag_period_available, "[0.0 0.02 162.0]");
static IIO_CONST_ATTR(in_accel_mag_hysteresis_available, "[0.0 0.002 1.99]");
static struct attribute *bmi323_event_attributes[] = {
&iio_const_attr_in_accel_gesture_tap_value_available.dev_attr.attr,
&iio_const_attr_in_accel_gesture_tap_reset_timeout_available.dev_attr.attr,
&iio_const_attr_in_accel_gesture_doubletap_tap2_min_delay_available.dev_attr.attr,
&iio_const_attr_in_accel_gesture_tap_wait_dur_available.dev_attr.attr,
&iio_dev_attr_in_accel_gesture_tap_wait_timeout.dev_attr.attr,
&iio_dev_attr_in_accel_gesture_tap_wait_dur.dev_attr.attr,
&iio_const_attr_in_accel_mag_value_available.dev_attr.attr,
&iio_const_attr_in_accel_mag_period_available.dev_attr.attr,
&iio_const_attr_in_accel_mag_hysteresis_available.dev_attr.attr,
NULL
};
static const struct attribute_group bmi323_event_attribute_group = {
.attrs = bmi323_event_attributes,
};
static int bmi323_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir, int state)
{
struct bmi323_data *data = iio_priv(indio_dev);
switch (type) {
case IIO_EV_TYPE_MAG:
return bmi323_motion_event_en(data, dir, state);
case IIO_EV_TYPE_GESTURE:
return bmi323_tap_event_en(data, dir, state);
case IIO_EV_TYPE_CHANGE:
return bmi323_step_wtrmrk_en(data, state);
default:
return -EINVAL;
}
}
static int bmi323_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct bmi323_data *data = iio_priv(indio_dev);
int ret, value, reg_val;
guard(mutex)(&data->mutex);
switch (chan->type) {
case IIO_ACCEL:
switch (dir) {
case IIO_EV_DIR_SINGLETAP:
ret = FIELD_GET(BMI323_FEAT_IO0_S_TAP_MSK,
data->feature_events);
break;
case IIO_EV_DIR_DOUBLETAP:
ret = FIELD_GET(BMI323_FEAT_IO0_D_TAP_MSK,
data->feature_events);
break;
case IIO_EV_DIR_RISING:
value = FIELD_GET(BMI323_FEAT_IO0_XYZ_MOTION_MSK,
data->feature_events);
ret = value ? 1 : 0;
break;
case IIO_EV_DIR_FALLING:
value = FIELD_GET(BMI323_FEAT_IO0_XYZ_NOMOTION_MSK,
data->feature_events);
ret = value ? 1 : 0;
break;
default:
ret = -EINVAL;
break;
}
return ret;
case IIO_STEPS:
ret = regmap_read(data->regmap, BMI323_INT_MAP1_REG, &reg_val);
if (ret)
return ret;
return FIELD_GET(BMI323_STEP_CNT_MSK, reg_val) ? 1 : 0;
default:
return -EINVAL;
}
}
static int bmi323_write_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct bmi323_data *data = iio_priv(indio_dev);
unsigned int raw;
int reg;
guard(mutex)(&data->mutex);
switch (type) {
case IIO_EV_TYPE_GESTURE:
switch (info) {
case IIO_EV_INFO_VALUE:
if (!in_range(val, 0, 2))
return -EINVAL;
raw = BMI323_INT_MICRO_TO_RAW(val, val2,
BMI323_TAP_THRES_SCALE);
return bmi323_update_ext_reg(data, BMI323_TAP2_REG,
BMI323_TAP2_THRES_MSK,
FIELD_PREP(BMI323_TAP2_THRES_MSK,
raw));
case IIO_EV_INFO_RESET_TIMEOUT:
if (val || !in_range(val2, 40000, 560001))
return -EINVAL;
raw = BMI323_INT_MICRO_TO_RAW(val, val2,
BMI323_QUITE_TIM_GES_SCALE);
return bmi323_update_ext_reg(data, BMI323_TAP3_REG,
BMI323_TAP3_QT_AFT_GES_MSK,
FIELD_PREP(BMI323_TAP3_QT_AFT_GES_MSK,
raw));
case IIO_EV_INFO_TAP2_MIN_DELAY:
if (val || !in_range(val2, 5000, 70001))
return -EINVAL;
raw = BMI323_INT_MICRO_TO_RAW(val, val2,
BMI323_DUR_BW_TAP_SCALE);
return bmi323_update_ext_reg(data, BMI323_TAP3_REG,
BMI323_TAP3_QT_BW_TAP_MSK,
FIELD_PREP(BMI323_TAP3_QT_BW_TAP_MSK,
raw));
default:
return -EINVAL;
}
case IIO_EV_TYPE_MAG:
reg = bmi323_motion_config_reg(dir);
if (reg < 0)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
if (!in_range(val, 0, 8))
return -EINVAL;
raw = BMI323_INT_MICRO_TO_RAW(val, val2,
BMI323_MOTION_THRES_SCALE);
return bmi323_update_ext_reg(data, reg,
BMI323_MO1_SLOPE_TH_MSK,
FIELD_PREP(BMI323_MO1_SLOPE_TH_MSK,
raw));
case IIO_EV_INFO_PERIOD:
if (!in_range(val, 0, 163))
return -EINVAL;
raw = BMI323_INT_MICRO_TO_RAW(val, val2,
BMI323_MOTION_DURAT_SCALE);
return bmi323_update_ext_reg(data,
reg + BMI323_MO3_OFFSET,
BMI323_MO3_DURA_MSK,
FIELD_PREP(BMI323_MO3_DURA_MSK,
raw));
case IIO_EV_INFO_HYSTERESIS:
if (!in_range(val, 0, 2))
return -EINVAL;
raw = BMI323_INT_MICRO_TO_RAW(val, val2,
BMI323_MOTION_HYSTR_SCALE);
return bmi323_update_ext_reg(data,
reg + BMI323_MO2_OFFSET,
BMI323_MO2_HYSTR_MSK,
FIELD_PREP(BMI323_MO2_HYSTR_MSK,
raw));
default:
return -EINVAL;
}
case IIO_EV_TYPE_CHANGE:
if (!in_range(val, 0, 20461))
return -EINVAL;
raw = val / 20;
return bmi323_update_ext_reg(data, BMI323_STEP_SC1_REG,
BMI323_STEP_SC1_WTRMRK_MSK,
FIELD_PREP(BMI323_STEP_SC1_WTRMRK_MSK,
raw));
default:
return -EINVAL;
}
}
static int bmi323_read_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct bmi323_data *data = iio_priv(indio_dev);
unsigned int raw, reg_value;
int ret, reg;
guard(mutex)(&data->mutex);
switch (type) {
case IIO_EV_TYPE_GESTURE:
switch (info) {
case IIO_EV_INFO_VALUE:
ret = bmi323_read_ext_reg(data, BMI323_TAP2_REG,
&reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_TAP2_THRES_MSK, reg_value);
*val = raw / BMI323_TAP_THRES_SCALE;
*val2 = BMI323_RAW_TO_MICRO(raw, BMI323_TAP_THRES_SCALE);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_EV_INFO_RESET_TIMEOUT:
ret = bmi323_read_ext_reg(data, BMI323_TAP3_REG,
&reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_TAP3_QT_AFT_GES_MSK, reg_value);
*val = 0;
*val2 = BMI323_RAW_TO_MICRO(raw,
BMI323_QUITE_TIM_GES_SCALE);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_EV_INFO_TAP2_MIN_DELAY:
ret = bmi323_read_ext_reg(data, BMI323_TAP3_REG,
&reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_TAP3_QT_BW_TAP_MSK, reg_value);
*val = 0;
*val2 = BMI323_RAW_TO_MICRO(raw,
BMI323_DUR_BW_TAP_SCALE);
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_EV_TYPE_MAG:
reg = bmi323_motion_config_reg(dir);
if (reg < 0)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
ret = bmi323_read_ext_reg(data, reg, &reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_MO1_SLOPE_TH_MSK, reg_value);
*val = raw / BMI323_MOTION_THRES_SCALE;
*val2 = BMI323_RAW_TO_MICRO(raw,
BMI323_MOTION_THRES_SCALE);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_EV_INFO_PERIOD:
ret = bmi323_read_ext_reg(data,
reg + BMI323_MO3_OFFSET,
&reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_MO3_DURA_MSK, reg_value);
*val = raw / BMI323_MOTION_DURAT_SCALE;
*val2 = BMI323_RAW_TO_MICRO(raw,
BMI323_MOTION_DURAT_SCALE);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_EV_INFO_HYSTERESIS:
ret = bmi323_read_ext_reg(data,
reg + BMI323_MO2_OFFSET,
&reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_MO2_HYSTR_MSK, reg_value);
*val = raw / BMI323_MOTION_HYSTR_SCALE;
*val2 = BMI323_RAW_TO_MICRO(raw,
BMI323_MOTION_HYSTR_SCALE);
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_EV_TYPE_CHANGE:
ret = bmi323_read_ext_reg(data, BMI323_STEP_SC1_REG,
&reg_value);
if (ret)
return ret;
raw = FIELD_GET(BMI323_STEP_SC1_WTRMRK_MSK, reg_value);
*val = raw * 20;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int __bmi323_fifo_flush(struct iio_dev *indio_dev)
{
struct bmi323_data *data = iio_priv(indio_dev);
int i, ret, fifo_lvl, frame_count, bit, index;
__le16 *frame, *pchannels;
u64 sample_period;
s64 tstamp;
guard(mutex)(&data->mutex);
ret = regmap_read(data->regmap, BMI323_FIFO_FILL_LEVEL_REG, &fifo_lvl);
if (ret)
return ret;
fifo_lvl = min(fifo_lvl, BMI323_FIFO_FULL_IN_WORDS);
frame_count = fifo_lvl / BMI323_FIFO_FRAME_LENGTH;
if (!frame_count)
return -EINVAL;
if (fifo_lvl % BMI323_FIFO_FRAME_LENGTH)
dev_warn(data->dev, "Bad FIFO alignment\n");
/*
* Approximate timestamps for each of the sample based on the sampling
* frequency, timestamp for last sample and number of samples.
*/
if (data->old_fifo_tstamp) {
sample_period = data->fifo_tstamp - data->old_fifo_tstamp;
do_div(sample_period, frame_count);
} else {
sample_period = data->odrns[BMI323_ACCEL];
}
tstamp = data->fifo_tstamp - (frame_count - 1) * sample_period;
ret = regmap_noinc_read(data->regmap, BMI323_FIFO_DATA_REG,
&data->fifo_buff[0],
fifo_lvl * BMI323_BYTES_PER_SAMPLE);
if (ret)
return ret;
for (i = 0; i < frame_count; i++) {
frame = &data->fifo_buff[i * BMI323_FIFO_FRAME_LENGTH];
pchannels = &data->buffer.channels[0];
index = 0;
for_each_set_bit(bit, indio_dev->active_scan_mask,
BMI323_CHAN_MAX)
pchannels[index++] = frame[bit];
iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
tstamp);
tstamp += sample_period;
}
return frame_count;
}
static int bmi323_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
struct bmi323_data *data = iio_priv(indio_dev);
val = min(val, (u32)BMI323_FIFO_FULL_IN_FRAMES);
guard(mutex)(&data->mutex);
data->watermark = val;
return 0;
}
static int bmi323_fifo_disable(struct bmi323_data *data)
{
int ret;
guard(mutex)(&data->mutex);
ret = regmap_write(data->regmap, BMI323_FIFO_CONF_REG, 0);
if (ret)
return ret;
ret = regmap_update_bits(data->regmap, BMI323_INT_MAP2_REG,
BMI323_FIFO_WTRMRK_MSK,
FIELD_PREP(BMI323_FIFO_WTRMRK_MSK, 0));
if (ret)
return ret;
data->fifo_tstamp = 0;
data->state = BMI323_IDLE;
return 0;
}
static int bmi323_buffer_predisable(struct iio_dev *indio_dev)
{
struct bmi323_data *data = iio_priv(indio_dev);
if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
return 0;
return bmi323_fifo_disable(data);
}
static int bmi323_update_watermark(struct bmi323_data *data)
{
int wtrmrk;
wtrmrk = data->watermark * BMI323_FIFO_FRAME_LENGTH;
return regmap_write(data->regmap, BMI323_FIFO_WTRMRK_REG, wtrmrk);
}
static int bmi323_fifo_enable(struct bmi323_data *data)
{
int ret;
guard(mutex)(&data->mutex);
ret = regmap_update_bits(data->regmap, BMI323_FIFO_CONF_REG,
BMI323_FIFO_CONF_ACC_GYR_EN_MSK,
FIELD_PREP(BMI323_FIFO_CONF_ACC_GYR_EN_MSK,
BMI323_FIFO_ACC_GYR_MSK));
if (ret)
return ret;
ret = regmap_update_bits(data->regmap, BMI323_INT_MAP2_REG,
BMI323_FIFO_WTRMRK_MSK,
FIELD_PREP(BMI323_FIFO_WTRMRK_MSK,
data->irq_pin));
if (ret)
return ret;
ret = bmi323_update_watermark(data);
if (ret)
return ret;
ret = regmap_write(data->regmap, BMI323_FIFO_CTRL_REG,
BMI323_FIFO_FLUSH_MSK);
if (ret)
return ret;
data->state = BMI323_BUFFER_FIFO;
return 0;
}
static int bmi323_buffer_preenable(struct iio_dev *indio_dev)
{
struct bmi323_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
/*
* When the ODR of the accelerometer and gyroscope do not match, the
* maximum ODR value between the accelerometer and gyroscope is used
* for FIFO and the signal with lower ODR will insert dummy frame.
* So allow buffer read only when ODR's of accelero and gyro are equal.
* See datasheet section 5.7 "FIFO Data Buffering".
*/
if (data->odrns[BMI323_ACCEL] != data->odrns[BMI323_GYRO]) {
dev_err(data->dev, "Accelero and Gyro ODR doesn't match\n");
return -EINVAL;
}
return 0;
}
static int bmi323_buffer_postenable(struct iio_dev *indio_dev)
{
struct bmi323_data *data = iio_priv(indio_dev);
if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
return 0;
return bmi323_fifo_enable(data);
}
static ssize_t hwfifo_watermark_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmi323_data *data = iio_priv(indio_dev);
int wm;
scoped_guard(mutex, &data->mutex)
wm = data->watermark;
return sysfs_emit(buf, "%d\n", wm);
}
static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
static ssize_t hwfifo_enabled_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmi323_data *data = iio_priv(indio_dev);
bool state;
scoped_guard(mutex, &data->mutex)
state = data->state == BMI323_BUFFER_FIFO;
return sysfs_emit(buf, "%d\n", state);
}
static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
static const struct iio_dev_attr *bmi323_fifo_attributes[] = {
&iio_dev_attr_hwfifo_watermark,
&iio_dev_attr_hwfifo_enabled,
NULL
};
static const struct iio_buffer_setup_ops bmi323_buffer_ops = {
.preenable = bmi323_buffer_preenable,
.postenable = bmi323_buffer_postenable,
.predisable = bmi323_buffer_predisable,
};
static irqreturn_t bmi323_irq_thread_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmi323_data *data = iio_priv(indio_dev);
unsigned int status_addr, status, feature_event;
s64 timestamp = iio_get_time_ns(indio_dev);
int ret;
if (data->irq_pin == BMI323_IRQ_INT1)
status_addr = BMI323_STATUS_INT1_REG;
else
status_addr = BMI323_STATUS_INT2_REG;
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap, status_addr, &status);
if (ret)
return IRQ_NONE;
}
if (!status || FIELD_GET(BMI323_STATUS_ERROR_MSK, status))
return IRQ_NONE;
if (FIELD_GET(BMI323_STATUS_FIFO_WTRMRK_MSK, status)) {
data->old_fifo_tstamp = data->fifo_tstamp;
data->fifo_tstamp = iio_get_time_ns(indio_dev);
ret = __bmi323_fifo_flush(indio_dev);
if (ret < 0)
return IRQ_NONE;
}
if (FIELD_GET(BMI323_STATUS_ACC_GYR_DRDY_MSK, status))
iio_trigger_poll_nested(data->trig);
if (FIELD_GET(BMI323_STATUS_MOTION_MSK, status))
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
timestamp);
if (FIELD_GET(BMI323_STATUS_NOMOTION_MSK, status))
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_FALLING),
timestamp);
if (FIELD_GET(BMI323_STATUS_STP_WTR_MSK, status))
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_STEPS, 0,
IIO_NO_MOD,
IIO_EV_TYPE_CHANGE,
IIO_EV_DIR_NONE),
timestamp);
if (FIELD_GET(BMI323_STATUS_TAP_MSK, status)) {
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap,
BMI323_FEAT_EVNT_EXT_REG,
&feature_event);
if (ret)
return IRQ_NONE;
}
if (FIELD_GET(BMI323_FEAT_EVNT_EXT_S_MSK, feature_event)) {
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_GESTURE,
IIO_EV_DIR_SINGLETAP),
timestamp);
}
if (FIELD_GET(BMI323_FEAT_EVNT_EXT_D_MSK, feature_event))
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_GESTURE,
IIO_EV_DIR_DOUBLETAP),
timestamp);
}
return IRQ_HANDLED;
}
static int bmi323_set_drdy_irq(struct bmi323_data *data,
enum bmi323_irq_pin irq_pin)
{
int ret;
ret = regmap_update_bits(data->regmap, BMI323_INT_MAP2_REG,
BMI323_GYR_DRDY_MSK,
FIELD_PREP(BMI323_GYR_DRDY_MSK, irq_pin));
if (ret)
return ret;
return regmap_update_bits(data->regmap, BMI323_INT_MAP2_REG,
BMI323_ACC_DRDY_MSK,
FIELD_PREP(BMI323_ACC_DRDY_MSK, irq_pin));
}
static int bmi323_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct bmi323_data *data = iio_trigger_get_drvdata(trig);
enum bmi323_irq_pin irq_pin;
guard(mutex)(&data->mutex);
if (data->state == BMI323_BUFFER_FIFO) {
dev_warn(data->dev, "Can't set trigger when FIFO enabled\n");
return -EBUSY;
}
if (state) {
data->state = BMI323_BUFFER_DRDY_TRIGGERED;
irq_pin = data->irq_pin;
} else {
data->state = BMI323_IDLE;
irq_pin = BMI323_IRQ_DISABLED;
}
return bmi323_set_drdy_irq(data, irq_pin);
}
static const struct iio_trigger_ops bmi323_trigger_ops = {
.set_trigger_state = &bmi323_data_rdy_trigger_set_state,
};
static irqreturn_t bmi323_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmi323_data *data = iio_priv(indio_dev);
int ret, bit, index = 0;
/* Lock to protect the data->buffer */
guard(mutex)(&data->mutex);
if (*indio_dev->active_scan_mask == BMI323_ALL_CHAN_MSK) {
ret = regmap_bulk_read(data->regmap, BMI323_ACCEL_X_REG,
&data->buffer.channels,
ARRAY_SIZE(data->buffer.channels));
if (ret)
return IRQ_NONE;
} else {
for_each_set_bit(bit, indio_dev->active_scan_mask,
BMI323_CHAN_MAX) {
ret = regmap_raw_read(data->regmap,
BMI323_ACCEL_X_REG + bit,
&data->buffer.channels[index++],
BMI323_BYTES_PER_SAMPLE);
if (ret)
return IRQ_NONE;
}
}
iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
iio_get_time_ns(indio_dev));
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmi323_set_average(struct bmi323_data *data,
enum bmi323_sensor_type sensor, int avg)
{
int raw = ARRAY_SIZE(bmi323_accel_gyro_avrg);
while (raw--)
if (avg == bmi323_accel_gyro_avrg[raw])
break;
if (raw < 0)
return -EINVAL;
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, bmi323_hw[sensor].config,
BMI323_ACC_GYRO_CONF_AVG_MSK,
FIELD_PREP(BMI323_ACC_GYRO_CONF_AVG_MSK,
raw));
}
static int bmi323_get_average(struct bmi323_data *data,
enum bmi323_sensor_type sensor, int *avg)
{
int ret, value, raw;
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap, bmi323_hw[sensor].config, &value);
if (ret)
return ret;
}
raw = FIELD_GET(BMI323_ACC_GYRO_CONF_AVG_MSK, value);
*avg = bmi323_accel_gyro_avrg[raw];
return IIO_VAL_INT;
}
static int bmi323_enable_steps(struct bmi323_data *data, int val)
{
int ret;
guard(mutex)(&data->mutex);
if (data->odrhz[BMI323_ACCEL] < 200) {
dev_err(data->dev, "Invalid accelerometer parameter\n");
return -EINVAL;
}
ret = bmi323_feature_engine_events(data, BMI323_FEAT_IO0_STP_CNT_MSK,
val ? 1 : 0);
if (ret)
return ret;
set_mask_bits(&data->feature_events, BMI323_FEAT_IO0_STP_CNT_MSK,
FIELD_PREP(BMI323_FEAT_IO0_STP_CNT_MSK, val ? 1 : 0));
return 0;
}
static int bmi323_read_steps(struct bmi323_data *data, int *val)
{
int ret;
guard(mutex)(&data->mutex);
if (!FIELD_GET(BMI323_FEAT_IO0_STP_CNT_MSK, data->feature_events))
return -EINVAL;
ret = regmap_bulk_read(data->regmap, BMI323_FEAT_IO2_REG,
data->steps_count,
ARRAY_SIZE(data->steps_count));
if (ret)
return ret;
*val = get_unaligned_le32(data->steps_count);
return IIO_VAL_INT;
}
static int bmi323_read_axis(struct bmi323_data *data,
struct iio_chan_spec const *chan, int *val)
{
enum bmi323_sensor_type sensor;
unsigned int value;
u8 addr;
int ret;
ret = bmi323_get_error_status(data);
if (ret)
return -EINVAL;
sensor = bmi323_iio_to_sensor(chan->type);
addr = bmi323_hw[sensor].data + (chan->channel2 - IIO_MOD_X);
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap, addr, &value);
if (ret)
return ret;
}
*val = sign_extend32(value, chan->scan_type.realbits - 1);
return IIO_VAL_INT;
}
static int bmi323_get_temp_data(struct bmi323_data *data, int *val)
{
unsigned int value;
int ret;
ret = bmi323_get_error_status(data);
if (ret)
return -EINVAL;
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap, BMI323_TEMP_REG, &value);
if (ret)
return ret;
}
*val = sign_extend32(value, 15);
return IIO_VAL_INT;
}
static int bmi323_get_odr(struct bmi323_data *data,
enum bmi323_sensor_type sensor, int *odr, int *uodr)
{
int ret, value, odr_raw;
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap, bmi323_hw[sensor].config, &value);
if (ret)
return ret;
}
odr_raw = FIELD_GET(BMI323_ACC_GYRO_CONF_ODR_MSK, value);
*odr = bmi323_acc_gyro_odr[odr_raw - 1][0];
*uodr = bmi323_acc_gyro_odr[odr_raw - 1][1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int bmi323_configure_power_mode(struct bmi323_data *data,
enum bmi323_sensor_type sensor,
int odr_index)
{
enum bmi323_opr_mode mode;
if (bmi323_acc_gyro_odr[odr_index][0] > 25)
mode = ACC_GYRO_MODE_CONTINOUS;
else
mode = ACC_GYRO_MODE_DUTYCYCLE;
return bmi323_set_mode(data, sensor, mode);
}
static int bmi323_set_odr(struct bmi323_data *data,
enum bmi323_sensor_type sensor, int odr, int uodr)
{
int odr_raw, ret;
odr_raw = ARRAY_SIZE(bmi323_acc_gyro_odr);
while (odr_raw--)
if (odr == bmi323_acc_gyro_odr[odr_raw][0] &&
uodr == bmi323_acc_gyro_odr[odr_raw][1])
break;
if (odr_raw < 0)
return -EINVAL;
ret = bmi323_configure_power_mode(data, sensor, odr_raw);
if (ret)
return -EINVAL;
guard(mutex)(&data->mutex);
data->odrhz[sensor] = bmi323_acc_gyro_odr[odr_raw][0];
data->odrns[sensor] = bmi323_acc_gyro_odrns[odr_raw];
odr_raw++;
return regmap_update_bits(data->regmap, bmi323_hw[sensor].config,
BMI323_ACC_GYRO_CONF_ODR_MSK,
FIELD_PREP(BMI323_ACC_GYRO_CONF_ODR_MSK,
odr_raw));
}
static int bmi323_get_scale(struct bmi323_data *data,
enum bmi323_sensor_type sensor, int *val2)
{
int ret, value, scale_raw;
scoped_guard(mutex, &data->mutex) {
ret = regmap_read(data->regmap, bmi323_hw[sensor].config,
&value);
if (ret)
return ret;
}
scale_raw = FIELD_GET(BMI323_ACC_GYRO_CONF_SCL_MSK, value);
*val2 = bmi323_hw[sensor].scale_table[scale_raw][1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int bmi323_set_scale(struct bmi323_data *data,
enum bmi323_sensor_type sensor, int val, int val2)
{
int scale_raw;
scale_raw = bmi323_hw[sensor].scale_table_len;
while (scale_raw--)
if (val == bmi323_hw[sensor].scale_table[scale_raw][0] &&
val2 == bmi323_hw[sensor].scale_table[scale_raw][1])
break;
if (scale_raw < 0)
return -EINVAL;
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, bmi323_hw[sensor].config,
BMI323_ACC_GYRO_CONF_SCL_MSK,
FIELD_PREP(BMI323_ACC_GYRO_CONF_SCL_MSK,
scale_raw));
}
static int bmi323_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
enum bmi323_sensor_type sensor;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT_PLUS_MICRO;
*vals = (const int *)bmi323_acc_gyro_odr;
*length = ARRAY_SIZE(bmi323_acc_gyro_odr) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
sensor = bmi323_iio_to_sensor(chan->type);
*type = IIO_VAL_INT_PLUS_MICRO;
*vals = (const int *)bmi323_hw[sensor].scale_table;
*length = bmi323_hw[sensor].scale_table_len * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*type = IIO_VAL_INT;
*vals = (const int *)bmi323_accel_gyro_avrg;
*length = ARRAY_SIZE(bmi323_accel_gyro_avrg);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int bmi323_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct bmi323_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
iio_device_claim_direct_scoped(return -EBUSY, indio_dev)
return bmi323_set_odr(data,
bmi323_iio_to_sensor(chan->type),
val, val2);
unreachable();
case IIO_CHAN_INFO_SCALE:
iio_device_claim_direct_scoped(return -EBUSY, indio_dev)
return bmi323_set_scale(data,
bmi323_iio_to_sensor(chan->type),
val, val2);
unreachable();
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
iio_device_claim_direct_scoped(return -EBUSY, indio_dev)
return bmi323_set_average(data,
bmi323_iio_to_sensor(chan->type),
val);
unreachable();
case IIO_CHAN_INFO_ENABLE:
return bmi323_enable_steps(data, val);
case IIO_CHAN_INFO_PROCESSED: {
guard(mutex)(&data->mutex);
if (val || !FIELD_GET(BMI323_FEAT_IO0_STP_CNT_MSK,
data->feature_events))
return -EINVAL;
/* Clear step counter value */
return bmi323_update_ext_reg(data, BMI323_STEP_SC1_REG,
BMI323_STEP_SC1_RST_CNT_MSK,
FIELD_PREP(BMI323_STEP_SC1_RST_CNT_MSK,
1));
}
default:
return -EINVAL;
}
}
static int bmi323_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct bmi323_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
return bmi323_read_steps(data, val);
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_ACCEL:
case IIO_ANGL_VEL:
iio_device_claim_direct_scoped(return -EBUSY,
indio_dev)
return bmi323_read_axis(data, chan, val);
unreachable();
case IIO_TEMP:
return bmi323_get_temp_data(data, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
return bmi323_get_odr(data, bmi323_iio_to_sensor(chan->type),
val, val2);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ACCEL:
case IIO_ANGL_VEL:
*val = 0;
return bmi323_get_scale(data,
bmi323_iio_to_sensor(chan->type),
val2);
case IIO_TEMP:
*val = BMI323_TEMP_SCALE / MEGA;
*val2 = BMI323_TEMP_SCALE % MEGA;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
return bmi323_get_average(data,
bmi323_iio_to_sensor(chan->type),
val);
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
*val = BMI323_TEMP_OFFSET;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_ENABLE:
scoped_guard(mutex, &data->mutex)
*val = FIELD_GET(BMI323_FEAT_IO0_STP_CNT_MSK,
data->feature_events);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static const struct iio_info bmi323_info = {
.read_raw = bmi323_read_raw,
.write_raw = bmi323_write_raw,
.read_avail = bmi323_read_avail,
.hwfifo_set_watermark = bmi323_set_watermark,
.write_event_config = bmi323_write_event_config,
.read_event_config = bmi323_read_event_config,
.write_event_value = bmi323_write_event_value,
.read_event_value = bmi323_read_event_value,
.event_attrs = &bmi323_event_attribute_group,
};
#define BMI323_SCAN_MASK_ACCEL_3AXIS \
(BIT(BMI323_ACCEL_X) | BIT(BMI323_ACCEL_Y) | BIT(BMI323_ACCEL_Z))
#define BMI323_SCAN_MASK_GYRO_3AXIS \
(BIT(BMI323_GYRO_X) | BIT(BMI323_GYRO_Y) | BIT(BMI323_GYRO_Z))
static const unsigned long bmi323_avail_scan_masks[] = {
/* 3-axis accel */
BMI323_SCAN_MASK_ACCEL_3AXIS,
/* 3-axis gyro */
BMI323_SCAN_MASK_GYRO_3AXIS,
/* 3-axis accel + 3-axis gyro */
BMI323_SCAN_MASK_ACCEL_3AXIS | BMI323_SCAN_MASK_GYRO_3AXIS,
0
};
static int bmi323_int_pin_config(struct bmi323_data *data,
enum bmi323_irq_pin irq_pin,
bool active_high, bool open_drain, bool latch)
{
unsigned int mask, field_value;
int ret;
ret = regmap_update_bits(data->regmap, BMI323_IO_INT_CONF_REG,
BMI323_IO_INT_LTCH_MSK,
FIELD_PREP(BMI323_IO_INT_LTCH_MSK, latch));
if (ret)
return ret;
ret = bmi323_update_ext_reg(data, BMI323_GEN_SET1_REG,
BMI323_GEN_HOLD_DUR_MSK,
FIELD_PREP(BMI323_GEN_HOLD_DUR_MSK, 0));
if (ret)
return ret;
switch (irq_pin) {
case BMI323_IRQ_INT1:
mask = BMI323_IO_INT1_LVL_OD_OP_MSK;
field_value = FIELD_PREP(BMI323_IO_INT1_LVL_MSK, active_high) |
FIELD_PREP(BMI323_IO_INT1_OD_MSK, open_drain) |
FIELD_PREP(BMI323_IO_INT1_OP_EN_MSK, 1);
break;
case BMI323_IRQ_INT2:
mask = BMI323_IO_INT2_LVL_OD_OP_MSK;
field_value = FIELD_PREP(BMI323_IO_INT2_LVL_MSK, active_high) |
FIELD_PREP(BMI323_IO_INT2_OD_MSK, open_drain) |
FIELD_PREP(BMI323_IO_INT2_OP_EN_MSK, 1);
break;
default:
return -EINVAL;
}
return regmap_update_bits(data->regmap, BMI323_IO_INT_CTR_REG, mask,
field_value);
}
static int bmi323_trigger_probe(struct bmi323_data *data,
struct iio_dev *indio_dev)
{
bool open_drain, active_high, latch;
struct fwnode_handle *fwnode;
enum bmi323_irq_pin irq_pin;
int ret, irq, irq_type;
struct irq_data *desc;
fwnode = dev_fwnode(data->dev);
if (!fwnode)
return -ENODEV;
irq = fwnode_irq_get_byname(fwnode, "INT1");
if (irq > 0) {
irq_pin = BMI323_IRQ_INT1;
} else {
irq = fwnode_irq_get_byname(fwnode, "INT2");
if (irq < 0)
return 0;
irq_pin = BMI323_IRQ_INT2;
}
desc = irq_get_irq_data(irq);
if (!desc)
return dev_err_probe(data->dev, -EINVAL,
"Could not find IRQ %d\n", irq);
irq_type = irqd_get_trigger_type(desc);
switch (irq_type) {
case IRQF_TRIGGER_RISING:
latch = false;
active_high = true;
break;
case IRQF_TRIGGER_HIGH:
latch = true;
active_high = true;
break;
case IRQF_TRIGGER_FALLING:
latch = false;
active_high = false;
break;
case IRQF_TRIGGER_LOW:
latch = true;
active_high = false;
break;
default:
return dev_err_probe(data->dev, -EINVAL,
"Invalid interrupt type 0x%x specified\n",
irq_type);
}
open_drain = fwnode_property_read_bool(fwnode, "drive-open-drain");
ret = bmi323_int_pin_config(data, irq_pin, active_high, open_drain,
latch);
if (ret)
return dev_err_probe(data->dev, ret,
"Failed to configure irq line\n");
data->trig = devm_iio_trigger_alloc(data->dev, "%s-trig-%d",
indio_dev->name, irq_pin);
if (!data->trig)
return -ENOMEM;
data->trig->ops = &bmi323_trigger_ops;
iio_trigger_set_drvdata(data->trig, data);
ret = devm_request_threaded_irq(data->dev, irq, NULL,
bmi323_irq_thread_handler,
IRQF_ONESHOT, "bmi323-int", indio_dev);
if (ret)
return dev_err_probe(data->dev, ret, "Failed to request IRQ\n");
ret = devm_iio_trigger_register(data->dev, data->trig);
if (ret)
return dev_err_probe(data->dev, ret,
"Trigger registration failed\n");
data->irq_pin = irq_pin;
return 0;
}
static int bmi323_feature_engine_enable(struct bmi323_data *data, bool en)
{
unsigned int feature_status;
int ret;
if (!en)
return regmap_write(data->regmap, BMI323_FEAT_CTRL_REG, 0);
ret = regmap_write(data->regmap, BMI323_FEAT_IO2_REG, 0x012c);
if (ret)
return ret;
ret = regmap_write(data->regmap, BMI323_FEAT_IO_STATUS_REG,
BMI323_FEAT_IO_STATUS_MSK);
if (ret)
return ret;
ret = regmap_write(data->regmap, BMI323_FEAT_CTRL_REG,
BMI323_FEAT_ENG_EN_MSK);
if (ret)
return ret;
/*
* It takes around 4 msec to enable the Feature engine, so check
* the status of the feature engine every 2 msec for a maximum
* of 5 trials.
*/
ret = regmap_read_poll_timeout(data->regmap, BMI323_FEAT_IO1_REG,
feature_status,
FIELD_GET(BMI323_FEAT_IO1_ERR_MSK,
feature_status) == 1,
BMI323_FEAT_ENG_POLL,
BMI323_FEAT_ENG_TIMEOUT);
if (ret)
return dev_err_probe(data->dev, -EINVAL,
"Failed to enable feature engine\n");
return 0;
}
static void bmi323_disable(void *data_ptr)
{
struct bmi323_data *data = data_ptr;
bmi323_set_mode(data, BMI323_ACCEL, ACC_GYRO_MODE_DISABLE);
bmi323_set_mode(data, BMI323_GYRO, ACC_GYRO_MODE_DISABLE);
}
static int bmi323_set_bw(struct bmi323_data *data,
enum bmi323_sensor_type sensor, enum bmi323_3db_bw bw)
{
return regmap_update_bits(data->regmap, bmi323_hw[sensor].config,
BMI323_ACC_GYRO_CONF_BW_MSK,
FIELD_PREP(BMI323_ACC_GYRO_CONF_BW_MSK, bw));
}
static int bmi323_init(struct bmi323_data *data)
{
int ret, val;
/*
* Perform soft reset to make sure the device is in a known state after
* start up. A delay of 1.5 ms is required after reset.
* See datasheet section 5.17 "Soft Reset".
*/
ret = regmap_write(data->regmap, BMI323_CMD_REG, BMI323_RST_VAL);
if (ret)
return ret;
usleep_range(1500, 2000);
/*
* Dummy read is required to enable SPI interface after reset.
* See datasheet section 7.2.1 "Protocol Selection".
*/
regmap_read(data->regmap, BMI323_CHIP_ID_REG, &val);
ret = regmap_read(data->regmap, BMI323_STATUS_REG, &val);
if (ret)
return ret;
if (!FIELD_GET(BMI323_STATUS_POR_MSK, val))
return dev_err_probe(data->dev, -EINVAL,
"Sensor initialization error\n");
ret = regmap_read(data->regmap, BMI323_CHIP_ID_REG, &val);
if (ret)
return ret;
if (FIELD_GET(BMI323_CHIP_ID_MSK, val) != BMI323_CHIP_ID_VAL)
return dev_err_probe(data->dev, -EINVAL, "Chip ID mismatch\n");
ret = bmi323_feature_engine_enable(data, true);
if (ret)
return ret;
ret = regmap_read(data->regmap, BMI323_ERR_REG, &val);
if (ret)
return ret;
if (val)
return dev_err_probe(data->dev, -EINVAL,
"Sensor power error = 0x%x\n", val);
/*
* Set the Bandwidth coefficient which defines the 3 dB cutoff
* frequency in relation to the ODR.
*/
ret = bmi323_set_bw(data, BMI323_ACCEL, BMI323_BW_ODR_BY_2);
if (ret)
return ret;
ret = bmi323_set_bw(data, BMI323_GYRO, BMI323_BW_ODR_BY_2);
if (ret)
return ret;
ret = bmi323_set_odr(data, BMI323_ACCEL, 25, 0);
if (ret)
return ret;
ret = bmi323_set_odr(data, BMI323_GYRO, 25, 0);
if (ret)
return ret;
return devm_add_action_or_reset(data->dev, bmi323_disable, data);
}
int bmi323_core_probe(struct device *dev)
{
static const char * const regulator_names[] = { "vdd", "vddio" };
struct iio_dev *indio_dev;
struct bmi323_data *data;
struct regmap *regmap;
int ret;
regmap = dev_get_regmap(dev, NULL);
if (!regmap)
return dev_err_probe(dev, -ENODEV, "Failed to get regmap\n");
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return dev_err_probe(dev, -ENOMEM,
"Failed to allocate device\n");
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names),
regulator_names);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable regulators\n");
data = iio_priv(indio_dev);
data->dev = dev;
data->regmap = regmap;
mutex_init(&data->mutex);
ret = bmi323_init(data);
if (ret)
return -EINVAL;
ret = iio_read_mount_matrix(dev, &data->orientation);
if (ret)
return ret;
indio_dev->name = "bmi323-imu";
indio_dev->info = &bmi323_info;
indio_dev->channels = bmi323_channels;
indio_dev->num_channels = ARRAY_SIZE(bmi323_channels);
indio_dev->available_scan_masks = bmi323_avail_scan_masks;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
dev_set_drvdata(data->dev, indio_dev);
ret = bmi323_trigger_probe(data, indio_dev);
if (ret)
return -EINVAL;
ret = devm_iio_triggered_buffer_setup_ext(data->dev, indio_dev,
&iio_pollfunc_store_time,
bmi323_trigger_handler,
IIO_BUFFER_DIRECTION_IN,
&bmi323_buffer_ops,
bmi323_fifo_attributes);
if (ret)
return dev_err_probe(data->dev, ret,
"Failed to setup trigger buffer\n");
ret = devm_iio_device_register(data->dev, indio_dev);
if (ret)
return dev_err_probe(data->dev, ret,
"Unable to register iio device\n");
return 0;
}
EXPORT_SYMBOL_NS_GPL(bmi323_core_probe, IIO_BMI323);
MODULE_DESCRIPTION("Bosch BMI323 IMU driver");
MODULE_AUTHOR("Jagath Jog J <jagathjog1996@gmail.com>");
MODULE_LICENSE("GPL");