| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This contains encryption functions for per-file encryption. |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2015, Motorola Mobility |
| * |
| * Written by Michael Halcrow, 2014. |
| * |
| * Filename encryption additions |
| * Uday Savagaonkar, 2014 |
| * Encryption policy handling additions |
| * Ildar Muslukhov, 2014 |
| * Add fscrypt_pullback_bio_page() |
| * Jaegeuk Kim, 2015. |
| * |
| * This has not yet undergone a rigorous security audit. |
| * |
| * The usage of AES-XTS should conform to recommendations in NIST |
| * Special Publication 800-38E and IEEE P1619/D16. |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/mempool.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <linux/ratelimit.h> |
| #include <crypto/skcipher.h> |
| #include "fscrypt_private.h" |
| |
| static unsigned int num_prealloc_crypto_pages = 32; |
| |
| module_param(num_prealloc_crypto_pages, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| "Number of crypto pages to preallocate"); |
| |
| static mempool_t *fscrypt_bounce_page_pool = NULL; |
| |
| static struct workqueue_struct *fscrypt_read_workqueue; |
| static DEFINE_MUTEX(fscrypt_init_mutex); |
| |
| struct kmem_cache *fscrypt_inode_info_cachep; |
| |
| void fscrypt_enqueue_decrypt_work(struct work_struct *work) |
| { |
| queue_work(fscrypt_read_workqueue, work); |
| } |
| EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); |
| |
| struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags) |
| { |
| if (WARN_ON_ONCE(!fscrypt_bounce_page_pool)) { |
| /* |
| * Oops, the filesystem called a function that uses the bounce |
| * page pool, but it didn't set needs_bounce_pages. |
| */ |
| return NULL; |
| } |
| return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); |
| } |
| |
| /** |
| * fscrypt_free_bounce_page() - free a ciphertext bounce page |
| * @bounce_page: the bounce page to free, or NULL |
| * |
| * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(), |
| * or by fscrypt_alloc_bounce_page() directly. |
| */ |
| void fscrypt_free_bounce_page(struct page *bounce_page) |
| { |
| if (!bounce_page) |
| return; |
| set_page_private(bounce_page, (unsigned long)NULL); |
| ClearPagePrivate(bounce_page); |
| mempool_free(bounce_page, fscrypt_bounce_page_pool); |
| } |
| EXPORT_SYMBOL(fscrypt_free_bounce_page); |
| |
| /* |
| * Generate the IV for the given data unit index within the given file. |
| * For filenames encryption, index == 0. |
| * |
| * Keep this in sync with fscrypt_limit_io_blocks(). fscrypt_limit_io_blocks() |
| * needs to know about any IV generation methods where the low bits of IV don't |
| * simply contain the data unit index (e.g., IV_INO_LBLK_32). |
| */ |
| void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index, |
| const struct fscrypt_inode_info *ci) |
| { |
| u8 flags = fscrypt_policy_flags(&ci->ci_policy); |
| |
| memset(iv, 0, ci->ci_mode->ivsize); |
| |
| if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { |
| WARN_ON_ONCE(index > U32_MAX); |
| WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX); |
| index |= (u64)ci->ci_inode->i_ino << 32; |
| } else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { |
| WARN_ON_ONCE(index > U32_MAX); |
| index = (u32)(ci->ci_hashed_ino + index); |
| } else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { |
| memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE); |
| } |
| iv->index = cpu_to_le64(index); |
| } |
| |
| /* Encrypt or decrypt a single "data unit" of file contents. */ |
| int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci, |
| fscrypt_direction_t rw, u64 index, |
| struct page *src_page, struct page *dest_page, |
| unsigned int len, unsigned int offs, |
| gfp_t gfp_flags) |
| { |
| union fscrypt_iv iv; |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct scatterlist dst, src; |
| struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; |
| int res = 0; |
| |
| if (WARN_ON_ONCE(len <= 0)) |
| return -EINVAL; |
| if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0)) |
| return -EINVAL; |
| |
| fscrypt_generate_iv(&iv, index, ci); |
| |
| req = skcipher_request_alloc(tfm, gfp_flags); |
| if (!req) |
| return -ENOMEM; |
| |
| skcipher_request_set_callback( |
| req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| sg_init_table(&dst, 1); |
| sg_set_page(&dst, dest_page, len, offs); |
| sg_init_table(&src, 1); |
| sg_set_page(&src, src_page, len, offs); |
| skcipher_request_set_crypt(req, &src, &dst, len, &iv); |
| if (rw == FS_DECRYPT) |
| res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| else |
| res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res) { |
| fscrypt_err(ci->ci_inode, |
| "%scryption failed for data unit %llu: %d", |
| (rw == FS_DECRYPT ? "De" : "En"), index, res); |
| return res; |
| } |
| return 0; |
| } |
| |
| /** |
| * fscrypt_encrypt_pagecache_blocks() - Encrypt data from a pagecache page |
| * @page: the locked pagecache page containing the data to encrypt |
| * @len: size of the data to encrypt, in bytes |
| * @offs: offset within @page of the data to encrypt, in bytes |
| * @gfp_flags: memory allocation flags; see details below |
| * |
| * This allocates a new bounce page and encrypts the given data into it. The |
| * length and offset of the data must be aligned to the file's crypto data unit |
| * size. Alignment to the filesystem block size fulfills this requirement, as |
| * the filesystem block size is always a multiple of the data unit size. |
| * |
| * In the bounce page, the ciphertext data will be located at the same offset at |
| * which the plaintext data was located in the source page. Any other parts of |
| * the bounce page will be left uninitialized. |
| * |
| * This is for use by the filesystem's ->writepages() method. |
| * |
| * The bounce page allocation is mempool-backed, so it will always succeed when |
| * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS. However, |
| * only the first page of each bio can be allocated this way. To prevent |
| * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used. |
| * |
| * Return: the new encrypted bounce page on success; an ERR_PTR() on failure |
| */ |
| struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, |
| unsigned int len, |
| unsigned int offs, |
| gfp_t gfp_flags) |
| |
| { |
| const struct inode *inode = page->mapping->host; |
| const struct fscrypt_inode_info *ci = inode->i_crypt_info; |
| const unsigned int du_bits = ci->ci_data_unit_bits; |
| const unsigned int du_size = 1U << du_bits; |
| struct page *ciphertext_page; |
| u64 index = ((u64)page->index << (PAGE_SHIFT - du_bits)) + |
| (offs >> du_bits); |
| unsigned int i; |
| int err; |
| |
| if (WARN_ON_ONCE(!PageLocked(page))) |
| return ERR_PTR(-EINVAL); |
| |
| if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size))) |
| return ERR_PTR(-EINVAL); |
| |
| ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags); |
| if (!ciphertext_page) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = offs; i < offs + len; i += du_size, index++) { |
| err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, index, |
| page, ciphertext_page, |
| du_size, i, gfp_flags); |
| if (err) { |
| fscrypt_free_bounce_page(ciphertext_page); |
| return ERR_PTR(err); |
| } |
| } |
| SetPagePrivate(ciphertext_page); |
| set_page_private(ciphertext_page, (unsigned long)page); |
| return ciphertext_page; |
| } |
| EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks); |
| |
| /** |
| * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place |
| * @inode: The inode to which this block belongs |
| * @page: The page containing the block to encrypt |
| * @len: Size of block to encrypt. This must be a multiple of |
| * FSCRYPT_CONTENTS_ALIGNMENT. |
| * @offs: Byte offset within @page at which the block to encrypt begins |
| * @lblk_num: Filesystem logical block number of the block, i.e. the 0-based |
| * number of the block within the file |
| * @gfp_flags: Memory allocation flags |
| * |
| * Encrypt a possibly-compressed filesystem block that is located in an |
| * arbitrary page, not necessarily in the original pagecache page. The @inode |
| * and @lblk_num must be specified, as they can't be determined from @page. |
| * |
| * This is not compatible with fscrypt_operations::supports_subblock_data_units. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, |
| unsigned int len, unsigned int offs, |
| u64 lblk_num, gfp_t gfp_flags) |
| { |
| if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units)) |
| return -EOPNOTSUPP; |
| return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_ENCRYPT, |
| lblk_num, page, page, len, offs, |
| gfp_flags); |
| } |
| EXPORT_SYMBOL(fscrypt_encrypt_block_inplace); |
| |
| /** |
| * fscrypt_decrypt_pagecache_blocks() - Decrypt data from a pagecache folio |
| * @folio: the pagecache folio containing the data to decrypt |
| * @len: size of the data to decrypt, in bytes |
| * @offs: offset within @folio of the data to decrypt, in bytes |
| * |
| * Decrypt data that has just been read from an encrypted file. The data must |
| * be located in a pagecache folio that is still locked and not yet uptodate. |
| * The length and offset of the data must be aligned to the file's crypto data |
| * unit size. Alignment to the filesystem block size fulfills this requirement, |
| * as the filesystem block size is always a multiple of the data unit size. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, |
| size_t offs) |
| { |
| const struct inode *inode = folio->mapping->host; |
| const struct fscrypt_inode_info *ci = inode->i_crypt_info; |
| const unsigned int du_bits = ci->ci_data_unit_bits; |
| const unsigned int du_size = 1U << du_bits; |
| u64 index = ((u64)folio->index << (PAGE_SHIFT - du_bits)) + |
| (offs >> du_bits); |
| size_t i; |
| int err; |
| |
| if (WARN_ON_ONCE(!folio_test_locked(folio))) |
| return -EINVAL; |
| |
| if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size))) |
| return -EINVAL; |
| |
| for (i = offs; i < offs + len; i += du_size, index++) { |
| struct page *page = folio_page(folio, i >> PAGE_SHIFT); |
| |
| err = fscrypt_crypt_data_unit(ci, FS_DECRYPT, index, page, |
| page, du_size, i & ~PAGE_MASK, |
| GFP_NOFS); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks); |
| |
| /** |
| * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place |
| * @inode: The inode to which this block belongs |
| * @page: The page containing the block to decrypt |
| * @len: Size of block to decrypt. This must be a multiple of |
| * FSCRYPT_CONTENTS_ALIGNMENT. |
| * @offs: Byte offset within @page at which the block to decrypt begins |
| * @lblk_num: Filesystem logical block number of the block, i.e. the 0-based |
| * number of the block within the file |
| * |
| * Decrypt a possibly-compressed filesystem block that is located in an |
| * arbitrary page, not necessarily in the original pagecache page. The @inode |
| * and @lblk_num must be specified, as they can't be determined from @page. |
| * |
| * This is not compatible with fscrypt_operations::supports_subblock_data_units. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, |
| unsigned int len, unsigned int offs, |
| u64 lblk_num) |
| { |
| if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units)) |
| return -EOPNOTSUPP; |
| return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_DECRYPT, |
| lblk_num, page, page, len, offs, |
| GFP_NOFS); |
| } |
| EXPORT_SYMBOL(fscrypt_decrypt_block_inplace); |
| |
| /** |
| * fscrypt_initialize() - allocate major buffers for fs encryption. |
| * @sb: the filesystem superblock |
| * |
| * We only call this when we start accessing encrypted files, since it |
| * results in memory getting allocated that wouldn't otherwise be used. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_initialize(struct super_block *sb) |
| { |
| int err = 0; |
| mempool_t *pool; |
| |
| /* pairs with smp_store_release() below */ |
| if (likely(smp_load_acquire(&fscrypt_bounce_page_pool))) |
| return 0; |
| |
| /* No need to allocate a bounce page pool if this FS won't use it. */ |
| if (!sb->s_cop->needs_bounce_pages) |
| return 0; |
| |
| mutex_lock(&fscrypt_init_mutex); |
| if (fscrypt_bounce_page_pool) |
| goto out_unlock; |
| |
| err = -ENOMEM; |
| pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| if (!pool) |
| goto out_unlock; |
| /* pairs with smp_load_acquire() above */ |
| smp_store_release(&fscrypt_bounce_page_pool, pool); |
| err = 0; |
| out_unlock: |
| mutex_unlock(&fscrypt_init_mutex); |
| return err; |
| } |
| |
| void fscrypt_msg(const struct inode *inode, const char *level, |
| const char *fmt, ...) |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| struct va_format vaf; |
| va_list args; |
| |
| if (!__ratelimit(&rs)) |
| return; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| if (inode && inode->i_ino) |
| printk("%sfscrypt (%s, inode %lu): %pV\n", |
| level, inode->i_sb->s_id, inode->i_ino, &vaf); |
| else if (inode) |
| printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf); |
| else |
| printk("%sfscrypt: %pV\n", level, &vaf); |
| va_end(args); |
| } |
| |
| /** |
| * fscrypt_init() - Set up for fs encryption. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| static int __init fscrypt_init(void) |
| { |
| int err = -ENOMEM; |
| |
| /* |
| * Use an unbound workqueue to allow bios to be decrypted in parallel |
| * even when they happen to complete on the same CPU. This sacrifices |
| * locality, but it's worthwhile since decryption is CPU-intensive. |
| * |
| * Also use a high-priority workqueue to prioritize decryption work, |
| * which blocks reads from completing, over regular application tasks. |
| */ |
| fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", |
| WQ_UNBOUND | WQ_HIGHPRI, |
| num_online_cpus()); |
| if (!fscrypt_read_workqueue) |
| goto fail; |
| |
| fscrypt_inode_info_cachep = KMEM_CACHE(fscrypt_inode_info, |
| SLAB_RECLAIM_ACCOUNT); |
| if (!fscrypt_inode_info_cachep) |
| goto fail_free_queue; |
| |
| err = fscrypt_init_keyring(); |
| if (err) |
| goto fail_free_inode_info; |
| |
| return 0; |
| |
| fail_free_inode_info: |
| kmem_cache_destroy(fscrypt_inode_info_cachep); |
| fail_free_queue: |
| destroy_workqueue(fscrypt_read_workqueue); |
| fail: |
| return err; |
| } |
| late_initcall(fscrypt_init) |