blob: e538c67d3ed9152cd773709f7f37bd5c124f2b75 [file] [log] [blame]
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements all generic dp link training helper functions and top
* level generic training sequence. All variations of dp link training sequence
* should be called inside the top level training functions in this file to
* ensure the integrity of our overall training procedure across different types
* of link encoding and back end hardware.
*/
#include "link_dp_training.h"
#include "link_dp_training_8b_10b.h"
#include "link_dp_training_128b_132b.h"
#include "link_dp_training_auxless.h"
#include "link_dp_training_dpia.h"
#include "link_dp_training_fixed_vs_pe_retimer.h"
#include "link_dpcd.h"
#include "link/accessories/link_dp_trace.h"
#include "link_dp_phy.h"
#include "link_dp_capability.h"
#include "link_edp_panel_control.h"
#include "link/link_detection.h"
#include "link/link_validation.h"
#include "atomfirmware.h"
#include "link_enc_cfg.h"
#include "resource.h"
#include "dm_helpers.h"
#define DC_LOGGER \
link->ctx->logger
#define POST_LT_ADJ_REQ_LIMIT 6
#define POST_LT_ADJ_REQ_TIMEOUT 200
#define LINK_TRAINING_RETRY_DELAY 50 /* ms */
void dp_log_training_result(
struct dc_link *link,
const struct link_training_settings *lt_settings,
enum link_training_result status)
{
char *link_rate = "Unknown";
char *lt_result = "Unknown";
char *lt_spread = "Disabled";
switch (lt_settings->link_settings.link_rate) {
case LINK_RATE_LOW:
link_rate = "RBR";
break;
case LINK_RATE_RATE_2:
link_rate = "R2";
break;
case LINK_RATE_RATE_3:
link_rate = "R3";
break;
case LINK_RATE_HIGH:
link_rate = "HBR";
break;
case LINK_RATE_RBR2:
link_rate = "RBR2";
break;
case LINK_RATE_RATE_6:
link_rate = "R6";
break;
case LINK_RATE_HIGH2:
link_rate = "HBR2";
break;
case LINK_RATE_RATE_8:
link_rate = "R8";
break;
case LINK_RATE_HIGH3:
link_rate = "HBR3";
break;
case LINK_RATE_UHBR10:
link_rate = "UHBR10";
break;
case LINK_RATE_UHBR13_5:
link_rate = "UHBR13.5";
break;
case LINK_RATE_UHBR20:
link_rate = "UHBR20";
break;
default:
break;
}
switch (status) {
case LINK_TRAINING_SUCCESS:
lt_result = "pass";
break;
case LINK_TRAINING_CR_FAIL_LANE0:
lt_result = "CR failed lane0";
break;
case LINK_TRAINING_CR_FAIL_LANE1:
lt_result = "CR failed lane1";
break;
case LINK_TRAINING_CR_FAIL_LANE23:
lt_result = "CR failed lane23";
break;
case LINK_TRAINING_EQ_FAIL_CR:
lt_result = "CR failed in EQ";
break;
case LINK_TRAINING_EQ_FAIL_CR_PARTIAL:
lt_result = "CR failed in EQ partially";
break;
case LINK_TRAINING_EQ_FAIL_EQ:
lt_result = "EQ failed";
break;
case LINK_TRAINING_LQA_FAIL:
lt_result = "LQA failed";
break;
case LINK_TRAINING_LINK_LOSS:
lt_result = "Link loss";
break;
case DP_128b_132b_LT_FAILED:
lt_result = "LT_FAILED received";
break;
case DP_128b_132b_MAX_LOOP_COUNT_REACHED:
lt_result = "max loop count reached";
break;
case DP_128b_132b_CHANNEL_EQ_DONE_TIMEOUT:
lt_result = "channel EQ timeout";
break;
case DP_128b_132b_CDS_DONE_TIMEOUT:
lt_result = "CDS timeout";
break;
default:
break;
}
switch (lt_settings->link_settings.link_spread) {
case LINK_SPREAD_DISABLED:
lt_spread = "Disabled";
break;
case LINK_SPREAD_05_DOWNSPREAD_30KHZ:
lt_spread = "0.5% 30KHz";
break;
case LINK_SPREAD_05_DOWNSPREAD_33KHZ:
lt_spread = "0.5% 33KHz";
break;
default:
break;
}
/* Connectivity log: link training */
/* TODO - DP2.0 Log: add connectivity log for FFE PRESET */
CONN_MSG_LT(link, "%sx%d %s VS=%d, PE=%d, DS=%s",
link_rate,
lt_settings->link_settings.lane_count,
lt_result,
lt_settings->hw_lane_settings[0].VOLTAGE_SWING,
lt_settings->hw_lane_settings[0].PRE_EMPHASIS,
lt_spread);
}
uint8_t dp_initialize_scrambling_data_symbols(
struct dc_link *link,
enum dc_dp_training_pattern pattern)
{
uint8_t disable_scrabled_data_symbols = 0;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
case DP_TRAINING_PATTERN_SEQUENCE_2:
case DP_TRAINING_PATTERN_SEQUENCE_3:
disable_scrabled_data_symbols = 1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
case DP_128b_132b_TPS1:
case DP_128b_132b_TPS2:
disable_scrabled_data_symbols = 0;
break;
default:
ASSERT(0);
DC_LOG_HW_LINK_TRAINING("%s: Invalid HW Training pattern: %d\n",
__func__, pattern);
break;
}
return disable_scrabled_data_symbols;
}
enum dpcd_training_patterns
dp_training_pattern_to_dpcd_training_pattern(
struct dc_link *link,
enum dc_dp_training_pattern pattern)
{
enum dpcd_training_patterns dpcd_tr_pattern =
DPCD_TRAINING_PATTERN_VIDEOIDLE;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS1\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_2:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS2\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_2;
break;
case DP_TRAINING_PATTERN_SEQUENCE_3:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS3\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_3;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS4\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_4;
break;
case DP_128b_132b_TPS1:
DC_LOG_HW_LINK_TRAINING("%s: Using DP 128b/132b training pattern TPS1\n", __func__);
dpcd_tr_pattern = DPCD_128b_132b_TPS1;
break;
case DP_128b_132b_TPS2:
DC_LOG_HW_LINK_TRAINING("%s: Using DP 128b/132b training pattern TPS2\n", __func__);
dpcd_tr_pattern = DPCD_128b_132b_TPS2;
break;
case DP_128b_132b_TPS2_CDS:
DC_LOG_HW_LINK_TRAINING("%s: Using DP 128b/132b training pattern TPS2 CDS\n",
__func__);
dpcd_tr_pattern = DPCD_128b_132b_TPS2_CDS;
break;
case DP_TRAINING_PATTERN_VIDEOIDLE:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern videoidle\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_VIDEOIDLE;
break;
default:
ASSERT(0);
DC_LOG_HW_LINK_TRAINING("%s: Invalid HW Training pattern: %d\n",
__func__, pattern);
break;
}
return dpcd_tr_pattern;
}
uint8_t dp_get_nibble_at_index(const uint8_t *buf,
uint32_t index)
{
uint8_t nibble;
nibble = buf[index / 2];
if (index % 2)
nibble >>= 4;
else
nibble &= 0x0F;
return nibble;
}
void dp_wait_for_training_aux_rd_interval(
struct dc_link *link,
uint32_t wait_in_micro_secs)
{
fsleep(wait_in_micro_secs);
DC_LOG_HW_LINK_TRAINING("%s:\n wait = %d\n",
__func__,
wait_in_micro_secs);
}
/* maximum pre emphasis level allowed for each voltage swing level*/
static const enum dc_pre_emphasis voltage_swing_to_pre_emphasis[] = {
PRE_EMPHASIS_LEVEL3,
PRE_EMPHASIS_LEVEL2,
PRE_EMPHASIS_LEVEL1,
PRE_EMPHASIS_DISABLED };
static enum dc_pre_emphasis get_max_pre_emphasis_for_voltage_swing(
enum dc_voltage_swing voltage)
{
enum dc_pre_emphasis pre_emphasis;
pre_emphasis = PRE_EMPHASIS_MAX_LEVEL;
if (voltage <= VOLTAGE_SWING_MAX_LEVEL)
pre_emphasis = voltage_swing_to_pre_emphasis[voltage];
return pre_emphasis;
}
static void maximize_lane_settings(const struct link_training_settings *lt_settings,
struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
uint32_t lane;
struct dc_lane_settings max_requested;
max_requested.VOLTAGE_SWING = lane_settings[0].VOLTAGE_SWING;
max_requested.PRE_EMPHASIS = lane_settings[0].PRE_EMPHASIS;
max_requested.FFE_PRESET = lane_settings[0].FFE_PRESET;
/* Determine what the maximum of the requested settings are*/
for (lane = 1; lane < lt_settings->link_settings.lane_count; lane++) {
if (lane_settings[lane].VOLTAGE_SWING > max_requested.VOLTAGE_SWING)
max_requested.VOLTAGE_SWING = lane_settings[lane].VOLTAGE_SWING;
if (lane_settings[lane].PRE_EMPHASIS > max_requested.PRE_EMPHASIS)
max_requested.PRE_EMPHASIS = lane_settings[lane].PRE_EMPHASIS;
if (lane_settings[lane].FFE_PRESET.settings.level >
max_requested.FFE_PRESET.settings.level)
max_requested.FFE_PRESET.settings.level =
lane_settings[lane].FFE_PRESET.settings.level;
}
/* make sure the requested settings are
* not higher than maximum settings*/
if (max_requested.VOLTAGE_SWING > VOLTAGE_SWING_MAX_LEVEL)
max_requested.VOLTAGE_SWING = VOLTAGE_SWING_MAX_LEVEL;
if (max_requested.PRE_EMPHASIS > PRE_EMPHASIS_MAX_LEVEL)
max_requested.PRE_EMPHASIS = PRE_EMPHASIS_MAX_LEVEL;
if (max_requested.FFE_PRESET.settings.level > DP_FFE_PRESET_MAX_LEVEL)
max_requested.FFE_PRESET.settings.level = DP_FFE_PRESET_MAX_LEVEL;
/* make sure the pre-emphasis matches the voltage swing*/
if (max_requested.PRE_EMPHASIS >
get_max_pre_emphasis_for_voltage_swing(
max_requested.VOLTAGE_SWING))
max_requested.PRE_EMPHASIS =
get_max_pre_emphasis_for_voltage_swing(
max_requested.VOLTAGE_SWING);
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lane_settings[lane].VOLTAGE_SWING = max_requested.VOLTAGE_SWING;
lane_settings[lane].PRE_EMPHASIS = max_requested.PRE_EMPHASIS;
lane_settings[lane].FFE_PRESET = max_requested.FFE_PRESET;
}
}
void dp_hw_to_dpcd_lane_settings(
const struct link_training_settings *lt_settings,
const struct dc_lane_settings hw_lane_settings[LANE_COUNT_DP_MAX],
union dpcd_training_lane dpcd_lane_settings[LANE_COUNT_DP_MAX])
{
uint8_t lane = 0;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_8b_10b_ENCODING) {
dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET =
(uint8_t)(hw_lane_settings[lane].VOLTAGE_SWING);
dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET =
(uint8_t)(hw_lane_settings[lane].PRE_EMPHASIS);
dpcd_lane_settings[lane].bits.MAX_SWING_REACHED =
(hw_lane_settings[lane].VOLTAGE_SWING ==
VOLTAGE_SWING_MAX_LEVEL ? 1 : 0);
dpcd_lane_settings[lane].bits.MAX_PRE_EMPHASIS_REACHED =
(hw_lane_settings[lane].PRE_EMPHASIS ==
PRE_EMPHASIS_MAX_LEVEL ? 1 : 0);
} else if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_128b_132b_ENCODING) {
dpcd_lane_settings[lane].tx_ffe.PRESET_VALUE =
hw_lane_settings[lane].FFE_PRESET.settings.level;
}
}
}
uint8_t get_dpcd_link_rate(const struct dc_link_settings *link_settings)
{
uint8_t link_rate = 0;
enum dp_link_encoding encoding = link_dp_get_encoding_format(link_settings);
if (encoding == DP_128b_132b_ENCODING)
switch (link_settings->link_rate) {
case LINK_RATE_UHBR10:
link_rate = 0x1;
break;
case LINK_RATE_UHBR20:
link_rate = 0x2;
break;
case LINK_RATE_UHBR13_5:
link_rate = 0x4;
break;
default:
link_rate = 0;
break;
}
else if (encoding == DP_8b_10b_ENCODING)
link_rate = (uint8_t) link_settings->link_rate;
else
link_rate = 0;
return link_rate;
}
/* Only used for channel equalization */
uint32_t dp_translate_training_aux_read_interval(uint32_t dpcd_aux_read_interval)
{
unsigned int aux_rd_interval_us = 400;
switch (dpcd_aux_read_interval) {
case 0x01:
aux_rd_interval_us = 4000;
break;
case 0x02:
aux_rd_interval_us = 8000;
break;
case 0x03:
aux_rd_interval_us = 12000;
break;
case 0x04:
aux_rd_interval_us = 16000;
break;
case 0x05:
aux_rd_interval_us = 32000;
break;
case 0x06:
aux_rd_interval_us = 64000;
break;
default:
break;
}
return aux_rd_interval_us;
}
enum link_training_result dp_get_cr_failure(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
enum link_training_result result = LINK_TRAINING_SUCCESS;
if (ln_count >= LANE_COUNT_ONE && !dpcd_lane_status[0].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE0;
else if (ln_count >= LANE_COUNT_TWO && !dpcd_lane_status[1].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE1;
else if (ln_count >= LANE_COUNT_FOUR && !dpcd_lane_status[2].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE23;
else if (ln_count >= LANE_COUNT_FOUR && !dpcd_lane_status[3].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE23;
return result;
}
bool is_repeater(const struct link_training_settings *lt_settings, uint32_t offset)
{
return (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) && (offset != 0);
}
bool dp_is_max_vs_reached(
const struct link_training_settings *lt_settings)
{
uint32_t lane;
for (lane = 0; lane <
(uint32_t)(lt_settings->link_settings.lane_count);
lane++) {
if (lt_settings->dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET
== VOLTAGE_SWING_MAX_LEVEL)
return true;
}
return false;
}
bool dp_is_cr_done(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool done = true;
uint32_t lane;
/*LANEx_CR_DONE bits All 1's?*/
for (lane = 0; lane < (uint32_t)(ln_count); lane++) {
if (!dpcd_lane_status[lane].bits.CR_DONE_0)
done = false;
}
return done;
}
bool dp_is_ch_eq_done(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool done = true;
uint32_t lane;
for (lane = 0; lane < (uint32_t)(ln_count); lane++)
if (!dpcd_lane_status[lane].bits.CHANNEL_EQ_DONE_0)
done = false;
return done;
}
bool dp_is_symbol_locked(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool locked = true;
uint32_t lane;
for (lane = 0; lane < (uint32_t)(ln_count); lane++)
if (!dpcd_lane_status[lane].bits.SYMBOL_LOCKED_0)
locked = false;
return locked;
}
bool dp_is_interlane_aligned(union lane_align_status_updated align_status)
{
return align_status.bits.INTERLANE_ALIGN_DONE == 1;
}
enum link_training_result dp_check_link_loss_status(
struct dc_link *link,
const struct link_training_settings *link_training_setting)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
union lane_status lane_status;
union lane_align_status_updated dpcd_lane_status_updated;
uint8_t dpcd_buf[6] = {0};
uint32_t lane;
core_link_read_dpcd(
link,
DP_SINK_COUNT,
(uint8_t *)(dpcd_buf),
sizeof(dpcd_buf));
/*parse lane status*/
for (lane = 0; lane < link->cur_link_settings.lane_count; lane++) {
/*
* check lanes status
*/
lane_status.raw = dp_get_nibble_at_index(&dpcd_buf[2], lane);
dpcd_lane_status_updated.raw = dpcd_buf[4];
if (!lane_status.bits.CHANNEL_EQ_DONE_0 ||
!lane_status.bits.CR_DONE_0 ||
!lane_status.bits.SYMBOL_LOCKED_0 ||
!dp_is_interlane_aligned(dpcd_lane_status_updated)) {
/* if one of the channel equalization, clock
* recovery or symbol lock is dropped
* consider it as (link has been
* dropped) dp sink status has changed
*/
status = LINK_TRAINING_LINK_LOSS;
break;
}
}
return status;
}
enum dc_status dp_get_lane_status_and_lane_adjust(
struct dc_link *link,
const struct link_training_settings *link_training_setting,
union lane_status ln_status[LANE_COUNT_DP_MAX],
union lane_align_status_updated *ln_align,
union lane_adjust ln_adjust[LANE_COUNT_DP_MAX],
uint32_t offset)
{
unsigned int lane01_status_address = DP_LANE0_1_STATUS;
uint8_t lane_adjust_offset = 4;
unsigned int lane01_adjust_address;
uint8_t dpcd_buf[6] = {0};
uint32_t lane;
enum dc_status status;
if (is_repeater(link_training_setting, offset)) {
lane01_status_address =
DP_LANE0_1_STATUS_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
lane_adjust_offset = 3;
}
status = core_link_read_dpcd(
link,
lane01_status_address,
(uint8_t *)(dpcd_buf),
sizeof(dpcd_buf));
if (status != DC_OK) {
DC_LOG_HW_LINK_TRAINING("%s:\n Failed to read from address 0x%X,"
" keep current lane status and lane adjust unchanged",
__func__,
lane01_status_address);
return status;
}
for (lane = 0; lane <
(uint32_t)(link_training_setting->link_settings.lane_count);
lane++) {
ln_status[lane].raw =
dp_get_nibble_at_index(&dpcd_buf[0], lane);
ln_adjust[lane].raw =
dp_get_nibble_at_index(&dpcd_buf[lane_adjust_offset], lane);
}
ln_align->raw = dpcd_buf[2];
if (is_repeater(link_training_setting, offset)) {
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X Lane01Status = %x\n 0x%X Lane23Status = %x\n ",
__func__,
offset,
lane01_status_address, dpcd_buf[0],
lane01_status_address + 1, dpcd_buf[1]);
lane01_adjust_address = DP_ADJUST_REQUEST_LANE0_1_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X Lane01AdjustRequest = %x\n 0x%X Lane23AdjustRequest = %x\n",
__func__,
offset,
lane01_adjust_address,
dpcd_buf[lane_adjust_offset],
lane01_adjust_address + 1,
dpcd_buf[lane_adjust_offset + 1]);
} else {
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X Lane01Status = %x\n 0x%X Lane23Status = %x\n ",
__func__,
lane01_status_address, dpcd_buf[0],
lane01_status_address + 1, dpcd_buf[1]);
lane01_adjust_address = DP_ADJUST_REQUEST_LANE0_1;
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X Lane01AdjustRequest = %x\n 0x%X Lane23AdjustRequest = %x\n",
__func__,
lane01_adjust_address,
dpcd_buf[lane_adjust_offset],
lane01_adjust_address + 1,
dpcd_buf[lane_adjust_offset + 1]);
}
return status;
}
static void override_lane_settings(const struct link_training_settings *lt_settings,
struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
uint32_t lane;
if (lt_settings->voltage_swing == NULL &&
lt_settings->pre_emphasis == NULL &&
lt_settings->ffe_preset == NULL &&
lt_settings->post_cursor2 == NULL)
return;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
if (lt_settings->voltage_swing)
lane_settings[lane].VOLTAGE_SWING = *lt_settings->voltage_swing;
if (lt_settings->pre_emphasis)
lane_settings[lane].PRE_EMPHASIS = *lt_settings->pre_emphasis;
if (lt_settings->post_cursor2)
lane_settings[lane].POST_CURSOR2 = *lt_settings->post_cursor2;
if (lt_settings->ffe_preset)
lane_settings[lane].FFE_PRESET = *lt_settings->ffe_preset;
}
}
void dp_get_lttpr_mode_override(struct dc_link *link, enum lttpr_mode *override)
{
if (!dp_is_lttpr_present(link))
return;
if (link->dc->debug.lttpr_mode_override == LTTPR_MODE_TRANSPARENT) {
*override = LTTPR_MODE_TRANSPARENT;
} else if (link->dc->debug.lttpr_mode_override == LTTPR_MODE_NON_TRANSPARENT) {
*override = LTTPR_MODE_NON_TRANSPARENT;
} else if (link->dc->debug.lttpr_mode_override == LTTPR_MODE_NON_LTTPR) {
*override = LTTPR_MODE_NON_LTTPR;
}
DC_LOG_DC("lttpr_mode_override chose LTTPR_MODE = %d\n", (uint8_t)(*override));
}
void override_training_settings(
struct dc_link *link,
const struct dc_link_training_overrides *overrides,
struct link_training_settings *lt_settings)
{
uint32_t lane;
/* Override link spread */
if (!link->dp_ss_off && overrides->downspread != NULL)
lt_settings->link_settings.link_spread = *overrides->downspread ?
LINK_SPREAD_05_DOWNSPREAD_30KHZ
: LINK_SPREAD_DISABLED;
/* Override lane settings */
if (overrides->voltage_swing != NULL)
lt_settings->voltage_swing = overrides->voltage_swing;
if (overrides->pre_emphasis != NULL)
lt_settings->pre_emphasis = overrides->pre_emphasis;
if (overrides->post_cursor2 != NULL)
lt_settings->post_cursor2 = overrides->post_cursor2;
if (overrides->ffe_preset != NULL)
lt_settings->ffe_preset = overrides->ffe_preset;
/* Override HW lane settings with BIOS forced values if present */
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
lt_settings->lttpr_mode == LTTPR_MODE_TRANSPARENT) {
lt_settings->voltage_swing = &link->bios_forced_drive_settings.VOLTAGE_SWING;
lt_settings->pre_emphasis = &link->bios_forced_drive_settings.PRE_EMPHASIS;
lt_settings->always_match_dpcd_with_hw_lane_settings = false;
}
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lt_settings->hw_lane_settings[lane].VOLTAGE_SWING =
lt_settings->voltage_swing != NULL ?
*lt_settings->voltage_swing :
VOLTAGE_SWING_LEVEL0;
lt_settings->hw_lane_settings[lane].PRE_EMPHASIS =
lt_settings->pre_emphasis != NULL ?
*lt_settings->pre_emphasis
: PRE_EMPHASIS_DISABLED;
lt_settings->hw_lane_settings[lane].POST_CURSOR2 =
lt_settings->post_cursor2 != NULL ?
*lt_settings->post_cursor2
: POST_CURSOR2_DISABLED;
}
if (lt_settings->always_match_dpcd_with_hw_lane_settings)
dp_hw_to_dpcd_lane_settings(lt_settings,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
/* Override training timings */
if (overrides->cr_pattern_time != NULL)
lt_settings->cr_pattern_time = *overrides->cr_pattern_time;
if (overrides->eq_pattern_time != NULL)
lt_settings->eq_pattern_time = *overrides->eq_pattern_time;
if (overrides->pattern_for_cr != NULL)
lt_settings->pattern_for_cr = *overrides->pattern_for_cr;
if (overrides->pattern_for_eq != NULL)
lt_settings->pattern_for_eq = *overrides->pattern_for_eq;
if (overrides->enhanced_framing != NULL)
lt_settings->enhanced_framing = *overrides->enhanced_framing;
if (link->preferred_training_settings.fec_enable != NULL)
lt_settings->should_set_fec_ready = *link->preferred_training_settings.fec_enable;
/* Check DP tunnel LTTPR mode debug option. */
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA && link->dc->debug.dpia_debug.bits.force_non_lttpr)
lt_settings->lttpr_mode = LTTPR_MODE_NON_LTTPR;
dp_get_lttpr_mode_override(link, &lt_settings->lttpr_mode);
}
enum dc_dp_training_pattern decide_cr_training_pattern(
const struct dc_link_settings *link_settings)
{
switch (link_dp_get_encoding_format(link_settings)) {
case DP_8b_10b_ENCODING:
default:
return DP_TRAINING_PATTERN_SEQUENCE_1;
case DP_128b_132b_ENCODING:
return DP_128b_132b_TPS1;
}
}
enum dc_dp_training_pattern decide_eq_training_pattern(struct dc_link *link,
const struct dc_link_settings *link_settings)
{
struct link_encoder *link_enc;
struct encoder_feature_support *enc_caps;
struct dpcd_caps *rx_caps = &link->dpcd_caps;
enum dc_dp_training_pattern pattern = DP_TRAINING_PATTERN_SEQUENCE_2;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
enc_caps = &link_enc->features;
switch (link_dp_get_encoding_format(link_settings)) {
case DP_8b_10b_ENCODING:
if (enc_caps->flags.bits.IS_TPS4_CAPABLE &&
rx_caps->max_down_spread.bits.TPS4_SUPPORTED)
pattern = DP_TRAINING_PATTERN_SEQUENCE_4;
else if (enc_caps->flags.bits.IS_TPS3_CAPABLE &&
rx_caps->max_ln_count.bits.TPS3_SUPPORTED)
pattern = DP_TRAINING_PATTERN_SEQUENCE_3;
else
pattern = DP_TRAINING_PATTERN_SEQUENCE_2;
break;
case DP_128b_132b_ENCODING:
pattern = DP_128b_132b_TPS2;
break;
default:
pattern = DP_TRAINING_PATTERN_SEQUENCE_2;
break;
}
return pattern;
}
enum lttpr_mode dp_decide_lttpr_mode(struct dc_link *link,
struct dc_link_settings *link_setting)
{
enum dp_link_encoding encoding = link_dp_get_encoding_format(link_setting);
if (encoding == DP_8b_10b_ENCODING)
return dp_decide_8b_10b_lttpr_mode(link);
else if (encoding == DP_128b_132b_ENCODING)
return dp_decide_128b_132b_lttpr_mode(link);
ASSERT(0);
return LTTPR_MODE_NON_LTTPR;
}
void dp_decide_lane_settings(
const struct link_training_settings *lt_settings,
const union lane_adjust ln_adjust[LANE_COUNT_DP_MAX],
struct dc_lane_settings hw_lane_settings[LANE_COUNT_DP_MAX],
union dpcd_training_lane *dpcd_lane_settings)
{
uint32_t lane;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_8b_10b_ENCODING) {
hw_lane_settings[lane].VOLTAGE_SWING =
(enum dc_voltage_swing)(ln_adjust[lane].bits.
VOLTAGE_SWING_LANE);
hw_lane_settings[lane].PRE_EMPHASIS =
(enum dc_pre_emphasis)(ln_adjust[lane].bits.
PRE_EMPHASIS_LANE);
} else if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_128b_132b_ENCODING) {
hw_lane_settings[lane].FFE_PRESET.raw =
ln_adjust[lane].tx_ffe.PRESET_VALUE;
}
}
dp_hw_to_dpcd_lane_settings(lt_settings, hw_lane_settings, dpcd_lane_settings);
if (lt_settings->disallow_per_lane_settings) {
/* we find the maximum of the requested settings across all lanes*/
/* and set this maximum for all lanes*/
maximize_lane_settings(lt_settings, hw_lane_settings);
override_lane_settings(lt_settings, hw_lane_settings);
if (lt_settings->always_match_dpcd_with_hw_lane_settings)
dp_hw_to_dpcd_lane_settings(lt_settings, hw_lane_settings, dpcd_lane_settings);
}
}
void dp_decide_training_settings(
struct dc_link *link,
const struct dc_link_settings *link_settings,
struct link_training_settings *lt_settings)
{
if (link_dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING)
decide_8b_10b_training_settings(link, link_settings, lt_settings);
else if (link_dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING)
decide_128b_132b_training_settings(link, link_settings, lt_settings);
}
enum dc_status configure_lttpr_mode_transparent(struct dc_link *link)
{
uint8_t repeater_mode = DP_PHY_REPEATER_MODE_TRANSPARENT;
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Transparent Mode\n", __func__);
return core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
}
static enum dc_status configure_lttpr_mode_non_transparent(
struct dc_link *link,
const struct link_training_settings *lt_settings)
{
/* aux timeout is already set to extended */
/* RESET/SET lttpr mode to enable non transparent mode */
uint8_t repeater_cnt;
uint32_t aux_interval_address;
uint8_t repeater_id;
enum dc_status result = DC_ERROR_UNEXPECTED;
uint8_t repeater_mode = DP_PHY_REPEATER_MODE_TRANSPARENT;
const struct dc *dc = link->dc;
enum dp_link_encoding encoding = dc->link_srv->dp_get_encoding_format(&lt_settings->link_settings);
if (encoding == DP_8b_10b_ENCODING) {
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Transparent Mode\n", __func__);
result = core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
}
if (result == DC_OK) {
link->dpcd_caps.lttpr_caps.mode = repeater_mode;
}
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Non Transparent Mode\n", __func__);
repeater_mode = DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
result = core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
if (result == DC_OK) {
link->dpcd_caps.lttpr_caps.mode = repeater_mode;
}
if (encoding == DP_8b_10b_ENCODING) {
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
/* Driver does not need to train the first hop. Skip DPCD read and clear
* AUX_RD_INTERVAL for DPTX-to-DPIA hop.
*/
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA)
link->dpcd_caps.lttpr_caps.aux_rd_interval[--repeater_cnt] = 0;
for (repeater_id = repeater_cnt; repeater_id > 0; repeater_id--) {
aux_interval_address = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (repeater_id - 1));
core_link_read_dpcd(
link,
aux_interval_address,
(uint8_t *)&link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1],
sizeof(link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1]));
link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1] &= 0x7F;
}
}
}
return result;
}
enum dc_status dpcd_configure_lttpr_mode(struct dc_link *link, struct link_training_settings *lt_settings)
{
enum dc_status status = DC_OK;
if (lt_settings->lttpr_mode == LTTPR_MODE_TRANSPARENT)
status = configure_lttpr_mode_transparent(link);
else if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
status = configure_lttpr_mode_non_transparent(link, lt_settings);
return status;
}
void repeater_training_done(struct dc_link *link, uint32_t offset)
{
union dpcd_training_pattern dpcd_pattern = {0};
const uint32_t dpcd_base_lt_offset =
DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
/* Set training not in progress*/
dpcd_pattern.v1_4.TRAINING_PATTERN_SET = DPCD_TRAINING_PATTERN_VIDEOIDLE;
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
&dpcd_pattern.raw,
1);
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Id: %d 0x%X pattern = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
static void dpcd_exit_training_mode(struct dc_link *link, enum dp_link_encoding encoding)
{
uint8_t sink_status = 0;
uint8_t i;
/* clear training pattern set */
dpcd_set_training_pattern(link, DP_TRAINING_PATTERN_VIDEOIDLE);
if (encoding == DP_128b_132b_ENCODING) {
/* poll for intra-hop disable */
for (i = 0; i < 10; i++) {
if ((core_link_read_dpcd(link, DP_SINK_STATUS, &sink_status, 1) == DC_OK) &&
(sink_status & DP_INTRA_HOP_AUX_REPLY_INDICATION) == 0)
break;
fsleep(1000);
}
}
}
enum dc_status dpcd_configure_channel_coding(struct dc_link *link,
struct link_training_settings *lt_settings)
{
enum dp_link_encoding encoding =
link_dp_get_encoding_format(
&lt_settings->link_settings);
enum dc_status status;
status = core_link_write_dpcd(
link,
DP_MAIN_LINK_CHANNEL_CODING_SET,
(uint8_t *) &encoding,
1);
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X MAIN_LINK_CHANNEL_CODING_SET = %x\n",
__func__,
DP_MAIN_LINK_CHANNEL_CODING_SET,
encoding);
return status;
}
void dpcd_set_training_pattern(
struct dc_link *link,
enum dc_dp_training_pattern training_pattern)
{
union dpcd_training_pattern dpcd_pattern = {0};
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dp_training_pattern_to_dpcd_training_pattern(
link, training_pattern);
core_link_write_dpcd(
link,
DP_TRAINING_PATTERN_SET,
&dpcd_pattern.raw,
1);
DC_LOG_HW_LINK_TRAINING("%s\n %x pattern = %x\n",
__func__,
DP_TRAINING_PATTERN_SET,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
enum dc_status dpcd_set_link_settings(
struct dc_link *link,
const struct link_training_settings *lt_settings)
{
uint8_t rate;
enum dc_status status;
union down_spread_ctrl downspread = {0};
union lane_count_set lane_count_set = {0};
downspread.raw = (uint8_t)
(lt_settings->link_settings.link_spread);
lane_count_set.bits.LANE_COUNT_SET =
lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
lt_settings->pattern_for_eq < DP_TRAINING_PATTERN_SEQUENCE_4) {
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED =
link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED;
}
status = core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL,
&downspread.raw, sizeof(downspread));
status = core_link_write_dpcd(link, DP_LANE_COUNT_SET,
&lane_count_set.raw, 1);
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_13 &&
lt_settings->link_settings.use_link_rate_set == true) {
rate = 0;
/* WA for some MUX chips that will power down with eDP and lose supported
* link rate set for eDP 1.4. Source reads DPCD 0x010 again to ensure
* MUX chip gets link rate set back before link training.
*/
if (link->connector_signal == SIGNAL_TYPE_EDP) {
uint8_t supported_link_rates[16];
core_link_read_dpcd(link, DP_SUPPORTED_LINK_RATES,
supported_link_rates, sizeof(supported_link_rates));
}
status = core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
status = core_link_write_dpcd(link, DP_LINK_RATE_SET,
&lt_settings->link_settings.link_rate_set, 1);
} else {
rate = get_dpcd_link_rate(&lt_settings->link_settings);
status = core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
}
if (rate) {
DC_LOG_HW_LINK_TRAINING("%s\n %x rate = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_BW_SET,
lt_settings->link_settings.link_rate,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n %x rate set = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_RATE_SET,
lt_settings->link_settings.link_rate_set,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
}
return status;
}
enum dc_status dpcd_set_lane_settings(
struct dc_link *link,
const struct link_training_settings *link_training_setting,
uint32_t offset)
{
unsigned int lane0_set_address;
enum dc_status status;
lane0_set_address = DP_TRAINING_LANE0_SET;
if (is_repeater(link_training_setting, offset))
lane0_set_address = DP_TRAINING_LANE0_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
status = core_link_write_dpcd(link,
lane0_set_address,
(uint8_t *)(link_training_setting->dpcd_lane_settings),
link_training_setting->link_settings.lane_count);
if (is_repeater(link_training_setting, offset)) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n"
" 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
offset,
lane0_set_address,
link_training_setting->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
link_training_setting->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
link_training_setting->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
link_training_setting->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
lane0_set_address,
link_training_setting->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
link_training_setting->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
link_training_setting->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
link_training_setting->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
}
return status;
}
void dpcd_set_lt_pattern_and_lane_settings(
struct dc_link *link,
const struct link_training_settings *lt_settings,
enum dc_dp_training_pattern pattern,
uint32_t offset)
{
uint32_t dpcd_base_lt_offset;
uint8_t dpcd_lt_buffer[5] = {0};
union dpcd_training_pattern dpcd_pattern = {0};
uint32_t size_in_bytes;
bool edp_workaround = false; /* TODO link_prop.INTERNAL */
dpcd_base_lt_offset = DP_TRAINING_PATTERN_SET;
if (is_repeater(lt_settings, offset))
dpcd_base_lt_offset = DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
/*****************************************************************
* DpcdAddress_TrainingPatternSet
*****************************************************************/
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dp_training_pattern_to_dpcd_training_pattern(link, pattern);
dpcd_pattern.v1_4.SCRAMBLING_DISABLE =
dp_initialize_scrambling_data_symbols(link, pattern);
dpcd_lt_buffer[DP_TRAINING_PATTERN_SET - DP_TRAINING_PATTERN_SET]
= dpcd_pattern.raw;
if (is_repeater(lt_settings, offset)) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n 0x%X pattern = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X pattern = %x\n",
__func__,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
/* concatenate everything into one buffer*/
size_in_bytes = lt_settings->link_settings.lane_count *
sizeof(lt_settings->dpcd_lane_settings[0]);
// 0x00103 - 0x00102
memmove(
&dpcd_lt_buffer[DP_TRAINING_LANE0_SET - DP_TRAINING_PATTERN_SET],
lt_settings->dpcd_lane_settings,
size_in_bytes);
if (is_repeater(lt_settings, offset)) {
if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_128b_132b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X TX_FFE_PRESET_VALUE = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].tx_ffe.PRESET_VALUE);
else if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_8b_10b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
lt_settings->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
lt_settings->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
lt_settings->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
} else {
if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_128b_132b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X TX_FFE_PRESET_VALUE = %x\n",
__func__,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].tx_ffe.PRESET_VALUE);
else if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_8b_10b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
lt_settings->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
lt_settings->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
lt_settings->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
}
if (edp_workaround) {
/* for eDP write in 2 parts because the 5-byte burst is
* causing issues on some eDP panels (EPR#366724)
*/
core_link_write_dpcd(
link,
DP_TRAINING_PATTERN_SET,
&dpcd_pattern.raw,
sizeof(dpcd_pattern.raw));
core_link_write_dpcd(
link,
DP_TRAINING_LANE0_SET,
(uint8_t *)(lt_settings->dpcd_lane_settings),
size_in_bytes);
} else if (link_dp_get_encoding_format(&lt_settings->link_settings) ==
DP_128b_132b_ENCODING) {
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
dpcd_lt_buffer,
sizeof(dpcd_lt_buffer));
} else
/* write it all in (1 + number-of-lanes)-byte burst*/
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
dpcd_lt_buffer,
size_in_bytes + sizeof(dpcd_pattern.raw));
}
void start_clock_recovery_pattern_early(struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t offset)
{
DC_LOG_HW_LINK_TRAINING("%s\n GPU sends TPS1. Wait 400us.\n",
__func__);
dp_set_hw_training_pattern(link, link_res, lt_settings->pattern_for_cr, offset);
dp_set_hw_lane_settings(link, link_res, lt_settings, offset);
udelay(400);
}
void dp_set_hw_test_pattern(
struct dc_link *link,
const struct link_resource *link_res,
enum dp_test_pattern test_pattern,
uint8_t *custom_pattern,
uint32_t custom_pattern_size)
{
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
struct encoder_set_dp_phy_pattern_param pattern_param = {0};
pattern_param.dp_phy_pattern = test_pattern;
pattern_param.custom_pattern = custom_pattern;
pattern_param.custom_pattern_size = custom_pattern_size;
pattern_param.dp_panel_mode = dp_get_panel_mode(link);
if (link_hwss->ext.set_dp_link_test_pattern)
link_hwss->ext.set_dp_link_test_pattern(link, link_res, &pattern_param);
}
bool dp_set_hw_training_pattern(
struct dc_link *link,
const struct link_resource *link_res,
enum dc_dp_training_pattern pattern,
uint32_t offset)
{
enum dp_test_pattern test_pattern = DP_TEST_PATTERN_UNSUPPORTED;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_2:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN2;
break;
case DP_TRAINING_PATTERN_SEQUENCE_3:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN3;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN4;
break;
case DP_128b_132b_TPS1:
test_pattern = DP_TEST_PATTERN_128b_132b_TPS1_TRAINING_MODE;
break;
case DP_128b_132b_TPS2:
test_pattern = DP_TEST_PATTERN_128b_132b_TPS2_TRAINING_MODE;
break;
default:
break;
}
dp_set_hw_test_pattern(link, link_res, test_pattern, NULL, 0);
return true;
}
static bool perform_post_lt_adj_req_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum dc_lane_count lane_count =
lt_settings->link_settings.lane_count;
uint32_t adj_req_count;
uint32_t adj_req_timer;
bool req_drv_setting_changed;
uint32_t lane;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
req_drv_setting_changed = false;
for (adj_req_count = 0; adj_req_count < POST_LT_ADJ_REQ_LIMIT;
adj_req_count++) {
req_drv_setting_changed = false;
for (adj_req_timer = 0;
adj_req_timer < POST_LT_ADJ_REQ_TIMEOUT;
adj_req_timer++) {
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
DPRX);
if (dpcd_lane_status_updated.bits.
POST_LT_ADJ_REQ_IN_PROGRESS == 0)
return true;
if (!dp_is_cr_done(lane_count, dpcd_lane_status))
return false;
if (!dp_is_ch_eq_done(lane_count, dpcd_lane_status) ||
!dp_is_symbol_locked(lane_count, dpcd_lane_status) ||
!dp_is_interlane_aligned(dpcd_lane_status_updated))
return false;
for (lane = 0; lane < (uint32_t)(lane_count); lane++) {
if (lt_settings->
dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET !=
dpcd_lane_adjust[lane].bits.VOLTAGE_SWING_LANE ||
lt_settings->dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET !=
dpcd_lane_adjust[lane].bits.PRE_EMPHASIS_LANE) {
req_drv_setting_changed = true;
break;
}
}
if (req_drv_setting_changed) {
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
dp_set_drive_settings(link,
link_res,
lt_settings);
break;
}
msleep(1);
}
if (!req_drv_setting_changed) {
DC_LOG_WARNING("%s: Post Link Training Adjust Request Timed out\n",
__func__);
ASSERT(0);
return true;
}
}
DC_LOG_WARNING("%s: Post Link Training Adjust Request limit reached\n",
__func__);
ASSERT(0);
return true;
}
static enum link_training_result dp_transition_to_video_idle(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
enum link_training_result status)
{
union lane_count_set lane_count_set = {0};
/* 4. mainlink output idle pattern*/
dp_set_hw_test_pattern(link, link_res, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
/*
* 5. post training adjust if required
* If the upstream DPTX and downstream DPRX both support TPS4,
* TPS4 must be used instead of POST_LT_ADJ_REQ.
*/
if (link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED != 1 ||
lt_settings->pattern_for_eq >= DP_TRAINING_PATTERN_SEQUENCE_4) {
/* delay 5ms after Main Link output idle pattern and then check
* DPCD 0202h.
*/
if (link->connector_signal != SIGNAL_TYPE_EDP && status == LINK_TRAINING_SUCCESS) {
msleep(5);
status = dp_check_link_loss_status(link, lt_settings);
}
return status;
}
if (status == LINK_TRAINING_SUCCESS &&
perform_post_lt_adj_req_sequence(link, link_res, lt_settings) == false)
status = LINK_TRAINING_LQA_FAIL;
lane_count_set.bits.LANE_COUNT_SET = lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
core_link_write_dpcd(
link,
DP_LANE_COUNT_SET,
&lane_count_set.raw,
sizeof(lane_count_set));
return status;
}
enum link_training_result dp_perform_link_training(
struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_settings,
bool skip_video_pattern)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
struct link_training_settings lt_settings = {0};
enum dp_link_encoding encoding =
link_dp_get_encoding_format(link_settings);
/* decide training settings */
dp_decide_training_settings(
link,
link_settings,
&lt_settings);
override_training_settings(
link,
&link->preferred_training_settings,
&lt_settings);
/* reset previous training states */
dpcd_exit_training_mode(link, encoding);
/* configure link prior to entering training mode */
dpcd_configure_lttpr_mode(link, &lt_settings);
dp_set_fec_ready(link, link_res, lt_settings.should_set_fec_ready);
dpcd_configure_channel_coding(link, &lt_settings);
/* enter training mode:
* Per DP specs starting from here, DPTX device shall not issue
* Non-LT AUX transactions inside training mode.
*/
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) && encoding == DP_8b_10b_ENCODING)
status = dp_perform_fixed_vs_pe_training_sequence(link, link_res, &lt_settings);
else if (encoding == DP_8b_10b_ENCODING)
status = dp_perform_8b_10b_link_training(link, link_res, &lt_settings);
else if (encoding == DP_128b_132b_ENCODING)
status = dp_perform_128b_132b_link_training(link, link_res, &lt_settings);
else
ASSERT(0);
/* exit training mode */
dpcd_exit_training_mode(link, encoding);
/* switch to video idle */
if ((status == LINK_TRAINING_SUCCESS) || !skip_video_pattern)
status = dp_transition_to_video_idle(link,
link_res,
&lt_settings,
status);
/* dump debug data */
dp_log_training_result(link, &lt_settings, status);
if (status != LINK_TRAINING_SUCCESS)
link->ctx->dc->debug_data.ltFailCount++;
return status;
}
bool perform_link_training_with_retries(
const struct dc_link_settings *link_setting,
bool skip_video_pattern,
int attempts,
struct pipe_ctx *pipe_ctx,
enum signal_type signal,
bool do_fallback)
{
int j;
uint8_t delay_between_attempts = LINK_TRAINING_RETRY_DELAY;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
enum dp_panel_mode panel_mode = dp_get_panel_mode(link);
enum link_training_result status = LINK_TRAINING_CR_FAIL_LANE0;
struct dc_link_settings cur_link_settings = *link_setting;
struct dc_link_settings max_link_settings = *link_setting;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
int fail_count = 0;
bool is_link_bw_low = false; /* link bandwidth < stream bandwidth */
bool is_link_bw_min = /* RBR x 1 */
(cur_link_settings.link_rate <= LINK_RATE_LOW) &&
(cur_link_settings.lane_count <= LANE_COUNT_ONE);
dp_trace_commit_lt_init(link);
if (link_dp_get_encoding_format(&cur_link_settings) == DP_8b_10b_ENCODING)
/* We need to do this before the link training to ensure the idle
* pattern in SST mode will be sent right after the link training
*/
link_hwss->setup_stream_encoder(pipe_ctx);
dp_trace_set_lt_start_timestamp(link, false);
j = 0;
while (j < attempts && fail_count < (attempts * 10)) {
DC_LOG_HW_LINK_TRAINING("%s: Beginning link(%d) training attempt %u of %d @ rate(%d) x lane(%d) @ spread = %x\n",
__func__, link->link_index, (unsigned int)j + 1, attempts,
cur_link_settings.link_rate, cur_link_settings.lane_count,
cur_link_settings.link_spread);
dp_enable_link_phy(
link,
&pipe_ctx->link_res,
signal,
pipe_ctx->clock_source->id,
&cur_link_settings);
if (stream->sink_patches.dppowerup_delay > 0) {
int delay_dp_power_up_in_ms = stream->sink_patches.dppowerup_delay;
msleep(delay_dp_power_up_in_ms);
}
if (panel_mode == DP_PANEL_MODE_EDP) {
struct cp_psp *cp_psp = &stream->ctx->cp_psp;
if (cp_psp && cp_psp->funcs.enable_assr) {
/* ASSR is bound to fail with unsigned PSP
* verstage used during devlopment phase.
* Report and continue with eDP panel mode to
* perform eDP link training with right settings
*/
bool result;
result = cp_psp->funcs.enable_assr(cp_psp->handle, link);
if (!result && link->panel_mode != DP_PANEL_MODE_EDP)
panel_mode = DP_PANEL_MODE_DEFAULT;
}
}
dp_set_panel_mode(link, panel_mode);
if (link->aux_access_disabled) {
dp_perform_link_training_skip_aux(link, &pipe_ctx->link_res, &cur_link_settings);
return true;
} else {
/** @todo Consolidate USB4 DP and DPx.x training. */
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) {
status = dpia_perform_link_training(
link,
&pipe_ctx->link_res,
&cur_link_settings,
skip_video_pattern);
/* Transmit idle pattern once training successful. */
if (status == LINK_TRAINING_SUCCESS && !is_link_bw_low) {
dp_set_hw_test_pattern(link, &pipe_ctx->link_res, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
// Update verified link settings to current one
// Because DPIA LT might fallback to lower link setting.
if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
link->verified_link_cap.link_rate = link->cur_link_settings.link_rate;
link->verified_link_cap.lane_count = link->cur_link_settings.lane_count;
dm_helpers_dp_mst_update_branch_bandwidth(link->ctx, link);
}
}
} else {
status = dp_perform_link_training(
link,
&pipe_ctx->link_res,
&cur_link_settings,
skip_video_pattern);
}
dp_trace_lt_total_count_increment(link, false);
dp_trace_lt_result_update(link, status, false);
dp_trace_set_lt_end_timestamp(link, false);
if (status == LINK_TRAINING_SUCCESS && !is_link_bw_low)
return true;
}
fail_count++;
dp_trace_lt_fail_count_update(link, fail_count, false);
if (link->ep_type == DISPLAY_ENDPOINT_PHY) {
/* latest link training still fail or link training is aborted
* skip delay and keep PHY on
*/
if (j == (attempts - 1) || (status == LINK_TRAINING_ABORT))
break;
}
if (j == (attempts - 1)) {
DC_LOG_WARNING(
"%s: Link(%d) training attempt %u of %d failed @ rate(%d) x lane(%d) @ spread = %x : fail reason:(%d)\n",
__func__, link->link_index, (unsigned int)j + 1, attempts,
cur_link_settings.link_rate, cur_link_settings.lane_count,
cur_link_settings.link_spread, status);
} else {
DC_LOG_HW_LINK_TRAINING(
"%s: Link(%d) training attempt %u of %d failed @ rate(%d) x lane(%d) @ spread = %x : fail reason:(%d)\n",
__func__, link->link_index, (unsigned int)j + 1, attempts,
cur_link_settings.link_rate, cur_link_settings.lane_count,
cur_link_settings.link_spread, status);
}
dp_disable_link_phy(link, &pipe_ctx->link_res, signal);
/* Abort link training if failure due to sink being unplugged. */
if (status == LINK_TRAINING_ABORT) {
enum dc_connection_type type = dc_connection_none;
link_detect_connection_type(link, &type);
if (type == dc_connection_none) {
DC_LOG_HW_LINK_TRAINING("%s: Aborting training because sink unplugged\n", __func__);
break;
}
}
/* Try to train again at original settings if:
* - not falling back between training attempts;
* - aborted previous attempt due to reasons other than sink unplug;
* - successfully trained but at a link rate lower than that required by stream;
* - reached minimum link bandwidth.
*/
if (!do_fallback || (status == LINK_TRAINING_ABORT) ||
(status == LINK_TRAINING_SUCCESS && is_link_bw_low) ||
is_link_bw_min) {
j++;
cur_link_settings = *link_setting;
delay_between_attempts += LINK_TRAINING_RETRY_DELAY;
is_link_bw_low = false;
is_link_bw_min = (cur_link_settings.link_rate <= LINK_RATE_LOW) &&
(cur_link_settings.lane_count <= LANE_COUNT_ONE);
} else if (do_fallback) { /* Try training at lower link bandwidth if doing fallback. */
uint32_t req_bw;
uint32_t link_bw;
enum dc_link_encoding_format link_encoding = DC_LINK_ENCODING_UNSPECIFIED;
decide_fallback_link_setting(link, &max_link_settings,
&cur_link_settings, status);
if (link_dp_get_encoding_format(&cur_link_settings) == DP_8b_10b_ENCODING)
link_encoding = DC_LINK_ENCODING_DP_8b_10b;
else if (link_dp_get_encoding_format(&cur_link_settings) == DP_128b_132b_ENCODING)
link_encoding = DC_LINK_ENCODING_DP_128b_132b;
/* Flag if reduced link bandwidth no longer meets stream requirements or fallen back to
* minimum link bandwidth.
*/
req_bw = dc_bandwidth_in_kbps_from_timing(&stream->timing, link_encoding);
link_bw = dp_link_bandwidth_kbps(link, &cur_link_settings);
is_link_bw_low = (req_bw > link_bw);
is_link_bw_min = ((cur_link_settings.link_rate <= LINK_RATE_LOW) &&
(cur_link_settings.lane_count <= LANE_COUNT_ONE));
if (is_link_bw_low)
DC_LOG_WARNING(
"%s: Link(%d) bandwidth too low after fallback req_bw(%d) > link_bw(%d)\n",
__func__, link->link_index, req_bw, link_bw);
}
msleep(delay_between_attempts);
}
return false;
}