blob: ada4b4a79dd48d1402fc88b250846c4a21ec0379 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* x86 instruction analysis
*
* Copyright (C) IBM Corporation, 2002, 2004, 2009
*/
#include <linux/kernel.h>
#ifdef __KERNEL__
#include <linux/string.h>
#else
#include <string.h>
#endif
#include "../include/asm/inat.h" /* __ignore_sync_check__ */
#include "../include/asm/insn.h" /* __ignore_sync_check__ */
#include "../include/asm-generic/unaligned.h" /* __ignore_sync_check__ */
#include <linux/errno.h>
#include <linux/kconfig.h>
#include "../include/asm/emulate_prefix.h" /* __ignore_sync_check__ */
#define leXX_to_cpu(t, r) \
({ \
__typeof__(t) v; \
switch (sizeof(t)) { \
case 4: v = le32_to_cpu(r); break; \
case 2: v = le16_to_cpu(r); break; \
case 1: v = r; break; \
default: \
BUILD_BUG(); break; \
} \
v; \
})
/* Verify next sizeof(t) bytes can be on the same instruction */
#define validate_next(t, insn, n) \
((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
#define __get_next(t, insn) \
({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
#define __peek_nbyte_next(t, insn, n) \
({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
#define get_next(t, insn) \
({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
#define peek_nbyte_next(t, insn, n) \
({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
#define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
/**
* insn_init() - initialize struct insn
* @insn: &struct insn to be initialized
* @kaddr: address (in kernel memory) of instruction (or copy thereof)
* @buf_len: length of the insn buffer at @kaddr
* @x86_64: !0 for 64-bit kernel or 64-bit app
*/
void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
{
/*
* Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
* even if the input buffer is long enough to hold them.
*/
if (buf_len > MAX_INSN_SIZE)
buf_len = MAX_INSN_SIZE;
memset(insn, 0, sizeof(*insn));
insn->kaddr = kaddr;
insn->end_kaddr = kaddr + buf_len;
insn->next_byte = kaddr;
insn->x86_64 = x86_64;
insn->opnd_bytes = 4;
if (x86_64)
insn->addr_bytes = 8;
else
insn->addr_bytes = 4;
}
static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
static int __insn_get_emulate_prefix(struct insn *insn,
const insn_byte_t *prefix, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
goto err_out;
}
insn->emulate_prefix_size = len;
insn->next_byte += len;
return 1;
err_out:
return 0;
}
static void insn_get_emulate_prefix(struct insn *insn)
{
if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
return;
__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
}
/**
* insn_get_prefixes - scan x86 instruction prefix bytes
* @insn: &struct insn containing instruction
*
* Populates the @insn->prefixes bitmap, and updates @insn->next_byte
* to point to the (first) opcode. No effect if @insn->prefixes.got
* is already set.
*
* * Returns:
* 0: on success
* < 0: on error
*/
int insn_get_prefixes(struct insn *insn)
{
struct insn_field *prefixes = &insn->prefixes;
insn_attr_t attr;
insn_byte_t b, lb;
int i, nb;
if (prefixes->got)
return 0;
insn_get_emulate_prefix(insn);
nb = 0;
lb = 0;
b = peek_next(insn_byte_t, insn);
attr = inat_get_opcode_attribute(b);
while (inat_is_legacy_prefix(attr)) {
/* Skip if same prefix */
for (i = 0; i < nb; i++)
if (prefixes->bytes[i] == b)
goto found;
if (nb == 4)
/* Invalid instruction */
break;
prefixes->bytes[nb++] = b;
if (inat_is_address_size_prefix(attr)) {
/* address size switches 2/4 or 4/8 */
if (insn->x86_64)
insn->addr_bytes ^= 12;
else
insn->addr_bytes ^= 6;
} else if (inat_is_operand_size_prefix(attr)) {
/* oprand size switches 2/4 */
insn->opnd_bytes ^= 6;
}
found:
prefixes->nbytes++;
insn->next_byte++;
lb = b;
b = peek_next(insn_byte_t, insn);
attr = inat_get_opcode_attribute(b);
}
/* Set the last prefix */
if (lb && lb != insn->prefixes.bytes[3]) {
if (unlikely(insn->prefixes.bytes[3])) {
/* Swap the last prefix */
b = insn->prefixes.bytes[3];
for (i = 0; i < nb; i++)
if (prefixes->bytes[i] == lb)
insn_set_byte(prefixes, i, b);
}
insn_set_byte(&insn->prefixes, 3, lb);
}
/* Decode REX prefix */
if (insn->x86_64) {
b = peek_next(insn_byte_t, insn);
attr = inat_get_opcode_attribute(b);
if (inat_is_rex_prefix(attr)) {
insn_field_set(&insn->rex_prefix, b, 1);
insn->next_byte++;
if (X86_REX_W(b))
/* REX.W overrides opnd_size */
insn->opnd_bytes = 8;
}
}
insn->rex_prefix.got = 1;
/* Decode VEX prefix */
b = peek_next(insn_byte_t, insn);
attr = inat_get_opcode_attribute(b);
if (inat_is_vex_prefix(attr)) {
insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
if (!insn->x86_64) {
/*
* In 32-bits mode, if the [7:6] bits (mod bits of
* ModRM) on the second byte are not 11b, it is
* LDS or LES or BOUND.
*/
if (X86_MODRM_MOD(b2) != 3)
goto vex_end;
}
insn_set_byte(&insn->vex_prefix, 0, b);
insn_set_byte(&insn->vex_prefix, 1, b2);
if (inat_is_evex_prefix(attr)) {
b2 = peek_nbyte_next(insn_byte_t, insn, 2);
insn_set_byte(&insn->vex_prefix, 2, b2);
b2 = peek_nbyte_next(insn_byte_t, insn, 3);
insn_set_byte(&insn->vex_prefix, 3, b2);
insn->vex_prefix.nbytes = 4;
insn->next_byte += 4;
if (insn->x86_64 && X86_VEX_W(b2))
/* VEX.W overrides opnd_size */
insn->opnd_bytes = 8;
} else if (inat_is_vex3_prefix(attr)) {
b2 = peek_nbyte_next(insn_byte_t, insn, 2);
insn_set_byte(&insn->vex_prefix, 2, b2);
insn->vex_prefix.nbytes = 3;
insn->next_byte += 3;
if (insn->x86_64 && X86_VEX_W(b2))
/* VEX.W overrides opnd_size */
insn->opnd_bytes = 8;
} else {
/*
* For VEX2, fake VEX3-like byte#2.
* Makes it easier to decode vex.W, vex.vvvv,
* vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
*/
insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
insn->vex_prefix.nbytes = 2;
insn->next_byte += 2;
}
}
vex_end:
insn->vex_prefix.got = 1;
prefixes->got = 1;
return 0;
err_out:
return -ENODATA;
}
/**
* insn_get_opcode - collect opcode(s)
* @insn: &struct insn containing instruction
*
* Populates @insn->opcode, updates @insn->next_byte to point past the
* opcode byte(s), and set @insn->attr (except for groups).
* If necessary, first collects any preceding (prefix) bytes.
* Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
* is already 1.
*
* Returns:
* 0: on success
* < 0: on error
*/
int insn_get_opcode(struct insn *insn)
{
struct insn_field *opcode = &insn->opcode;
int pfx_id, ret;
insn_byte_t op;
if (opcode->got)
return 0;
ret = insn_get_prefixes(insn);
if (ret)
return ret;
/* Get first opcode */
op = get_next(insn_byte_t, insn);
insn_set_byte(opcode, 0, op);
opcode->nbytes = 1;
/* Check if there is VEX prefix or not */
if (insn_is_avx(insn)) {
insn_byte_t m, p;
m = insn_vex_m_bits(insn);
p = insn_vex_p_bits(insn);
insn->attr = inat_get_avx_attribute(op, m, p);
if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
(!inat_accept_vex(insn->attr) &&
!inat_is_group(insn->attr))) {
/* This instruction is bad */
insn->attr = 0;
return -EINVAL;
}
/* VEX has only 1 byte for opcode */
goto end;
}
insn->attr = inat_get_opcode_attribute(op);
while (inat_is_escape(insn->attr)) {
/* Get escaped opcode */
op = get_next(insn_byte_t, insn);
opcode->bytes[opcode->nbytes++] = op;
pfx_id = insn_last_prefix_id(insn);
insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
}
if (inat_must_vex(insn->attr)) {
/* This instruction is bad */
insn->attr = 0;
return -EINVAL;
}
end:
opcode->got = 1;
return 0;
err_out:
return -ENODATA;
}
/**
* insn_get_modrm - collect ModRM byte, if any
* @insn: &struct insn containing instruction
*
* Populates @insn->modrm and updates @insn->next_byte to point past the
* ModRM byte, if any. If necessary, first collects the preceding bytes
* (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
*
* Returns:
* 0: on success
* < 0: on error
*/
int insn_get_modrm(struct insn *insn)
{
struct insn_field *modrm = &insn->modrm;
insn_byte_t pfx_id, mod;
int ret;
if (modrm->got)
return 0;
ret = insn_get_opcode(insn);
if (ret)
return ret;
if (inat_has_modrm(insn->attr)) {
mod = get_next(insn_byte_t, insn);
insn_field_set(modrm, mod, 1);
if (inat_is_group(insn->attr)) {
pfx_id = insn_last_prefix_id(insn);
insn->attr = inat_get_group_attribute(mod, pfx_id,
insn->attr);
if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
/* Bad insn */
insn->attr = 0;
return -EINVAL;
}
}
}
if (insn->x86_64 && inat_is_force64(insn->attr))
insn->opnd_bytes = 8;
modrm->got = 1;
return 0;
err_out:
return -ENODATA;
}
/**
* insn_rip_relative() - Does instruction use RIP-relative addressing mode?
* @insn: &struct insn containing instruction
*
* If necessary, first collects the instruction up to and including the
* ModRM byte. No effect if @insn->x86_64 is 0.
*/
int insn_rip_relative(struct insn *insn)
{
struct insn_field *modrm = &insn->modrm;
int ret;
if (!insn->x86_64)
return 0;
ret = insn_get_modrm(insn);
if (ret)
return 0;
/*
* For rip-relative instructions, the mod field (top 2 bits)
* is zero and the r/m field (bottom 3 bits) is 0x5.
*/
return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
}
/**
* insn_get_sib() - Get the SIB byte of instruction
* @insn: &struct insn containing instruction
*
* If necessary, first collects the instruction up to and including the
* ModRM byte.
*
* Returns:
* 0: if decoding succeeded
* < 0: otherwise.
*/
int insn_get_sib(struct insn *insn)
{
insn_byte_t modrm;
int ret;
if (insn->sib.got)
return 0;
ret = insn_get_modrm(insn);
if (ret)
return ret;
if (insn->modrm.nbytes) {
modrm = insn->modrm.bytes[0];
if (insn->addr_bytes != 2 &&
X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
insn_field_set(&insn->sib,
get_next(insn_byte_t, insn), 1);
}
}
insn->sib.got = 1;
return 0;
err_out:
return -ENODATA;
}
/**
* insn_get_displacement() - Get the displacement of instruction
* @insn: &struct insn containing instruction
*
* If necessary, first collects the instruction up to and including the
* SIB byte.
* Displacement value is sign-expanded.
*
* * Returns:
* 0: if decoding succeeded
* < 0: otherwise.
*/
int insn_get_displacement(struct insn *insn)
{
insn_byte_t mod, rm, base;
int ret;
if (insn->displacement.got)
return 0;
ret = insn_get_sib(insn);
if (ret)
return ret;
if (insn->modrm.nbytes) {
/*
* Interpreting the modrm byte:
* mod = 00 - no displacement fields (exceptions below)
* mod = 01 - 1-byte displacement field
* mod = 10 - displacement field is 4 bytes, or 2 bytes if
* address size = 2 (0x67 prefix in 32-bit mode)
* mod = 11 - no memory operand
*
* If address size = 2...
* mod = 00, r/m = 110 - displacement field is 2 bytes
*
* If address size != 2...
* mod != 11, r/m = 100 - SIB byte exists
* mod = 00, SIB base = 101 - displacement field is 4 bytes
* mod = 00, r/m = 101 - rip-relative addressing, displacement
* field is 4 bytes
*/
mod = X86_MODRM_MOD(insn->modrm.value);
rm = X86_MODRM_RM(insn->modrm.value);
base = X86_SIB_BASE(insn->sib.value);
if (mod == 3)
goto out;
if (mod == 1) {
insn_field_set(&insn->displacement,
get_next(signed char, insn), 1);
} else if (insn->addr_bytes == 2) {
if ((mod == 0 && rm == 6) || mod == 2) {
insn_field_set(&insn->displacement,
get_next(short, insn), 2);
}
} else {
if ((mod == 0 && rm == 5) || mod == 2 ||
(mod == 0 && base == 5)) {
insn_field_set(&insn->displacement,
get_next(int, insn), 4);
}
}
}
out:
insn->displacement.got = 1;
return 0;
err_out:
return -ENODATA;
}
/* Decode moffset16/32/64. Return 0 if failed */
static int __get_moffset(struct insn *insn)
{
switch (insn->addr_bytes) {
case 2:
insn_field_set(&insn->moffset1, get_next(short, insn), 2);
break;
case 4:
insn_field_set(&insn->moffset1, get_next(int, insn), 4);
break;
case 8:
insn_field_set(&insn->moffset1, get_next(int, insn), 4);
insn_field_set(&insn->moffset2, get_next(int, insn), 4);
break;
default: /* opnd_bytes must be modified manually */
goto err_out;
}
insn->moffset1.got = insn->moffset2.got = 1;
return 1;
err_out:
return 0;
}
/* Decode imm v32(Iz). Return 0 if failed */
static int __get_immv32(struct insn *insn)
{
switch (insn->opnd_bytes) {
case 2:
insn_field_set(&insn->immediate, get_next(short, insn), 2);
break;
case 4:
case 8:
insn_field_set(&insn->immediate, get_next(int, insn), 4);
break;
default: /* opnd_bytes must be modified manually */
goto err_out;
}
return 1;
err_out:
return 0;
}
/* Decode imm v64(Iv/Ov), Return 0 if failed */
static int __get_immv(struct insn *insn)
{
switch (insn->opnd_bytes) {
case 2:
insn_field_set(&insn->immediate1, get_next(short, insn), 2);
break;
case 4:
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
insn->immediate1.nbytes = 4;
break;
case 8:
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
insn_field_set(&insn->immediate2, get_next(int, insn), 4);
break;
default: /* opnd_bytes must be modified manually */
goto err_out;
}
insn->immediate1.got = insn->immediate2.got = 1;
return 1;
err_out:
return 0;
}
/* Decode ptr16:16/32(Ap) */
static int __get_immptr(struct insn *insn)
{
switch (insn->opnd_bytes) {
case 2:
insn_field_set(&insn->immediate1, get_next(short, insn), 2);
break;
case 4:
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
break;
case 8:
/* ptr16:64 is not exist (no segment) */
return 0;
default: /* opnd_bytes must be modified manually */
goto err_out;
}
insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
insn->immediate1.got = insn->immediate2.got = 1;
return 1;
err_out:
return 0;
}
/**
* insn_get_immediate() - Get the immediate in an instruction
* @insn: &struct insn containing instruction
*
* If necessary, first collects the instruction up to and including the
* displacement bytes.
* Basically, most of immediates are sign-expanded. Unsigned-value can be
* computed by bit masking with ((1 << (nbytes * 8)) - 1)
*
* Returns:
* 0: on success
* < 0: on error
*/
int insn_get_immediate(struct insn *insn)
{
int ret;
if (insn->immediate.got)
return 0;
ret = insn_get_displacement(insn);
if (ret)
return ret;
if (inat_has_moffset(insn->attr)) {
if (!__get_moffset(insn))
goto err_out;
goto done;
}
if (!inat_has_immediate(insn->attr))
/* no immediates */
goto done;
switch (inat_immediate_size(insn->attr)) {
case INAT_IMM_BYTE:
insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
break;
case INAT_IMM_WORD:
insn_field_set(&insn->immediate, get_next(short, insn), 2);
break;
case INAT_IMM_DWORD:
insn_field_set(&insn->immediate, get_next(int, insn), 4);
break;
case INAT_IMM_QWORD:
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
insn_field_set(&insn->immediate2, get_next(int, insn), 4);
break;
case INAT_IMM_PTR:
if (!__get_immptr(insn))
goto err_out;
break;
case INAT_IMM_VWORD32:
if (!__get_immv32(insn))
goto err_out;
break;
case INAT_IMM_VWORD:
if (!__get_immv(insn))
goto err_out;
break;
default:
/* Here, insn must have an immediate, but failed */
goto err_out;
}
if (inat_has_second_immediate(insn->attr)) {
insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
}
done:
insn->immediate.got = 1;
return 0;
err_out:
return -ENODATA;
}
/**
* insn_get_length() - Get the length of instruction
* @insn: &struct insn containing instruction
*
* If necessary, first collects the instruction up to and including the
* immediates bytes.
*
* Returns:
* - 0 on success
* - < 0 on error
*/
int insn_get_length(struct insn *insn)
{
int ret;
if (insn->length)
return 0;
ret = insn_get_immediate(insn);
if (ret)
return ret;
insn->length = (unsigned char)((unsigned long)insn->next_byte
- (unsigned long)insn->kaddr);
return 0;
}
/* Ensure this instruction is decoded completely */
static inline int insn_complete(struct insn *insn)
{
return insn->opcode.got && insn->modrm.got && insn->sib.got &&
insn->displacement.got && insn->immediate.got;
}
/**
* insn_decode() - Decode an x86 instruction
* @insn: &struct insn to be initialized
* @kaddr: address (in kernel memory) of instruction (or copy thereof)
* @buf_len: length of the insn buffer at @kaddr
* @m: insn mode, see enum insn_mode
*
* Returns:
* 0: if decoding succeeded
* < 0: otherwise.
*/
int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
{
int ret;
#define INSN_MODE_KERN (enum insn_mode)-1 /* __ignore_sync_check__ mode is only valid in the kernel */
if (m == INSN_MODE_KERN)
insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
else
insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
ret = insn_get_length(insn);
if (ret)
return ret;
if (insn_complete(insn))
return 0;
return -EINVAL;
}