blob: 129352bbe1143b713a51b8570fbd22556fef56eb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013-2015 Chelsio Communications. All rights reserved.
*/
#include <linux/firmware.h>
#include <linux/mdio.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4fw_api.h"
#include "cxgb4_cudbg.h"
#include "cxgb4_filter.h"
#include "cxgb4_tc_flower.h"
#define EEPROM_MAGIC 0x38E2F10C
static u32 get_msglevel(struct net_device *dev)
{
return netdev2adap(dev)->msg_enable;
}
static void set_msglevel(struct net_device *dev, u32 val)
{
netdev2adap(dev)->msg_enable = val;
}
enum cxgb4_ethtool_tests {
CXGB4_ETHTOOL_LB_TEST,
CXGB4_ETHTOOL_MAX_TEST,
};
static const char cxgb4_selftest_strings[CXGB4_ETHTOOL_MAX_TEST][ETH_GSTRING_LEN] = {
"Loop back test (offline)",
};
static const char * const flash_region_strings[] = {
"All",
"Firmware",
"PHY Firmware",
"Boot",
"Boot CFG",
};
static const char stats_strings[][ETH_GSTRING_LEN] = {
"tx_octets_ok ",
"tx_frames_ok ",
"tx_broadcast_frames ",
"tx_multicast_frames ",
"tx_unicast_frames ",
"tx_error_frames ",
"tx_frames_64 ",
"tx_frames_65_to_127 ",
"tx_frames_128_to_255 ",
"tx_frames_256_to_511 ",
"tx_frames_512_to_1023 ",
"tx_frames_1024_to_1518 ",
"tx_frames_1519_to_max ",
"tx_frames_dropped ",
"tx_pause_frames ",
"tx_ppp0_frames ",
"tx_ppp1_frames ",
"tx_ppp2_frames ",
"tx_ppp3_frames ",
"tx_ppp4_frames ",
"tx_ppp5_frames ",
"tx_ppp6_frames ",
"tx_ppp7_frames ",
"rx_octets_ok ",
"rx_frames_ok ",
"rx_broadcast_frames ",
"rx_multicast_frames ",
"rx_unicast_frames ",
"rx_frames_too_long ",
"rx_jabber_errors ",
"rx_fcs_errors ",
"rx_length_errors ",
"rx_symbol_errors ",
"rx_runt_frames ",
"rx_frames_64 ",
"rx_frames_65_to_127 ",
"rx_frames_128_to_255 ",
"rx_frames_256_to_511 ",
"rx_frames_512_to_1023 ",
"rx_frames_1024_to_1518 ",
"rx_frames_1519_to_max ",
"rx_pause_frames ",
"rx_ppp0_frames ",
"rx_ppp1_frames ",
"rx_ppp2_frames ",
"rx_ppp3_frames ",
"rx_ppp4_frames ",
"rx_ppp5_frames ",
"rx_ppp6_frames ",
"rx_ppp7_frames ",
"rx_bg0_frames_dropped ",
"rx_bg1_frames_dropped ",
"rx_bg2_frames_dropped ",
"rx_bg3_frames_dropped ",
"rx_bg0_frames_trunc ",
"rx_bg1_frames_trunc ",
"rx_bg2_frames_trunc ",
"rx_bg3_frames_trunc ",
"tso ",
"uso ",
"tx_csum_offload ",
"rx_csum_good ",
"vlan_extractions ",
"vlan_insertions ",
"gro_packets ",
"gro_merged ",
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
"tx_tls_encrypted_packets",
"tx_tls_encrypted_bytes ",
"tx_tls_ctx ",
"tx_tls_ooo ",
"tx_tls_skip_no_sync_data",
"tx_tls_drop_no_sync_data",
"tx_tls_drop_bypass_req ",
#endif
};
static char adapter_stats_strings[][ETH_GSTRING_LEN] = {
"db_drop ",
"db_full ",
"db_empty ",
"write_coal_success ",
"write_coal_fail ",
};
static char loopback_stats_strings[][ETH_GSTRING_LEN] = {
"-------Loopback----------- ",
"octets_ok ",
"frames_ok ",
"bcast_frames ",
"mcast_frames ",
"ucast_frames ",
"error_frames ",
"frames_64 ",
"frames_65_to_127 ",
"frames_128_to_255 ",
"frames_256_to_511 ",
"frames_512_to_1023 ",
"frames_1024_to_1518 ",
"frames_1519_to_max ",
"frames_dropped ",
"bg0_frames_dropped ",
"bg1_frames_dropped ",
"bg2_frames_dropped ",
"bg3_frames_dropped ",
"bg0_frames_trunc ",
"bg1_frames_trunc ",
"bg2_frames_trunc ",
"bg3_frames_trunc ",
};
static const char cxgb4_priv_flags_strings[][ETH_GSTRING_LEN] = {
[PRIV_FLAG_PORT_TX_VM_BIT] = "port_tx_vm_wr",
};
static int get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(stats_strings) +
ARRAY_SIZE(adapter_stats_strings) +
ARRAY_SIZE(loopback_stats_strings);
case ETH_SS_PRIV_FLAGS:
return ARRAY_SIZE(cxgb4_priv_flags_strings);
case ETH_SS_TEST:
return ARRAY_SIZE(cxgb4_selftest_strings);
default:
return -EOPNOTSUPP;
}
}
static int get_regs_len(struct net_device *dev)
{
struct adapter *adap = netdev2adap(dev);
return t4_get_regs_len(adap);
}
static int get_eeprom_len(struct net_device *dev)
{
return EEPROMSIZE;
}
static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct adapter *adapter = netdev2adap(dev);
u32 exprom_vers;
strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
strlcpy(info->bus_info, pci_name(adapter->pdev),
sizeof(info->bus_info));
info->regdump_len = get_regs_len(dev);
if (adapter->params.fw_vers)
snprintf(info->fw_version, sizeof(info->fw_version),
"%u.%u.%u.%u, TP %u.%u.%u.%u",
FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
if (!t4_get_exprom_version(adapter, &exprom_vers))
snprintf(info->erom_version, sizeof(info->erom_version),
"%u.%u.%u.%u",
FW_HDR_FW_VER_MAJOR_G(exprom_vers),
FW_HDR_FW_VER_MINOR_G(exprom_vers),
FW_HDR_FW_VER_MICRO_G(exprom_vers),
FW_HDR_FW_VER_BUILD_G(exprom_vers));
info->n_priv_flags = ARRAY_SIZE(cxgb4_priv_flags_strings);
}
static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
if (stringset == ETH_SS_STATS) {
memcpy(data, stats_strings, sizeof(stats_strings));
data += sizeof(stats_strings);
memcpy(data, adapter_stats_strings,
sizeof(adapter_stats_strings));
data += sizeof(adapter_stats_strings);
memcpy(data, loopback_stats_strings,
sizeof(loopback_stats_strings));
} else if (stringset == ETH_SS_PRIV_FLAGS) {
memcpy(data, cxgb4_priv_flags_strings,
sizeof(cxgb4_priv_flags_strings));
} else if (stringset == ETH_SS_TEST) {
memcpy(data, cxgb4_selftest_strings,
sizeof(cxgb4_selftest_strings));
}
}
/* port stats maintained per queue of the port. They should be in the same
* order as in stats_strings above.
*/
struct queue_port_stats {
u64 tso;
u64 uso;
u64 tx_csum;
u64 rx_csum;
u64 vlan_ex;
u64 vlan_ins;
u64 gro_pkts;
u64 gro_merged;
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
u64 tx_tls_encrypted_packets;
u64 tx_tls_encrypted_bytes;
u64 tx_tls_ctx;
u64 tx_tls_ooo;
u64 tx_tls_skip_no_sync_data;
u64 tx_tls_drop_no_sync_data;
u64 tx_tls_drop_bypass_req;
#endif
};
struct adapter_stats {
u64 db_drop;
u64 db_full;
u64 db_empty;
u64 wc_success;
u64 wc_fail;
};
static void collect_sge_port_stats(const struct adapter *adap,
const struct port_info *p,
struct queue_port_stats *s)
{
const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
const struct ch_ktls_port_stats_debug *ktls_stats;
#endif
struct sge_eohw_txq *eohw_tx;
unsigned int i;
memset(s, 0, sizeof(*s));
for (i = 0; i < p->nqsets; i++, rx++, tx++) {
s->tso += tx->tso;
s->uso += tx->uso;
s->tx_csum += tx->tx_cso;
s->rx_csum += rx->stats.rx_cso;
s->vlan_ex += rx->stats.vlan_ex;
s->vlan_ins += tx->vlan_ins;
s->gro_pkts += rx->stats.lro_pkts;
s->gro_merged += rx->stats.lro_merged;
}
if (adap->sge.eohw_txq) {
eohw_tx = &adap->sge.eohw_txq[p->first_qset];
for (i = 0; i < p->nqsets; i++, eohw_tx++) {
s->tso += eohw_tx->tso;
s->uso += eohw_tx->uso;
s->tx_csum += eohw_tx->tx_cso;
s->vlan_ins += eohw_tx->vlan_ins;
}
}
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
ktls_stats = &adap->ch_ktls_stats.ktls_port[p->port_id];
s->tx_tls_encrypted_packets =
atomic64_read(&ktls_stats->ktls_tx_encrypted_packets);
s->tx_tls_encrypted_bytes =
atomic64_read(&ktls_stats->ktls_tx_encrypted_bytes);
s->tx_tls_ctx = atomic64_read(&ktls_stats->ktls_tx_ctx);
s->tx_tls_ooo = atomic64_read(&ktls_stats->ktls_tx_ooo);
s->tx_tls_skip_no_sync_data =
atomic64_read(&ktls_stats->ktls_tx_skip_no_sync_data);
s->tx_tls_drop_no_sync_data =
atomic64_read(&ktls_stats->ktls_tx_drop_no_sync_data);
s->tx_tls_drop_bypass_req =
atomic64_read(&ktls_stats->ktls_tx_drop_bypass_req);
#endif
}
static void collect_adapter_stats(struct adapter *adap, struct adapter_stats *s)
{
u64 val1, val2;
memset(s, 0, sizeof(*s));
s->db_drop = adap->db_stats.db_drop;
s->db_full = adap->db_stats.db_full;
s->db_empty = adap->db_stats.db_empty;
if (!is_t4(adap->params.chip)) {
int v;
v = t4_read_reg(adap, SGE_STAT_CFG_A);
if (STATSOURCE_T5_G(v) == 7) {
val2 = t4_read_reg(adap, SGE_STAT_MATCH_A);
val1 = t4_read_reg(adap, SGE_STAT_TOTAL_A);
s->wc_success = val1 - val2;
s->wc_fail = val2;
}
}
}
static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
u64 *data)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
struct lb_port_stats s;
int i;
u64 *p0;
t4_get_port_stats_offset(adapter, pi->tx_chan,
(struct port_stats *)data,
&pi->stats_base);
data += sizeof(struct port_stats) / sizeof(u64);
collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
data += sizeof(struct queue_port_stats) / sizeof(u64);
collect_adapter_stats(adapter, (struct adapter_stats *)data);
data += sizeof(struct adapter_stats) / sizeof(u64);
*data++ = (u64)pi->port_id;
memset(&s, 0, sizeof(s));
t4_get_lb_stats(adapter, pi->port_id, &s);
p0 = &s.octets;
for (i = 0; i < ARRAY_SIZE(loopback_stats_strings) - 1; i++)
*data++ = (unsigned long long)*p0++;
}
static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *buf)
{
struct adapter *adap = netdev2adap(dev);
size_t buf_size;
buf_size = t4_get_regs_len(adap);
regs->version = mk_adap_vers(adap);
t4_get_regs(adap, buf, buf_size);
}
static int restart_autoneg(struct net_device *dev)
{
struct port_info *p = netdev_priv(dev);
if (!netif_running(dev))
return -EAGAIN;
if (p->link_cfg.autoneg != AUTONEG_ENABLE)
return -EINVAL;
t4_restart_aneg(p->adapter, p->adapter->pf, p->tx_chan);
return 0;
}
static int identify_port(struct net_device *dev,
enum ethtool_phys_id_state state)
{
unsigned int val;
struct adapter *adap = netdev2adap(dev);
if (state == ETHTOOL_ID_ACTIVE)
val = 0xffff;
else if (state == ETHTOOL_ID_INACTIVE)
val = 0;
else
return -EINVAL;
return t4_identify_port(adap, adap->pf, netdev2pinfo(dev)->viid, val);
}
/**
* from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
* @port_type: Firmware Port Type
* @mod_type: Firmware Module Type
*
* Translate Firmware Port/Module type to Ethtool Port Type.
*/
static int from_fw_port_mod_type(enum fw_port_type port_type,
enum fw_port_module_type mod_type)
{
if (port_type == FW_PORT_TYPE_BT_SGMII ||
port_type == FW_PORT_TYPE_BT_XFI ||
port_type == FW_PORT_TYPE_BT_XAUI) {
return PORT_TP;
} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
port_type == FW_PORT_TYPE_FIBER_XAUI) {
return PORT_FIBRE;
} else if (port_type == FW_PORT_TYPE_SFP ||
port_type == FW_PORT_TYPE_QSFP_10G ||
port_type == FW_PORT_TYPE_QSA ||
port_type == FW_PORT_TYPE_QSFP ||
port_type == FW_PORT_TYPE_CR4_QSFP ||
port_type == FW_PORT_TYPE_CR_QSFP ||
port_type == FW_PORT_TYPE_CR2_QSFP ||
port_type == FW_PORT_TYPE_SFP28) {
if (mod_type == FW_PORT_MOD_TYPE_LR ||
mod_type == FW_PORT_MOD_TYPE_SR ||
mod_type == FW_PORT_MOD_TYPE_ER ||
mod_type == FW_PORT_MOD_TYPE_LRM)
return PORT_FIBRE;
else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
return PORT_DA;
else
return PORT_OTHER;
} else if (port_type == FW_PORT_TYPE_KR4_100G ||
port_type == FW_PORT_TYPE_KR_SFP28 ||
port_type == FW_PORT_TYPE_KR_XLAUI) {
return PORT_NONE;
}
return PORT_OTHER;
}
/**
* speed_to_fw_caps - translate Port Speed to Firmware Port Capabilities
* @speed: speed in Kb/s
*
* Translates a specific Port Speed into a Firmware Port Capabilities
* value.
*/
static unsigned int speed_to_fw_caps(int speed)
{
if (speed == 100)
return FW_PORT_CAP32_SPEED_100M;
if (speed == 1000)
return FW_PORT_CAP32_SPEED_1G;
if (speed == 10000)
return FW_PORT_CAP32_SPEED_10G;
if (speed == 25000)
return FW_PORT_CAP32_SPEED_25G;
if (speed == 40000)
return FW_PORT_CAP32_SPEED_40G;
if (speed == 50000)
return FW_PORT_CAP32_SPEED_50G;
if (speed == 100000)
return FW_PORT_CAP32_SPEED_100G;
if (speed == 200000)
return FW_PORT_CAP32_SPEED_200G;
if (speed == 400000)
return FW_PORT_CAP32_SPEED_400G;
return 0;
}
/**
* fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
* @port_type: Firmware Port Type
* @fw_caps: Firmware Port Capabilities
* @link_mode_mask: ethtool Link Mode Mask
*
* Translate a Firmware Port Capabilities specification to an ethtool
* Link Mode Mask.
*/
static void fw_caps_to_lmm(enum fw_port_type port_type,
fw_port_cap32_t fw_caps,
unsigned long *link_mode_mask)
{
#define SET_LMM(__lmm_name) \
do { \
__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
link_mode_mask); \
} while (0)
#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
do { \
if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
SET_LMM(__lmm_name); \
} while (0)
switch (port_type) {
case FW_PORT_TYPE_BT_SGMII:
case FW_PORT_TYPE_BT_XFI:
case FW_PORT_TYPE_BT_XAUI:
SET_LMM(TP);
FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
break;
case FW_PORT_TYPE_KX4:
case FW_PORT_TYPE_KX:
SET_LMM(Backplane);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
break;
case FW_PORT_TYPE_KR:
SET_LMM(Backplane);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
break;
case FW_PORT_TYPE_BP_AP:
SET_LMM(Backplane);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
break;
case FW_PORT_TYPE_BP4_AP:
SET_LMM(Backplane);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
break;
case FW_PORT_TYPE_FIBER_XFI:
case FW_PORT_TYPE_FIBER_XAUI:
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_QSFP_10G:
case FW_PORT_TYPE_QSA:
SET_LMM(FIBRE);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
break;
case FW_PORT_TYPE_BP40_BA:
case FW_PORT_TYPE_QSFP:
SET_LMM(FIBRE);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
break;
case FW_PORT_TYPE_CR_QSFP:
case FW_PORT_TYPE_SFP28:
SET_LMM(FIBRE);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
break;
case FW_PORT_TYPE_KR_SFP28:
SET_LMM(Backplane);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
break;
case FW_PORT_TYPE_KR_XLAUI:
SET_LMM(Backplane);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
break;
case FW_PORT_TYPE_CR2_QSFP:
SET_LMM(FIBRE);
FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
break;
case FW_PORT_TYPE_KR4_100G:
case FW_PORT_TYPE_CR4_QSFP:
SET_LMM(FIBRE);
FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
break;
default:
break;
}
if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
} else {
SET_LMM(FEC_NONE);
}
FW_CAPS_TO_LMM(ANEG, Autoneg);
FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
#undef FW_CAPS_TO_LMM
#undef SET_LMM
}
/**
* lmm_to_fw_caps - translate ethtool Link Mode Mask to Firmware
* capabilities
* @link_mode_mask: ethtool Link Mode Mask
*
* Translate ethtool Link Mode Mask into a Firmware Port capabilities
* value.
*/
static unsigned int lmm_to_fw_caps(const unsigned long *link_mode_mask)
{
unsigned int fw_caps = 0;
#define LMM_TO_FW_CAPS(__lmm_name, __fw_name) \
do { \
if (test_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
link_mode_mask)) \
fw_caps |= FW_PORT_CAP32_ ## __fw_name; \
} while (0)
LMM_TO_FW_CAPS(100baseT_Full, SPEED_100M);
LMM_TO_FW_CAPS(1000baseT_Full, SPEED_1G);
LMM_TO_FW_CAPS(10000baseT_Full, SPEED_10G);
LMM_TO_FW_CAPS(40000baseSR4_Full, SPEED_40G);
LMM_TO_FW_CAPS(25000baseCR_Full, SPEED_25G);
LMM_TO_FW_CAPS(50000baseCR2_Full, SPEED_50G);
LMM_TO_FW_CAPS(100000baseCR4_Full, SPEED_100G);
#undef LMM_TO_FW_CAPS
return fw_caps;
}
static int get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *link_ksettings)
{
struct port_info *pi = netdev_priv(dev);
struct ethtool_link_settings *base = &link_ksettings->base;
/* For the nonce, the Firmware doesn't send up Port State changes
* when the Virtual Interface attached to the Port is down. So
* if it's down, let's grab any changes.
*/
if (!netif_running(dev))
(void)t4_update_port_info(pi);
ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
if (pi->mdio_addr >= 0) {
base->phy_address = pi->mdio_addr;
base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
? ETH_MDIO_SUPPORTS_C22
: ETH_MDIO_SUPPORTS_C45);
} else {
base->phy_address = 255;
base->mdio_support = 0;
}
fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
link_ksettings->link_modes.supported);
fw_caps_to_lmm(pi->port_type,
t4_link_acaps(pi->adapter,
pi->lport,
&pi->link_cfg),
link_ksettings->link_modes.advertising);
fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
link_ksettings->link_modes.lp_advertising);
base->speed = (netif_carrier_ok(dev)
? pi->link_cfg.speed
: SPEED_UNKNOWN);
base->duplex = DUPLEX_FULL;
base->autoneg = pi->link_cfg.autoneg;
if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
ethtool_link_ksettings_add_link_mode(link_ksettings,
supported, Autoneg);
if (pi->link_cfg.autoneg)
ethtool_link_ksettings_add_link_mode(link_ksettings,
advertising, Autoneg);
return 0;
}
static int set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *link_ksettings)
{
struct port_info *pi = netdev_priv(dev);
struct link_config *lc = &pi->link_cfg;
const struct ethtool_link_settings *base = &link_ksettings->base;
struct link_config old_lc;
unsigned int fw_caps;
int ret = 0;
/* only full-duplex supported */
if (base->duplex != DUPLEX_FULL)
return -EINVAL;
old_lc = *lc;
if (!(lc->pcaps & FW_PORT_CAP32_ANEG) ||
base->autoneg == AUTONEG_DISABLE) {
fw_caps = speed_to_fw_caps(base->speed);
/* Speed must be supported by Physical Port Capabilities. */
if (!(lc->pcaps & fw_caps))
return -EINVAL;
lc->speed_caps = fw_caps;
lc->acaps = fw_caps;
} else {
fw_caps =
lmm_to_fw_caps(link_ksettings->link_modes.advertising);
if (!(lc->pcaps & fw_caps))
return -EINVAL;
lc->speed_caps = 0;
lc->acaps = fw_caps | FW_PORT_CAP32_ANEG;
}
lc->autoneg = base->autoneg;
/* If the firmware rejects the Link Configuration request, back out
* the changes and report the error.
*/
ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc);
if (ret)
*lc = old_lc;
return ret;
}
/* Translate the Firmware FEC value into the ethtool value. */
static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
{
unsigned int eth_fec = 0;
if (fw_fec & FW_PORT_CAP32_FEC_RS)
eth_fec |= ETHTOOL_FEC_RS;
if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
eth_fec |= ETHTOOL_FEC_BASER;
/* if nothing is set, then FEC is off */
if (!eth_fec)
eth_fec = ETHTOOL_FEC_OFF;
return eth_fec;
}
/* Translate Common Code FEC value into ethtool value. */
static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
{
unsigned int eth_fec = 0;
if (cc_fec & FEC_AUTO)
eth_fec |= ETHTOOL_FEC_AUTO;
if (cc_fec & FEC_RS)
eth_fec |= ETHTOOL_FEC_RS;
if (cc_fec & FEC_BASER_RS)
eth_fec |= ETHTOOL_FEC_BASER;
/* if nothing is set, then FEC is off */
if (!eth_fec)
eth_fec = ETHTOOL_FEC_OFF;
return eth_fec;
}
/* Translate ethtool FEC value into Common Code value. */
static inline unsigned int eth_to_cc_fec(unsigned int eth_fec)
{
unsigned int cc_fec = 0;
if (eth_fec & ETHTOOL_FEC_OFF)
return cc_fec;
if (eth_fec & ETHTOOL_FEC_AUTO)
cc_fec |= FEC_AUTO;
if (eth_fec & ETHTOOL_FEC_RS)
cc_fec |= FEC_RS;
if (eth_fec & ETHTOOL_FEC_BASER)
cc_fec |= FEC_BASER_RS;
return cc_fec;
}
static int get_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
{
const struct port_info *pi = netdev_priv(dev);
const struct link_config *lc = &pi->link_cfg;
/* Translate the Firmware FEC Support into the ethtool value. We
* always support IEEE 802.3 "automatic" selection of Link FEC type if
* any FEC is supported.
*/
fec->fec = fwcap_to_eth_fec(lc->pcaps);
if (fec->fec != ETHTOOL_FEC_OFF)
fec->fec |= ETHTOOL_FEC_AUTO;
/* Translate the current internal FEC parameters into the
* ethtool values.
*/
fec->active_fec = cc_to_eth_fec(lc->fec);
return 0;
}
static int set_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
{
struct port_info *pi = netdev_priv(dev);
struct link_config *lc = &pi->link_cfg;
struct link_config old_lc;
int ret;
/* Save old Link Configuration in case the L1 Configure below
* fails.
*/
old_lc = *lc;
/* Try to perform the L1 Configure and return the result of that
* effort. If it fails, revert the attempted change.
*/
lc->requested_fec = eth_to_cc_fec(fec->fec);
ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox,
pi->tx_chan, lc);
if (ret)
*lc = old_lc;
return ret;
}
static void get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct port_info *p = netdev_priv(dev);
epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
epause->rx_pause = (p->link_cfg.advertised_fc & PAUSE_RX) != 0;
epause->tx_pause = (p->link_cfg.advertised_fc & PAUSE_TX) != 0;
}
static int set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct port_info *p = netdev_priv(dev);
struct link_config *lc = &p->link_cfg;
if (epause->autoneg == AUTONEG_DISABLE)
lc->requested_fc = 0;
else if (lc->pcaps & FW_PORT_CAP32_ANEG)
lc->requested_fc = PAUSE_AUTONEG;
else
return -EINVAL;
if (epause->rx_pause)
lc->requested_fc |= PAUSE_RX;
if (epause->tx_pause)
lc->requested_fc |= PAUSE_TX;
if (netif_running(dev))
return t4_link_l1cfg(p->adapter, p->adapter->mbox, p->tx_chan,
lc);
return 0;
}
static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
const struct port_info *pi = netdev_priv(dev);
const struct sge *s = &pi->adapter->sge;
e->rx_max_pending = MAX_RX_BUFFERS;
e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
e->rx_jumbo_max_pending = 0;
e->tx_max_pending = MAX_TXQ_ENTRIES;
e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
e->rx_jumbo_pending = 0;
e->tx_pending = s->ethtxq[pi->first_qset].q.size;
}
static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
int i;
const struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
struct sge *s = &adapter->sge;
if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
e->tx_pending > MAX_TXQ_ENTRIES ||
e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
return -EINVAL;
if (adapter->flags & CXGB4_FULL_INIT_DONE)
return -EBUSY;
for (i = 0; i < pi->nqsets; ++i) {
s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
}
return 0;
}
/**
* set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
* @dev: the network device
* @us: the hold-off time in us, or 0 to disable timer
* @cnt: the hold-off packet count, or 0 to disable counter
*
* Set the RX interrupt hold-off parameters for a network device.
*/
static int set_rx_intr_params(struct net_device *dev,
unsigned int us, unsigned int cnt)
{
int i, err;
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
for (i = 0; i < pi->nqsets; i++, q++) {
err = cxgb4_set_rspq_intr_params(&q->rspq, us, cnt);
if (err)
return err;
}
return 0;
}
static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
{
int i;
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
for (i = 0; i < pi->nqsets; i++, q++)
q->rspq.adaptive_rx = adaptive_rx;
return 0;
}
static int get_adaptive_rx_setting(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
return q->rspq.adaptive_rx;
}
/* Return the current global Adapter SGE Doorbell Queue Timer Tick for all
* Ethernet TX Queues.
*/
static int get_dbqtimer_tick(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
return 0;
return adap->sge.dbqtimer_tick;
}
/* Return the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
* associated with a Network Device.
*/
static int get_dbqtimer(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge_eth_txq *txq;
txq = &adap->sge.ethtxq[pi->first_qset];
if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
return 0;
/* all of the TX Queues use the same Timer Index */
return adap->sge.dbqtimer_val[txq->dbqtimerix];
}
/* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
* Queues. This is the fundamental "Tick" that sets the scale of values which
* can be used. Individual Ethernet TX Queues index into a relatively small
* array of Tick Multipliers. Changing the base Tick will thus change all of
* the resulting Timer Values associated with those multipliers for all
* Ethernet TX Queues.
*/
static int set_dbqtimer_tick(struct net_device *dev, int usecs)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge *s = &adap->sge;
u32 param, val;
int ret;
if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
return 0;
/* return early if it's the same Timer Tick we're already using */
if (s->dbqtimer_tick == usecs)
return 0;
/* attempt to set the new Timer Tick value */
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
val = usecs;
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
if (ret)
return ret;
s->dbqtimer_tick = usecs;
/* if successful, reread resulting dependent Timer values */
ret = t4_read_sge_dbqtimers(adap, ARRAY_SIZE(s->dbqtimer_val),
s->dbqtimer_val);
return ret;
}
/* Set the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
* associated with a Network Device. There is a relatively small array of
* possible Timer Values so we need to pick the closest value available.
*/
static int set_dbqtimer(struct net_device *dev, int usecs)
{
int qix, timerix, min_timerix, delta, min_delta;
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge *s = &adap->sge;
struct sge_eth_txq *txq;
u32 param, val;
int ret;
if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
return 0;
/* Find the SGE Doorbell Timer Value that's closest to the requested
* value.
*/
min_delta = INT_MAX;
min_timerix = 0;
for (timerix = 0; timerix < ARRAY_SIZE(s->dbqtimer_val); timerix++) {
delta = s->dbqtimer_val[timerix] - usecs;
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
min_timerix = timerix;
}
}
/* Return early if it's the same Timer Index we're already using.
* We use the same Timer Index for all of the TX Queues for an
* interface so it's only necessary to check the first one.
*/
txq = &s->ethtxq[pi->first_qset];
if (txq->dbqtimerix == min_timerix)
return 0;
for (qix = 0; qix < pi->nqsets; qix++, txq++) {
if (adap->flags & CXGB4_FULL_INIT_DONE) {
param =
(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_TIMERIX) |
FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
val = min_timerix;
ret = t4_set_params(adap, adap->mbox, adap->pf, 0,
1, &param, &val);
if (ret)
return ret;
}
txq->dbqtimerix = min_timerix;
}
return 0;
}
/* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
* Queues and the Timer Value for the Ethernet TX Queues associated with a
* Network Device. Since changing the global Tick changes all of the
* available Timer Values, we need to do this first before selecting the
* resulting closest Timer Value. Moreover, since the Tick is global,
* changing it affects the Timer Values for all Network Devices on the
* adapter. So, before changing the Tick, we grab all of the current Timer
* Values for other Network Devices on this Adapter and then attempt to select
* new Timer Values which are close to the old values ...
*/
static int set_dbqtimer_tickval(struct net_device *dev,
int tick_usecs, int timer_usecs)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
int timer[MAX_NPORTS];
unsigned int port;
int ret;
/* Grab the other adapter Network Interface current timers and fill in
* the new one for this Network Interface.
*/
for_each_port(adap, port)
if (port == pi->port_id)
timer[port] = timer_usecs;
else
timer[port] = get_dbqtimer(adap->port[port]);
/* Change the global Tick first ... */
ret = set_dbqtimer_tick(dev, tick_usecs);
if (ret)
return ret;
/* ... and then set all of the Network Interface Timer Values ... */
for_each_port(adap, port) {
ret = set_dbqtimer(adap->port[port], timer[port]);
if (ret)
return ret;
}
return 0;
}
static int set_coalesce(struct net_device *dev,
struct ethtool_coalesce *coalesce,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
int ret;
set_adaptive_rx_setting(dev, coalesce->use_adaptive_rx_coalesce);
ret = set_rx_intr_params(dev, coalesce->rx_coalesce_usecs,
coalesce->rx_max_coalesced_frames);
if (ret)
return ret;
return set_dbqtimer_tickval(dev,
coalesce->tx_coalesce_usecs_irq,
coalesce->tx_coalesce_usecs);
}
static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
const struct port_info *pi = netdev_priv(dev);
const struct adapter *adap = pi->adapter;
const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
c->rx_coalesce_usecs = qtimer_val(adap, rq);
c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN_F) ?
adap->sge.counter_val[rq->pktcnt_idx] : 0;
c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
c->tx_coalesce_usecs_irq = get_dbqtimer_tick(dev);
c->tx_coalesce_usecs = get_dbqtimer(dev);
return 0;
}
/* The next two routines implement eeprom read/write from physical addresses.
*/
static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
{
int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
if (vaddr >= 0)
vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
return vaddr < 0 ? vaddr : 0;
}
static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
{
int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
if (vaddr >= 0)
vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
return vaddr < 0 ? vaddr : 0;
}
#define EEPROM_MAGIC 0x38E2F10C
static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
u8 *data)
{
int i, err = 0;
struct adapter *adapter = netdev2adap(dev);
u8 *buf = kvzalloc(EEPROMSIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
e->magic = EEPROM_MAGIC;
for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
if (!err)
memcpy(data, buf + e->offset, e->len);
kvfree(buf);
return err;
}
static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
u8 *buf;
int err = 0;
u32 aligned_offset, aligned_len, *p;
struct adapter *adapter = netdev2adap(dev);
if (eeprom->magic != EEPROM_MAGIC)
return -EINVAL;
aligned_offset = eeprom->offset & ~3;
aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
if (adapter->pf > 0) {
u32 start = 1024 + adapter->pf * EEPROMPFSIZE;
if (aligned_offset < start ||
aligned_offset + aligned_len > start + EEPROMPFSIZE)
return -EPERM;
}
if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
/* RMW possibly needed for first or last words.
*/
buf = kvzalloc(aligned_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
if (!err && aligned_len > 4)
err = eeprom_rd_phys(adapter,
aligned_offset + aligned_len - 4,
(u32 *)&buf[aligned_len - 4]);
if (err)
goto out;
memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
} else {
buf = data;
}
err = t4_seeprom_wp(adapter, false);
if (err)
goto out;
for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
err = eeprom_wr_phys(adapter, aligned_offset, *p);
aligned_offset += 4;
}
if (!err)
err = t4_seeprom_wp(adapter, true);
out:
if (buf != data)
kvfree(buf);
return err;
}
static int cxgb4_ethtool_flash_bootcfg(struct net_device *netdev,
const u8 *data, u32 size)
{
struct adapter *adap = netdev2adap(netdev);
int ret;
ret = t4_load_bootcfg(adap, data, size);
if (ret)
dev_err(adap->pdev_dev, "Failed to load boot cfg image\n");
return ret;
}
static int cxgb4_ethtool_flash_boot(struct net_device *netdev,
const u8 *bdata, u32 size)
{
struct adapter *adap = netdev2adap(netdev);
unsigned int offset;
u8 *data;
int ret;
data = kmemdup(bdata, size, GFP_KERNEL);
if (!data)
return -ENOMEM;
offset = OFFSET_G(t4_read_reg(adap, PF_REG(0, PCIE_PF_EXPROM_OFST_A)));
ret = t4_load_boot(adap, data, offset, size);
if (ret)
dev_err(adap->pdev_dev, "Failed to load boot image\n");
kfree(data);
return ret;
}
#define CXGB4_PHY_SIG 0x130000ea
static int cxgb4_validate_phy_image(const u8 *data, u32 *size)
{
struct cxgb4_fw_data *header;
header = (struct cxgb4_fw_data *)data;
if (be32_to_cpu(header->signature) != CXGB4_PHY_SIG)
return -EINVAL;
return 0;
}
static int cxgb4_ethtool_flash_phy(struct net_device *netdev,
const u8 *data, u32 size)
{
struct adapter *adap = netdev2adap(netdev);
int ret;
ret = cxgb4_validate_phy_image(data, NULL);
if (ret) {
dev_err(adap->pdev_dev, "PHY signature mismatch\n");
return ret;
}
/* We have to RESET the chip/firmware because we need the
* chip in uninitialized state for loading new PHY image.
* Otherwise, the running firmware will only store the PHY
* image in local RAM which will be lost after next reset.
*/
ret = t4_fw_reset(adap, adap->mbox, PIORSTMODE_F | PIORST_F);
if (ret < 0) {
dev_err(adap->pdev_dev,
"Set FW to RESET for flashing PHY FW failed. ret: %d\n",
ret);
return ret;
}
ret = t4_load_phy_fw(adap, MEMWIN_NIC, NULL, data, size);
if (ret < 0) {
dev_err(adap->pdev_dev, "Failed to load PHY FW. ret: %d\n",
ret);
return ret;
}
return 0;
}
static int cxgb4_ethtool_flash_fw(struct net_device *netdev,
const u8 *data, u32 size)
{
struct adapter *adap = netdev2adap(netdev);
unsigned int mbox = PCIE_FW_MASTER_M + 1;
int ret;
/* If the adapter has been fully initialized then we'll go ahead and
* try to get the firmware's cooperation in upgrading to the new
* firmware image otherwise we'll try to do the entire job from the
* host ... and we always "force" the operation in this path.
*/
if (adap->flags & CXGB4_FULL_INIT_DONE)
mbox = adap->mbox;
ret = t4_fw_upgrade(adap, mbox, data, size, 1);
if (ret)
dev_err(adap->pdev_dev,
"Failed to flash firmware\n");
return ret;
}
static int cxgb4_ethtool_flash_region(struct net_device *netdev,
const u8 *data, u32 size, u32 region)
{
struct adapter *adap = netdev2adap(netdev);
int ret;
switch (region) {
case CXGB4_ETHTOOL_FLASH_FW:
ret = cxgb4_ethtool_flash_fw(netdev, data, size);
break;
case CXGB4_ETHTOOL_FLASH_PHY:
ret = cxgb4_ethtool_flash_phy(netdev, data, size);
break;
case CXGB4_ETHTOOL_FLASH_BOOT:
ret = cxgb4_ethtool_flash_boot(netdev, data, size);
break;
case CXGB4_ETHTOOL_FLASH_BOOTCFG:
ret = cxgb4_ethtool_flash_bootcfg(netdev, data, size);
break;
default:
ret = -EOPNOTSUPP;
break;
}
if (!ret)
dev_info(adap->pdev_dev,
"loading %s successful, reload cxgb4 driver\n",
flash_region_strings[region]);
return ret;
}
#define CXGB4_FW_SIG 0x4368656c
#define CXGB4_FW_SIG_OFFSET 0x160
static int cxgb4_validate_fw_image(const u8 *data, u32 *size)
{
struct cxgb4_fw_data *header;
header = (struct cxgb4_fw_data *)&data[CXGB4_FW_SIG_OFFSET];
if (be32_to_cpu(header->signature) != CXGB4_FW_SIG)
return -EINVAL;
if (size)
*size = be16_to_cpu(((struct fw_hdr *)data)->len512) * 512;
return 0;
}
static int cxgb4_validate_bootcfg_image(const u8 *data, u32 *size)
{
struct cxgb4_bootcfg_data *header;
header = (struct cxgb4_bootcfg_data *)data;
if (le16_to_cpu(header->signature) != BOOT_CFG_SIG)
return -EINVAL;
return 0;
}
static int cxgb4_validate_boot_image(const u8 *data, u32 *size)
{
struct cxgb4_pci_exp_rom_header *exp_header;
struct cxgb4_pcir_data *pcir_header;
struct legacy_pci_rom_hdr *header;
const u8 *cur_header = data;
u16 pcir_offset;
exp_header = (struct cxgb4_pci_exp_rom_header *)data;
if (le16_to_cpu(exp_header->signature) != BOOT_SIGNATURE)
return -EINVAL;
if (size) {
do {
header = (struct legacy_pci_rom_hdr *)cur_header;
pcir_offset = le16_to_cpu(header->pcir_offset);
pcir_header = (struct cxgb4_pcir_data *)(cur_header +
pcir_offset);
*size += header->size512 * 512;
cur_header += header->size512 * 512;
} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
}
return 0;
}
static int cxgb4_ethtool_get_flash_region(const u8 *data, u32 *size)
{
if (!cxgb4_validate_fw_image(data, size))
return CXGB4_ETHTOOL_FLASH_FW;
if (!cxgb4_validate_boot_image(data, size))
return CXGB4_ETHTOOL_FLASH_BOOT;
if (!cxgb4_validate_phy_image(data, size))
return CXGB4_ETHTOOL_FLASH_PHY;
if (!cxgb4_validate_bootcfg_image(data, size))
return CXGB4_ETHTOOL_FLASH_BOOTCFG;
return -EOPNOTSUPP;
}
static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
{
struct adapter *adap = netdev2adap(netdev);
const struct firmware *fw;
unsigned int master;
u8 master_vld = 0;
const u8 *fw_data;
size_t fw_size;
u32 size = 0;
u32 pcie_fw;
int region;
int ret;
pcie_fw = t4_read_reg(adap, PCIE_FW_A);
master = PCIE_FW_MASTER_G(pcie_fw);
if (pcie_fw & PCIE_FW_MASTER_VLD_F)
master_vld = 1;
/* if csiostor is the master return */
if (master_vld && (master != adap->pf)) {
dev_warn(adap->pdev_dev,
"cxgb4 driver needs to be loaded as MASTER to support FW flash\n");
return -EOPNOTSUPP;
}
ef->data[sizeof(ef->data) - 1] = '\0';
ret = request_firmware(&fw, ef->data, adap->pdev_dev);
if (ret < 0)
return ret;
fw_data = fw->data;
fw_size = fw->size;
if (ef->region == ETHTOOL_FLASH_ALL_REGIONS) {
while (fw_size > 0) {
size = 0;
region = cxgb4_ethtool_get_flash_region(fw_data, &size);
if (region < 0 || !size) {
ret = region;
goto out_free_fw;
}
ret = cxgb4_ethtool_flash_region(netdev, fw_data, size,
region);
if (ret)
goto out_free_fw;
fw_data += size;
fw_size -= size;
}
} else {
ret = cxgb4_ethtool_flash_region(netdev, fw_data, fw_size,
ef->region);
}
out_free_fw:
release_firmware(fw);
return ret;
}
static int get_ts_info(struct net_device *dev, struct ethtool_ts_info *ts_info)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
ts_info->so_timestamping |= SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
if (adapter->ptp_clock)
ts_info->phc_index = ptp_clock_index(adapter->ptp_clock);
else
ts_info->phc_index = -1;
return 0;
}
static u32 get_rss_table_size(struct net_device *dev)
{
const struct port_info *pi = netdev_priv(dev);
return pi->rss_size;
}
static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
{
const struct port_info *pi = netdev_priv(dev);
unsigned int n = pi->rss_size;
if (hfunc)
*hfunc = ETH_RSS_HASH_TOP;
if (!p)
return 0;
while (n--)
p[n] = pi->rss[n];
return 0;
}
static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
const u8 hfunc)
{
unsigned int i;
struct port_info *pi = netdev_priv(dev);
/* We require at least one supported parameter to be changed and no
* change in any of the unsupported parameters
*/
if (key ||
(hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
return -EOPNOTSUPP;
if (!p)
return 0;
/* Interface must be brought up atleast once */
if (pi->adapter->flags & CXGB4_FULL_INIT_DONE) {
for (i = 0; i < pi->rss_size; i++)
pi->rss[i] = p[i];
return cxgb4_write_rss(pi, pi->rss);
}
return -EPERM;
}
static struct filter_entry *cxgb4_get_filter_entry(struct adapter *adap,
u32 ftid)
{
struct tid_info *t = &adap->tids;
if (ftid >= t->hpftid_base && ftid < t->hpftid_base + t->nhpftids)
return &t->hpftid_tab[ftid - t->hpftid_base];
if (ftid >= t->ftid_base && ftid < t->ftid_base + t->nftids)
return &t->ftid_tab[ftid - t->ftid_base];
return lookup_tid(t, ftid);
}
static void cxgb4_fill_filter_rule(struct ethtool_rx_flow_spec *fs,
struct ch_filter_specification *dfs)
{
switch (dfs->val.proto) {
case IPPROTO_TCP:
if (dfs->type)
fs->flow_type = TCP_V6_FLOW;
else
fs->flow_type = TCP_V4_FLOW;
break;
case IPPROTO_UDP:
if (dfs->type)
fs->flow_type = UDP_V6_FLOW;
else
fs->flow_type = UDP_V4_FLOW;
break;
}
if (dfs->type) {
fs->h_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->val.fport);
fs->m_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->mask.fport);
fs->h_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->val.lport);
fs->m_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->mask.lport);
memcpy(&fs->h_u.tcp_ip6_spec.ip6src, &dfs->val.fip[0],
sizeof(fs->h_u.tcp_ip6_spec.ip6src));
memcpy(&fs->m_u.tcp_ip6_spec.ip6src, &dfs->mask.fip[0],
sizeof(fs->m_u.tcp_ip6_spec.ip6src));
memcpy(&fs->h_u.tcp_ip6_spec.ip6dst, &dfs->val.lip[0],
sizeof(fs->h_u.tcp_ip6_spec.ip6dst));
memcpy(&fs->m_u.tcp_ip6_spec.ip6dst, &dfs->mask.lip[0],
sizeof(fs->m_u.tcp_ip6_spec.ip6dst));
fs->h_u.tcp_ip6_spec.tclass = dfs->val.tos;
fs->m_u.tcp_ip6_spec.tclass = dfs->mask.tos;
} else {
fs->h_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->val.fport);
fs->m_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->mask.fport);
fs->h_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->val.lport);
fs->m_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->mask.lport);
memcpy(&fs->h_u.tcp_ip4_spec.ip4src, &dfs->val.fip[0],
sizeof(fs->h_u.tcp_ip4_spec.ip4src));
memcpy(&fs->m_u.tcp_ip4_spec.ip4src, &dfs->mask.fip[0],
sizeof(fs->m_u.tcp_ip4_spec.ip4src));
memcpy(&fs->h_u.tcp_ip4_spec.ip4dst, &dfs->val.lip[0],
sizeof(fs->h_u.tcp_ip4_spec.ip4dst));
memcpy(&fs->m_u.tcp_ip4_spec.ip4dst, &dfs->mask.lip[0],
sizeof(fs->m_u.tcp_ip4_spec.ip4dst));
fs->h_u.tcp_ip4_spec.tos = dfs->val.tos;
fs->m_u.tcp_ip4_spec.tos = dfs->mask.tos;
}
fs->h_ext.vlan_tci = cpu_to_be16(dfs->val.ivlan);
fs->m_ext.vlan_tci = cpu_to_be16(dfs->mask.ivlan);
fs->flow_type |= FLOW_EXT;
if (dfs->action == FILTER_DROP)
fs->ring_cookie = RX_CLS_FLOW_DISC;
else
fs->ring_cookie = dfs->iq;
}
static int cxgb4_ntuple_get_filter(struct net_device *dev,
struct ethtool_rxnfc *cmd,
unsigned int loc)
{
const struct port_info *pi = netdev_priv(dev);
struct adapter *adap = netdev2adap(dev);
struct filter_entry *f;
int ftid;
if (!(adap->flags & CXGB4_FULL_INIT_DONE))
return -EAGAIN;
/* Check for maximum filter range */
if (!adap->ethtool_filters)
return -EOPNOTSUPP;
if (loc >= adap->ethtool_filters->nentries)
return -ERANGE;
if (!test_bit(loc, adap->ethtool_filters->port[pi->port_id].bmap))
return -ENOENT;
ftid = adap->ethtool_filters->port[pi->port_id].loc_array[loc];
/* Fetch filter_entry */
f = cxgb4_get_filter_entry(adap, ftid);
cxgb4_fill_filter_rule(&cmd->fs, &f->fs);
return 0;
}
static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
u32 *rules)
{
const struct port_info *pi = netdev_priv(dev);
struct adapter *adap = netdev2adap(dev);
unsigned int count = 0, index = 0;
int ret = 0;
switch (info->cmd) {
case ETHTOOL_GRXFH: {
unsigned int v = pi->rss_mode;
info->data = 0;
switch (info->flow_type) {
case TCP_V4_FLOW:
if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case UDP_V4_FLOW:
if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
(v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case SCTP_V4_FLOW:
case AH_ESP_V4_FLOW:
case IPV4_FLOW:
if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case TCP_V6_FLOW:
if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case UDP_V6_FLOW:
if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
(v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case SCTP_V6_FLOW:
case AH_ESP_V6_FLOW:
case IPV6_FLOW:
if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
}
return 0;
}
case ETHTOOL_GRXRINGS:
info->data = pi->nqsets;
return 0;
case ETHTOOL_GRXCLSRLCNT:
info->rule_cnt =
adap->ethtool_filters->port[pi->port_id].in_use;
return 0;
case ETHTOOL_GRXCLSRULE:
return cxgb4_ntuple_get_filter(dev, info, info->fs.location);
case ETHTOOL_GRXCLSRLALL:
info->data = adap->ethtool_filters->nentries;
while (count < info->rule_cnt) {
ret = cxgb4_ntuple_get_filter(dev, info, index);
if (!ret)
rules[count++] = index;
index++;
}
return 0;
}
return -EOPNOTSUPP;
}
static int cxgb4_ntuple_del_filter(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct cxgb4_ethtool_filter_info *filter_info;
struct adapter *adapter = netdev2adap(dev);
struct port_info *pi = netdev_priv(dev);
struct filter_entry *f;
u32 filter_id;
int ret;
if (!(adapter->flags & CXGB4_FULL_INIT_DONE))
return -EAGAIN; /* can still change nfilters */
if (!adapter->ethtool_filters)
return -EOPNOTSUPP;
if (cmd->fs.location >= adapter->ethtool_filters->nentries) {
dev_err(adapter->pdev_dev,
"Location must be < %u",
adapter->ethtool_filters->nentries);
return -ERANGE;
}
filter_info = &adapter->ethtool_filters->port[pi->port_id];
if (!test_bit(cmd->fs.location, filter_info->bmap))
return -ENOENT;
filter_id = filter_info->loc_array[cmd->fs.location];
f = cxgb4_get_filter_entry(adapter, filter_id);
if (f->fs.prio)
filter_id -= adapter->tids.hpftid_base;
else if (!f->fs.hash)
filter_id -= (adapter->tids.ftid_base - adapter->tids.nhpftids);
ret = cxgb4_flow_rule_destroy(dev, f->fs.tc_prio, &f->fs, filter_id);
if (ret)
goto err;
clear_bit(cmd->fs.location, filter_info->bmap);
filter_info->in_use--;
err:
return ret;
}
/* Add Ethtool n-tuple filters. */
static int cxgb4_ntuple_set_filter(struct net_device *netdev,
struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec_input input = {};
struct cxgb4_ethtool_filter_info *filter_info;
struct adapter *adapter = netdev2adap(netdev);
struct port_info *pi = netdev_priv(netdev);
struct ch_filter_specification fs;
struct ethtool_rx_flow_rule *flow;
u32 tid;
int ret;
if (!(adapter->flags & CXGB4_FULL_INIT_DONE))
return -EAGAIN; /* can still change nfilters */
if (!adapter->ethtool_filters)
return -EOPNOTSUPP;
if (cmd->fs.location >= adapter->ethtool_filters->nentries) {
dev_err(adapter->pdev_dev,
"Location must be < %u",
adapter->ethtool_filters->nentries);
return -ERANGE;
}
if (test_bit(cmd->fs.location,
adapter->ethtool_filters->port[pi->port_id].bmap))
return -EEXIST;
memset(&fs, 0, sizeof(fs));
input.fs = &cmd->fs;
flow = ethtool_rx_flow_rule_create(&input);
if (IS_ERR(flow)) {
ret = PTR_ERR(flow);
goto exit;
}
fs.hitcnts = 1;
ret = cxgb4_flow_rule_replace(netdev, flow->rule, cmd->fs.location,
NULL, &fs, &tid);
if (ret)
goto free;
filter_info = &adapter->ethtool_filters->port[pi->port_id];
if (fs.prio)
tid += adapter->tids.hpftid_base;
else if (!fs.hash)
tid += (adapter->tids.ftid_base - adapter->tids.nhpftids);
filter_info->loc_array[cmd->fs.location] = tid;
set_bit(cmd->fs.location, filter_info->bmap);
filter_info->in_use++;
free:
ethtool_rx_flow_rule_destroy(flow);
exit:
return ret;
}
static int set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_SRXCLSRLINS:
ret = cxgb4_ntuple_set_filter(dev, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = cxgb4_ntuple_del_filter(dev, cmd);
break;
default:
break;
}
return ret;
}
static int set_dump(struct net_device *dev, struct ethtool_dump *eth_dump)
{
struct adapter *adapter = netdev2adap(dev);
u32 len = 0;
len = sizeof(struct cudbg_hdr) +
sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
len += cxgb4_get_dump_length(adapter, eth_dump->flag);
adapter->eth_dump.flag = eth_dump->flag;
adapter->eth_dump.len = len;
return 0;
}
static int get_dump_flag(struct net_device *dev, struct ethtool_dump *eth_dump)
{
struct adapter *adapter = netdev2adap(dev);
eth_dump->flag = adapter->eth_dump.flag;
eth_dump->len = adapter->eth_dump.len;
eth_dump->version = adapter->eth_dump.version;
return 0;
}
static int get_dump_data(struct net_device *dev, struct ethtool_dump *eth_dump,
void *buf)
{
struct adapter *adapter = netdev2adap(dev);
u32 len = 0;
int ret = 0;
if (adapter->eth_dump.flag == CXGB4_ETH_DUMP_NONE)
return -ENOENT;
len = sizeof(struct cudbg_hdr) +
sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
len += cxgb4_get_dump_length(adapter, adapter->eth_dump.flag);
if (eth_dump->len < len)
return -ENOMEM;
ret = cxgb4_cudbg_collect(adapter, buf, &len, adapter->eth_dump.flag);
if (ret)
return ret;
eth_dump->flag = adapter->eth_dump.flag;
eth_dump->len = len;
eth_dump->version = adapter->eth_dump.version;
return 0;
}
static int cxgb4_get_module_info(struct net_device *dev,
struct ethtool_modinfo *modinfo)
{
struct port_info *pi = netdev_priv(dev);
u8 sff8472_comp, sff_diag_type, sff_rev;
struct adapter *adapter = pi->adapter;
int ret;
if (!t4_is_inserted_mod_type(pi->mod_type))
return -EINVAL;
switch (pi->port_type) {
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_QSA:
case FW_PORT_TYPE_SFP28:
ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
I2C_DEV_ADDR_A0, SFF_8472_COMP_ADDR,
SFF_8472_COMP_LEN, &sff8472_comp);
if (ret)
return ret;
ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
I2C_DEV_ADDR_A0, SFP_DIAG_TYPE_ADDR,
SFP_DIAG_TYPE_LEN, &sff_diag_type);
if (ret)
return ret;
if (!sff8472_comp || (sff_diag_type & SFP_DIAG_ADDRMODE)) {
modinfo->type = ETH_MODULE_SFF_8079;
modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
} else {
modinfo->type = ETH_MODULE_SFF_8472;
if (sff_diag_type & SFP_DIAG_IMPLEMENTED)
modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
else
modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN / 2;
}
break;
case FW_PORT_TYPE_QSFP:
case FW_PORT_TYPE_QSFP_10G:
case FW_PORT_TYPE_CR_QSFP:
case FW_PORT_TYPE_CR2_QSFP:
case FW_PORT_TYPE_CR4_QSFP:
ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
I2C_DEV_ADDR_A0, SFF_REV_ADDR,
SFF_REV_LEN, &sff_rev);
/* For QSFP type ports, revision value >= 3
* means the SFP is 8636 compliant.
*/
if (ret)
return ret;
if (sff_rev >= 0x3) {
modinfo->type = ETH_MODULE_SFF_8636;
modinfo->eeprom_len = ETH_MODULE_SFF_8636_LEN;
} else {
modinfo->type = ETH_MODULE_SFF_8436;
modinfo->eeprom_len = ETH_MODULE_SFF_8436_LEN;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int cxgb4_get_module_eeprom(struct net_device *dev,
struct ethtool_eeprom *eprom, u8 *data)
{
int ret = 0, offset = eprom->offset, len = eprom->len;
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
memset(data, 0, eprom->len);
if (offset + len <= I2C_PAGE_SIZE)
return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
I2C_DEV_ADDR_A0, offset, len, data);
/* offset + len spans 0xa0 and 0xa1 pages */
if (offset <= I2C_PAGE_SIZE) {
/* read 0xa0 page */
len = I2C_PAGE_SIZE - offset;
ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
I2C_DEV_ADDR_A0, offset, len, data);
if (ret)
return ret;
offset = I2C_PAGE_SIZE;
/* Remaining bytes to be read from second page =
* Total length - bytes read from first page
*/
len = eprom->len - len;
}
/* Read additional optical diagnostics from page 0xa2 if supported */
return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A2,
offset, len, &data[eprom->len - len]);
}
static u32 cxgb4_get_priv_flags(struct net_device *netdev)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adapter = pi->adapter;
return (adapter->eth_flags | pi->eth_flags);
}
/**
* set_flags - set/unset specified flags if passed in new_flags
* @cur_flags: pointer to current flags
* @new_flags: new incoming flags
* @flags: set of flags to set/unset
*/
static inline void set_flags(u32 *cur_flags, u32 new_flags, u32 flags)
{
*cur_flags = (*cur_flags & ~flags) | (new_flags & flags);
}
static int cxgb4_set_priv_flags(struct net_device *netdev, u32 flags)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adapter = pi->adapter;
set_flags(&adapter->eth_flags, flags, PRIV_FLAGS_ADAP);
set_flags(&pi->eth_flags, flags, PRIV_FLAGS_PORT);
return 0;
}
static void cxgb4_lb_test(struct net_device *netdev, u64 *lb_status)
{
int dev_state = netif_running(netdev);
if (dev_state) {
netif_tx_stop_all_queues(netdev);
netif_carrier_off(netdev);
}
*lb_status = cxgb4_selftest_lb_pkt(netdev);
if (dev_state) {
netif_tx_start_all_queues(netdev);
netif_carrier_on(netdev);
}
}
static void cxgb4_self_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adap = pi->adapter;
memset(data, 0, sizeof(u64) * CXGB4_ETHTOOL_MAX_TEST);
if (!(adap->flags & CXGB4_FULL_INIT_DONE) ||
!(adap->flags & CXGB4_FW_OK)) {
eth_test->flags |= ETH_TEST_FL_FAILED;
return;
}
if (eth_test->flags & ETH_TEST_FL_OFFLINE)
cxgb4_lb_test(netdev, &data[CXGB4_ETHTOOL_LB_TEST]);
if (data[CXGB4_ETHTOOL_LB_TEST])
eth_test->flags |= ETH_TEST_FL_FAILED;
}
static const struct ethtool_ops cxgb_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_RX_MAX_FRAMES |
ETHTOOL_COALESCE_TX_USECS_IRQ |
ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
.get_link_ksettings = get_link_ksettings,
.set_link_ksettings = set_link_ksettings,
.get_fecparam = get_fecparam,
.set_fecparam = set_fecparam,
.get_drvinfo = get_drvinfo,
.get_msglevel = get_msglevel,
.set_msglevel = set_msglevel,
.get_ringparam = get_sge_param,
.set_ringparam = set_sge_param,
.get_coalesce = get_coalesce,
.set_coalesce = set_coalesce,
.get_eeprom_len = get_eeprom_len,
.get_eeprom = get_eeprom,
.set_eeprom = set_eeprom,
.get_pauseparam = get_pauseparam,
.set_pauseparam = set_pauseparam,
.get_link = ethtool_op_get_link,
.get_strings = get_strings,
.set_phys_id = identify_port,
.nway_reset = restart_autoneg,
.get_sset_count = get_sset_count,
.get_ethtool_stats = get_stats,
.get_regs_len = get_regs_len,
.get_regs = get_regs,
.get_rxnfc = get_rxnfc,
.set_rxnfc = set_rxnfc,
.get_rxfh_indir_size = get_rss_table_size,
.get_rxfh = get_rss_table,
.set_rxfh = set_rss_table,
.self_test = cxgb4_self_test,
.flash_device = set_flash,
.get_ts_info = get_ts_info,
.set_dump = set_dump,
.get_dump_flag = get_dump_flag,
.get_dump_data = get_dump_data,
.get_module_info = cxgb4_get_module_info,
.get_module_eeprom = cxgb4_get_module_eeprom,
.get_priv_flags = cxgb4_get_priv_flags,
.set_priv_flags = cxgb4_set_priv_flags,
};
void cxgb4_cleanup_ethtool_filters(struct adapter *adap)
{
struct cxgb4_ethtool_filter_info *eth_filter_info;
u8 i;
if (!adap->ethtool_filters)
return;
eth_filter_info = adap->ethtool_filters->port;
if (eth_filter_info) {
for (i = 0; i < adap->params.nports; i++) {
kvfree(eth_filter_info[i].loc_array);
kfree(eth_filter_info[i].bmap);
}
kfree(eth_filter_info);
}
kfree(adap->ethtool_filters);
}
int cxgb4_init_ethtool_filters(struct adapter *adap)
{
struct cxgb4_ethtool_filter_info *eth_filter_info;
struct cxgb4_ethtool_filter *eth_filter;
struct tid_info *tids = &adap->tids;
u32 nentries, i;
int ret;
eth_filter = kzalloc(sizeof(*eth_filter), GFP_KERNEL);
if (!eth_filter)
return -ENOMEM;
eth_filter_info = kcalloc(adap->params.nports,
sizeof(*eth_filter_info),
GFP_KERNEL);
if (!eth_filter_info) {
ret = -ENOMEM;
goto free_eth_filter;
}
eth_filter->port = eth_filter_info;
nentries = tids->nhpftids + tids->nftids;
if (is_hashfilter(adap))
nentries += tids->nhash +
(adap->tids.stid_base - adap->tids.tid_base);
eth_filter->nentries = nentries;
for (i = 0; i < adap->params.nports; i++) {
eth_filter->port[i].loc_array = kvzalloc(nentries, GFP_KERNEL);
if (!eth_filter->port[i].loc_array) {
ret = -ENOMEM;
goto free_eth_finfo;
}
eth_filter->port[i].bmap = kcalloc(BITS_TO_LONGS(nentries),
sizeof(unsigned long),
GFP_KERNEL);
if (!eth_filter->port[i].bmap) {
ret = -ENOMEM;
goto free_eth_finfo;
}
}
adap->ethtool_filters = eth_filter;
return 0;
free_eth_finfo:
while (i-- > 0) {
kfree(eth_filter->port[i].bmap);
kvfree(eth_filter->port[i].loc_array);
}
kfree(eth_filter_info);
free_eth_filter:
kfree(eth_filter);
return ret;
}
void cxgb4_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &cxgb_ethtool_ops;
}