blob: 38cc7a1238198f72bafcfbbb33b0388c40bfeb9d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2011 Red Hat Inc.
* Copyright 2023 Intel Corporation.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/* Algorithm:
*
* We store the last allocated bo in "hole", we always try to allocate
* after the last allocated bo. Principle is that in a linear GPU ring
* progression was is after last is the oldest bo we allocated and thus
* the first one that should no longer be in use by the GPU.
*
* If it's not the case we skip over the bo after last to the closest
* done bo if such one exist. If none exist and we are not asked to
* block we report failure to allocate.
*
* If we are asked to block we wait on all the oldest fence of all
* rings. We just wait for any of those fence to complete.
*/
#include <drm/drm_suballoc.h>
#include <drm/drm_print.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/dma-fence.h>
static void drm_suballoc_remove_locked(struct drm_suballoc *sa);
static void drm_suballoc_try_free(struct drm_suballoc_manager *sa_manager);
/**
* drm_suballoc_manager_init() - Initialise the drm_suballoc_manager
* @sa_manager: pointer to the sa_manager
* @size: number of bytes we want to suballocate
* @align: alignment for each suballocated chunk
*
* Prepares the suballocation manager for suballocations.
*/
void drm_suballoc_manager_init(struct drm_suballoc_manager *sa_manager,
size_t size, size_t align)
{
unsigned int i;
BUILD_BUG_ON(!is_power_of_2(DRM_SUBALLOC_MAX_QUEUES));
if (!align)
align = 1;
/* alignment must be a power of 2 */
if (WARN_ON_ONCE(align & (align - 1)))
align = roundup_pow_of_two(align);
init_waitqueue_head(&sa_manager->wq);
sa_manager->size = size;
sa_manager->align = align;
sa_manager->hole = &sa_manager->olist;
INIT_LIST_HEAD(&sa_manager->olist);
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
INIT_LIST_HEAD(&sa_manager->flist[i]);
}
EXPORT_SYMBOL(drm_suballoc_manager_init);
/**
* drm_suballoc_manager_fini() - Destroy the drm_suballoc_manager
* @sa_manager: pointer to the sa_manager
*
* Cleans up the suballocation manager after use. All fences added
* with drm_suballoc_free() must be signaled, or we cannot clean up
* the entire manager.
*/
void drm_suballoc_manager_fini(struct drm_suballoc_manager *sa_manager)
{
struct drm_suballoc *sa, *tmp;
if (!sa_manager->size)
return;
if (!list_empty(&sa_manager->olist)) {
sa_manager->hole = &sa_manager->olist;
drm_suballoc_try_free(sa_manager);
if (!list_empty(&sa_manager->olist))
DRM_ERROR("sa_manager is not empty, clearing anyway\n");
}
list_for_each_entry_safe(sa, tmp, &sa_manager->olist, olist) {
drm_suballoc_remove_locked(sa);
}
sa_manager->size = 0;
}
EXPORT_SYMBOL(drm_suballoc_manager_fini);
static void drm_suballoc_remove_locked(struct drm_suballoc *sa)
{
struct drm_suballoc_manager *sa_manager = sa->manager;
if (sa_manager->hole == &sa->olist)
sa_manager->hole = sa->olist.prev;
list_del_init(&sa->olist);
list_del_init(&sa->flist);
dma_fence_put(sa->fence);
kfree(sa);
}
static void drm_suballoc_try_free(struct drm_suballoc_manager *sa_manager)
{
struct drm_suballoc *sa, *tmp;
if (sa_manager->hole->next == &sa_manager->olist)
return;
sa = list_entry(sa_manager->hole->next, struct drm_suballoc, olist);
list_for_each_entry_safe_from(sa, tmp, &sa_manager->olist, olist) {
if (!sa->fence || !dma_fence_is_signaled(sa->fence))
return;
drm_suballoc_remove_locked(sa);
}
}
static size_t drm_suballoc_hole_soffset(struct drm_suballoc_manager *sa_manager)
{
struct list_head *hole = sa_manager->hole;
if (hole != &sa_manager->olist)
return list_entry(hole, struct drm_suballoc, olist)->eoffset;
return 0;
}
static size_t drm_suballoc_hole_eoffset(struct drm_suballoc_manager *sa_manager)
{
struct list_head *hole = sa_manager->hole;
if (hole->next != &sa_manager->olist)
return list_entry(hole->next, struct drm_suballoc, olist)->soffset;
return sa_manager->size;
}
static bool drm_suballoc_try_alloc(struct drm_suballoc_manager *sa_manager,
struct drm_suballoc *sa,
size_t size, size_t align)
{
size_t soffset, eoffset, wasted;
soffset = drm_suballoc_hole_soffset(sa_manager);
eoffset = drm_suballoc_hole_eoffset(sa_manager);
wasted = round_up(soffset, align) - soffset;
if ((eoffset - soffset) >= (size + wasted)) {
soffset += wasted;
sa->manager = sa_manager;
sa->soffset = soffset;
sa->eoffset = soffset + size;
list_add(&sa->olist, sa_manager->hole);
INIT_LIST_HEAD(&sa->flist);
sa_manager->hole = &sa->olist;
return true;
}
return false;
}
static bool __drm_suballoc_event(struct drm_suballoc_manager *sa_manager,
size_t size, size_t align)
{
size_t soffset, eoffset, wasted;
unsigned int i;
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
if (!list_empty(&sa_manager->flist[i]))
return true;
soffset = drm_suballoc_hole_soffset(sa_manager);
eoffset = drm_suballoc_hole_eoffset(sa_manager);
wasted = round_up(soffset, align) - soffset;
return ((eoffset - soffset) >= (size + wasted));
}
/**
* drm_suballoc_event() - Check if we can stop waiting
* @sa_manager: pointer to the sa_manager
* @size: number of bytes we want to allocate
* @align: alignment we need to match
*
* Return: true if either there is a fence we can wait for or
* enough free memory to satisfy the allocation directly.
* false otherwise.
*/
static bool drm_suballoc_event(struct drm_suballoc_manager *sa_manager,
size_t size, size_t align)
{
bool ret;
spin_lock(&sa_manager->wq.lock);
ret = __drm_suballoc_event(sa_manager, size, align);
spin_unlock(&sa_manager->wq.lock);
return ret;
}
static bool drm_suballoc_next_hole(struct drm_suballoc_manager *sa_manager,
struct dma_fence **fences,
unsigned int *tries)
{
struct drm_suballoc *best_bo = NULL;
unsigned int i, best_idx;
size_t soffset, best, tmp;
/* if hole points to the end of the buffer */
if (sa_manager->hole->next == &sa_manager->olist) {
/* try again with its beginning */
sa_manager->hole = &sa_manager->olist;
return true;
}
soffset = drm_suballoc_hole_soffset(sa_manager);
/* to handle wrap around we add sa_manager->size */
best = sa_manager->size * 2;
/* go over all fence list and try to find the closest sa
* of the current last
*/
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i) {
struct drm_suballoc *sa;
fences[i] = NULL;
if (list_empty(&sa_manager->flist[i]))
continue;
sa = list_first_entry(&sa_manager->flist[i],
struct drm_suballoc, flist);
if (!dma_fence_is_signaled(sa->fence)) {
fences[i] = sa->fence;
continue;
}
/* limit the number of tries each freelist gets */
if (tries[i] > 2)
continue;
tmp = sa->soffset;
if (tmp < soffset) {
/* wrap around, pretend it's after */
tmp += sa_manager->size;
}
tmp -= soffset;
if (tmp < best) {
/* this sa bo is the closest one */
best = tmp;
best_idx = i;
best_bo = sa;
}
}
if (best_bo) {
++tries[best_idx];
sa_manager->hole = best_bo->olist.prev;
/*
* We know that this one is signaled,
* so it's safe to remove it.
*/
drm_suballoc_remove_locked(best_bo);
return true;
}
return false;
}
/**
* drm_suballoc_new() - Make a suballocation.
* @sa_manager: pointer to the sa_manager
* @size: number of bytes we want to suballocate.
* @gfp: gfp flags used for memory allocation. Typically GFP_KERNEL but
* the argument is provided for suballocations from reclaim context or
* where the caller wants to avoid pipelining rather than wait for
* reclaim.
* @intr: Whether to perform waits interruptible. This should typically
* always be true, unless the caller needs to propagate a
* non-interruptible context from above layers.
* @align: Alignment. Must not exceed the default manager alignment.
* If @align is zero, then the manager alignment is used.
*
* Try to make a suballocation of size @size, which will be rounded
* up to the alignment specified in specified in drm_suballoc_manager_init().
*
* Return: a new suballocated bo, or an ERR_PTR.
*/
struct drm_suballoc *
drm_suballoc_new(struct drm_suballoc_manager *sa_manager, size_t size,
gfp_t gfp, bool intr, size_t align)
{
struct dma_fence *fences[DRM_SUBALLOC_MAX_QUEUES];
unsigned int tries[DRM_SUBALLOC_MAX_QUEUES];
unsigned int count;
int i, r;
struct drm_suballoc *sa;
if (WARN_ON_ONCE(align > sa_manager->align))
return ERR_PTR(-EINVAL);
if (WARN_ON_ONCE(size > sa_manager->size || !size))
return ERR_PTR(-EINVAL);
if (!align)
align = sa_manager->align;
sa = kmalloc(sizeof(*sa), gfp);
if (!sa)
return ERR_PTR(-ENOMEM);
sa->manager = sa_manager;
sa->fence = NULL;
INIT_LIST_HEAD(&sa->olist);
INIT_LIST_HEAD(&sa->flist);
spin_lock(&sa_manager->wq.lock);
do {
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
tries[i] = 0;
do {
drm_suballoc_try_free(sa_manager);
if (drm_suballoc_try_alloc(sa_manager, sa,
size, align)) {
spin_unlock(&sa_manager->wq.lock);
return sa;
}
/* see if we can skip over some allocations */
} while (drm_suballoc_next_hole(sa_manager, fences, tries));
for (i = 0, count = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
if (fences[i])
fences[count++] = dma_fence_get(fences[i]);
if (count) {
long t;
spin_unlock(&sa_manager->wq.lock);
t = dma_fence_wait_any_timeout(fences, count, intr,
MAX_SCHEDULE_TIMEOUT,
NULL);
for (i = 0; i < count; ++i)
dma_fence_put(fences[i]);
r = (t > 0) ? 0 : t;
spin_lock(&sa_manager->wq.lock);
} else if (intr) {
/* if we have nothing to wait for block */
r = wait_event_interruptible_locked
(sa_manager->wq,
__drm_suballoc_event(sa_manager, size, align));
} else {
spin_unlock(&sa_manager->wq.lock);
wait_event(sa_manager->wq,
drm_suballoc_event(sa_manager, size, align));
r = 0;
spin_lock(&sa_manager->wq.lock);
}
} while (!r);
spin_unlock(&sa_manager->wq.lock);
kfree(sa);
return ERR_PTR(r);
}
EXPORT_SYMBOL(drm_suballoc_new);
/**
* drm_suballoc_free - Free a suballocation
* @suballoc: pointer to the suballocation
* @fence: fence that signals when suballocation is idle
*
* Free the suballocation. The suballocation can be re-used after @fence signals.
*/
void drm_suballoc_free(struct drm_suballoc *suballoc,
struct dma_fence *fence)
{
struct drm_suballoc_manager *sa_manager;
if (!suballoc)
return;
sa_manager = suballoc->manager;
spin_lock(&sa_manager->wq.lock);
if (fence && !dma_fence_is_signaled(fence)) {
u32 idx;
suballoc->fence = dma_fence_get(fence);
idx = fence->context & (DRM_SUBALLOC_MAX_QUEUES - 1);
list_add_tail(&suballoc->flist, &sa_manager->flist[idx]);
} else {
drm_suballoc_remove_locked(suballoc);
}
wake_up_all_locked(&sa_manager->wq);
spin_unlock(&sa_manager->wq.lock);
}
EXPORT_SYMBOL(drm_suballoc_free);
#ifdef CONFIG_DEBUG_FS
void drm_suballoc_dump_debug_info(struct drm_suballoc_manager *sa_manager,
struct drm_printer *p,
unsigned long long suballoc_base)
{
struct drm_suballoc *i;
spin_lock(&sa_manager->wq.lock);
list_for_each_entry(i, &sa_manager->olist, olist) {
unsigned long long soffset = i->soffset;
unsigned long long eoffset = i->eoffset;
if (&i->olist == sa_manager->hole)
drm_puts(p, ">");
else
drm_puts(p, " ");
drm_printf(p, "[0x%010llx 0x%010llx] size %8lld",
suballoc_base + soffset, suballoc_base + eoffset,
eoffset - soffset);
if (i->fence)
drm_printf(p, " protected by 0x%016llx on context %llu",
(unsigned long long)i->fence->seqno,
(unsigned long long)i->fence->context);
drm_puts(p, "\n");
}
spin_unlock(&sa_manager->wq.lock);
}
EXPORT_SYMBOL(drm_suballoc_dump_debug_info);
#endif
MODULE_AUTHOR("Multiple");
MODULE_DESCRIPTION("Range suballocator helper");
MODULE_LICENSE("Dual MIT/GPL");