blob: 16e2338686c172c1e1ece67e405df3ab666f7ded [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* set_id_regs - Test for setting ID register from usersapce.
*
* Copyright (c) 2023 Google LLC.
*
*
* Test that KVM supports setting ID registers from userspace and handles the
* feature set correctly.
*/
#include <stdint.h>
#include "kvm_util.h"
#include "processor.h"
#include "test_util.h"
#include <linux/bitfield.h>
enum ftr_type {
FTR_EXACT, /* Use a predefined safe value */
FTR_LOWER_SAFE, /* Smaller value is safe */
FTR_HIGHER_SAFE, /* Bigger value is safe */
FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
FTR_END, /* Mark the last ftr bits */
};
#define FTR_SIGNED true /* Value should be treated as signed */
#define FTR_UNSIGNED false /* Value should be treated as unsigned */
struct reg_ftr_bits {
char *name;
bool sign;
enum ftr_type type;
uint8_t shift;
uint64_t mask;
/*
* For FTR_EXACT, safe_val is used as the exact safe value.
* For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
*/
int64_t safe_val;
};
struct test_feature_reg {
uint32_t reg;
const struct reg_ftr_bits *ftr_bits;
};
#define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL) \
{ \
.name = #NAME, \
.sign = SIGNED, \
.type = TYPE, \
.shift = SHIFT, \
.mask = MASK, \
.safe_val = SAFE_VAL, \
}
#define REG_FTR_BITS(type, reg, field, safe_val) \
__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
reg##_##field##_MASK, safe_val)
#define S_REG_FTR_BITS(type, reg, field, safe_val) \
__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
reg##_##field##_MASK, safe_val)
#define REG_FTR_END \
{ \
.type = FTR_END, \
}
static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ASIDBITS, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
REG_FTR_END,
};
static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
REG_FTR_END,
};
#define TEST_REG(id, table) \
{ \
.reg = id, \
.ftr_bits = &((table)[0]), \
}
static struct test_feature_reg test_regs[] = {
TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
};
#define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
static void guest_code(void)
{
GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
GUEST_DONE();
}
/* Return a safe value to a given ftr_bits an ftr value */
uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
{
uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
if (ftr_bits->sign == FTR_UNSIGNED) {
switch (ftr_bits->type) {
case FTR_EXACT:
ftr = ftr_bits->safe_val;
break;
case FTR_LOWER_SAFE:
if (ftr > ftr_bits->safe_val)
ftr--;
break;
case FTR_HIGHER_SAFE:
if (ftr < ftr_max)
ftr++;
break;
case FTR_HIGHER_OR_ZERO_SAFE:
if (ftr == ftr_max)
ftr = 0;
else if (ftr != 0)
ftr++;
break;
default:
break;
}
} else if (ftr != ftr_max) {
switch (ftr_bits->type) {
case FTR_EXACT:
ftr = ftr_bits->safe_val;
break;
case FTR_LOWER_SAFE:
if (ftr > ftr_bits->safe_val)
ftr--;
break;
case FTR_HIGHER_SAFE:
if (ftr < ftr_max - 1)
ftr++;
break;
case FTR_HIGHER_OR_ZERO_SAFE:
if (ftr != 0 && ftr != ftr_max - 1)
ftr++;
break;
default:
break;
}
}
return ftr;
}
/* Return an invalid value to a given ftr_bits an ftr value */
uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
{
uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
if (ftr_bits->sign == FTR_UNSIGNED) {
switch (ftr_bits->type) {
case FTR_EXACT:
ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
break;
case FTR_LOWER_SAFE:
ftr++;
break;
case FTR_HIGHER_SAFE:
ftr--;
break;
case FTR_HIGHER_OR_ZERO_SAFE:
if (ftr == 0)
ftr = ftr_max;
else
ftr--;
break;
default:
break;
}
} else if (ftr != ftr_max) {
switch (ftr_bits->type) {
case FTR_EXACT:
ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
break;
case FTR_LOWER_SAFE:
ftr++;
break;
case FTR_HIGHER_SAFE:
ftr--;
break;
case FTR_HIGHER_OR_ZERO_SAFE:
if (ftr == 0)
ftr = ftr_max - 1;
else
ftr--;
break;
default:
break;
}
} else {
ftr = 0;
}
return ftr;
}
static void test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
const struct reg_ftr_bits *ftr_bits)
{
uint8_t shift = ftr_bits->shift;
uint64_t mask = ftr_bits->mask;
uint64_t val, new_val, ftr;
vcpu_get_reg(vcpu, reg, &val);
ftr = (val & mask) >> shift;
ftr = get_safe_value(ftr_bits, ftr);
ftr <<= shift;
val &= ~mask;
val |= ftr;
vcpu_set_reg(vcpu, reg, val);
vcpu_get_reg(vcpu, reg, &new_val);
TEST_ASSERT_EQ(new_val, val);
}
static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
const struct reg_ftr_bits *ftr_bits)
{
uint8_t shift = ftr_bits->shift;
uint64_t mask = ftr_bits->mask;
uint64_t val, old_val, ftr;
int r;
vcpu_get_reg(vcpu, reg, &val);
ftr = (val & mask) >> shift;
ftr = get_invalid_value(ftr_bits, ftr);
old_val = val;
ftr <<= shift;
val &= ~mask;
val |= ftr;
r = __vcpu_set_reg(vcpu, reg, val);
TEST_ASSERT(r < 0 && errno == EINVAL,
"Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
vcpu_get_reg(vcpu, reg, &val);
TEST_ASSERT_EQ(val, old_val);
}
static void test_user_set_reg(struct kvm_vcpu *vcpu, bool aarch64_only)
{
uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
struct reg_mask_range range = {
.addr = (__u64)masks,
};
int ret;
/* KVM should return error when reserved field is not zero */
range.reserved[0] = 1;
ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
/* Get writable masks for feature ID registers */
memset(range.reserved, 0, sizeof(range.reserved));
vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
uint32_t reg_id = test_regs[i].reg;
uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
int idx;
/* Get the index to masks array for the idreg */
idx = KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(reg_id), sys_reg_Op1(reg_id),
sys_reg_CRn(reg_id), sys_reg_CRm(reg_id),
sys_reg_Op2(reg_id));
for (int j = 0; ftr_bits[j].type != FTR_END; j++) {
/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
ksft_test_result_skip("%s on AARCH64 only system\n",
ftr_bits[j].name);
continue;
}
/* Make sure the feature field is writable */
TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
test_reg_set_success(vcpu, reg, &ftr_bits[j]);
ksft_test_result_pass("%s\n", ftr_bits[j].name);
}
}
}
static void test_guest_reg_read(struct kvm_vcpu *vcpu)
{
bool done = false;
struct ucall uc;
uint64_t val;
while (!done) {
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_SYNC:
/* Make sure the written values are seen by guest */
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(uc.args[2]), &val);
TEST_ASSERT_EQ(val, uc.args[3]);
break;
case UCALL_DONE:
done = true;
break;
default:
TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
}
}
}
int main(void)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
bool aarch64_only;
uint64_t val, el0;
int ftr_cnt;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
/* Check for AARCH64 only system */
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
aarch64_only = (el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
ksft_print_header();
ftr_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) +
ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) +
ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) +
ARRAY_SIZE(ftr_id_aa64mmfr0_el1) + ARRAY_SIZE(ftr_id_aa64mmfr1_el1) +
ARRAY_SIZE(ftr_id_aa64mmfr2_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) -
ARRAY_SIZE(test_regs);
ksft_set_plan(ftr_cnt);
test_user_set_reg(vcpu, aarch64_only);
test_guest_reg_read(vcpu);
kvm_vm_free(vm);
ksft_finished();
}