blob: 29d69dfc98488778936bf0d55c5c0d8a30078f8f [file] [log] [blame]
/*
* Copyright 2012-16 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/slab.h>
#include "dce_clk_mgr.h"
#include "reg_helper.h"
#include "dmcu.h"
#include "core_types.h"
#include "dal_asic_id.h"
#define TO_DCE_CLK_MGR(clocks)\
container_of(clocks, struct dce_clk_mgr, base)
#define REG(reg) \
(clk_mgr_dce->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
clk_mgr_dce->clk_mgr_shift->field_name, clk_mgr_dce->clk_mgr_mask->field_name
#define CTX \
clk_mgr_dce->base.ctx
#define DC_LOGGER \
clk_mgr->ctx->logger
/* Max clock values for each state indexed by "enum clocks_state": */
static const struct state_dependent_clocks dce80_max_clks_by_state[] = {
/* ClocksStateInvalid - should not be used */
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
/* ClocksStateUltraLow - not expected to be used for DCE 8.0 */
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
/* ClocksStateLow */
{ .display_clk_khz = 352000, .pixel_clk_khz = 330000},
/* ClocksStateNominal */
{ .display_clk_khz = 600000, .pixel_clk_khz = 400000 },
/* ClocksStatePerformance */
{ .display_clk_khz = 600000, .pixel_clk_khz = 400000 } };
static const struct state_dependent_clocks dce110_max_clks_by_state[] = {
/*ClocksStateInvalid - should not be used*/
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
/*ClocksStateUltraLow - currently by HW design team not supposed to be used*/
{ .display_clk_khz = 352000, .pixel_clk_khz = 330000 },
/*ClocksStateLow*/
{ .display_clk_khz = 352000, .pixel_clk_khz = 330000 },
/*ClocksStateNominal*/
{ .display_clk_khz = 467000, .pixel_clk_khz = 400000 },
/*ClocksStatePerformance*/
{ .display_clk_khz = 643000, .pixel_clk_khz = 400000 } };
static const struct state_dependent_clocks dce112_max_clks_by_state[] = {
/*ClocksStateInvalid - should not be used*/
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
/*ClocksStateUltraLow - currently by HW design team not supposed to be used*/
{ .display_clk_khz = 389189, .pixel_clk_khz = 346672 },
/*ClocksStateLow*/
{ .display_clk_khz = 459000, .pixel_clk_khz = 400000 },
/*ClocksStateNominal*/
{ .display_clk_khz = 667000, .pixel_clk_khz = 600000 },
/*ClocksStatePerformance*/
{ .display_clk_khz = 1132000, .pixel_clk_khz = 600000 } };
static const struct state_dependent_clocks dce120_max_clks_by_state[] = {
/*ClocksStateInvalid - should not be used*/
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
/*ClocksStateUltraLow - currently by HW design team not supposed to be used*/
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
/*ClocksStateLow*/
{ .display_clk_khz = 460000, .pixel_clk_khz = 400000 },
/*ClocksStateNominal*/
{ .display_clk_khz = 670000, .pixel_clk_khz = 600000 },
/*ClocksStatePerformance*/
{ .display_clk_khz = 1133000, .pixel_clk_khz = 600000 } };
int dentist_get_divider_from_did(int did)
{
if (did < DENTIST_BASE_DID_1)
did = DENTIST_BASE_DID_1;
if (did > DENTIST_MAX_DID)
did = DENTIST_MAX_DID;
if (did < DENTIST_BASE_DID_2) {
return DENTIST_DIVIDER_RANGE_1_START + DENTIST_DIVIDER_RANGE_1_STEP
* (did - DENTIST_BASE_DID_1);
} else if (did < DENTIST_BASE_DID_3) {
return DENTIST_DIVIDER_RANGE_2_START + DENTIST_DIVIDER_RANGE_2_STEP
* (did - DENTIST_BASE_DID_2);
} else if (did < DENTIST_BASE_DID_4) {
return DENTIST_DIVIDER_RANGE_3_START + DENTIST_DIVIDER_RANGE_3_STEP
* (did - DENTIST_BASE_DID_3);
} else {
return DENTIST_DIVIDER_RANGE_4_START + DENTIST_DIVIDER_RANGE_4_STEP
* (did - DENTIST_BASE_DID_4);
}
}
/* SW will adjust DP REF Clock average value for all purposes
* (DP DTO / DP Audio DTO and DP GTC)
if clock is spread for all cases:
-if SS enabled on DP Ref clock and HW de-spreading enabled with SW
calculations for DS_INCR/DS_MODULO (this is planned to be default case)
-if SS enabled on DP Ref clock and HW de-spreading enabled with HW
calculations (not planned to be used, but average clock should still
be valid)
-if SS enabled on DP Ref clock and HW de-spreading disabled
(should not be case with CIK) then SW should program all rates
generated according to average value (case as with previous ASICs)
*/
static int clk_mgr_adjust_dp_ref_freq_for_ss(struct dce_clk_mgr *clk_mgr_dce, int dp_ref_clk_khz)
{
if (clk_mgr_dce->ss_on_dprefclk && clk_mgr_dce->dprefclk_ss_divider != 0) {
struct fixed31_32 ss_percentage = dc_fixpt_div_int(
dc_fixpt_from_fraction(clk_mgr_dce->dprefclk_ss_percentage,
clk_mgr_dce->dprefclk_ss_divider), 200);
struct fixed31_32 adj_dp_ref_clk_khz;
ss_percentage = dc_fixpt_sub(dc_fixpt_one, ss_percentage);
adj_dp_ref_clk_khz = dc_fixpt_mul_int(ss_percentage, dp_ref_clk_khz);
dp_ref_clk_khz = dc_fixpt_floor(adj_dp_ref_clk_khz);
}
return dp_ref_clk_khz;
}
static int dce_get_dp_ref_freq_khz(struct clk_mgr *clk_mgr)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
int dprefclk_wdivider;
int dprefclk_src_sel;
int dp_ref_clk_khz = 600000;
int target_div;
/* ASSERT DP Reference Clock source is from DFS*/
REG_GET(DPREFCLK_CNTL, DPREFCLK_SRC_SEL, &dprefclk_src_sel);
ASSERT(dprefclk_src_sel == 0);
/* Read the mmDENTIST_DISPCLK_CNTL to get the currently
* programmed DID DENTIST_DPREFCLK_WDIVIDER*/
REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DPREFCLK_WDIVIDER, &dprefclk_wdivider);
/* Convert DENTIST_DPREFCLK_WDIVIDERto actual divider*/
target_div = dentist_get_divider_from_did(dprefclk_wdivider);
/* Calculate the current DFS clock, in kHz.*/
dp_ref_clk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR
* clk_mgr_dce->dentist_vco_freq_khz) / target_div;
return clk_mgr_adjust_dp_ref_freq_for_ss(clk_mgr_dce, dp_ref_clk_khz);
}
int dce12_get_dp_ref_freq_khz(struct clk_mgr *clk_mgr)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
return clk_mgr_adjust_dp_ref_freq_for_ss(clk_mgr_dce, clk_mgr_dce->dprefclk_khz);
}
/* unit: in_khz before mode set, get pixel clock from context. ASIC register
* may not be programmed yet
*/
static uint32_t get_max_pixel_clock_for_all_paths(struct dc_state *context)
{
uint32_t max_pix_clk = 0;
int i;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
/* do not check under lay */
if (pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz / 10 > max_pix_clk)
max_pix_clk = pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz / 10;
/* raise clock state for HBR3/2 if required. Confirmed with HW DCE/DPCS
* logic for HBR3 still needs Nominal (0.8V) on VDDC rail
*/
if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
pipe_ctx->stream_res.pix_clk_params.requested_sym_clk > max_pix_clk)
max_pix_clk = pipe_ctx->stream_res.pix_clk_params.requested_sym_clk;
}
return max_pix_clk;
}
static enum dm_pp_clocks_state dce_get_required_clocks_state(
struct clk_mgr *clk_mgr,
struct dc_state *context)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
int i;
enum dm_pp_clocks_state low_req_clk;
int max_pix_clk = get_max_pixel_clock_for_all_paths(context);
/* Iterate from highest supported to lowest valid state, and update
* lowest RequiredState with the lowest state that satisfies
* all required clocks
*/
for (i = clk_mgr_dce->max_clks_state; i >= DM_PP_CLOCKS_STATE_ULTRA_LOW; i--)
if (context->bw_ctx.bw.dce.dispclk_khz >
clk_mgr_dce->max_clks_by_state[i].display_clk_khz
|| max_pix_clk >
clk_mgr_dce->max_clks_by_state[i].pixel_clk_khz)
break;
low_req_clk = i + 1;
if (low_req_clk > clk_mgr_dce->max_clks_state) {
/* set max clock state for high phyclock, invalid on exceeding display clock */
if (clk_mgr_dce->max_clks_by_state[clk_mgr_dce->max_clks_state].display_clk_khz
< context->bw_ctx.bw.dce.dispclk_khz)
low_req_clk = DM_PP_CLOCKS_STATE_INVALID;
else
low_req_clk = clk_mgr_dce->max_clks_state;
}
return low_req_clk;
}
static int dce_set_clock(
struct clk_mgr *clk_mgr,
int requested_clk_khz)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
struct bp_pixel_clock_parameters pxl_clk_params = { 0 };
struct dc_bios *bp = clk_mgr->ctx->dc_bios;
int actual_clock = requested_clk_khz;
struct dmcu *dmcu = clk_mgr_dce->base.ctx->dc->res_pool->dmcu;
/* Make sure requested clock isn't lower than minimum threshold*/
if (requested_clk_khz > 0)
requested_clk_khz = max(requested_clk_khz,
clk_mgr_dce->dentist_vco_freq_khz / 64);
/* Prepare to program display clock*/
pxl_clk_params.target_pixel_clock_100hz = requested_clk_khz * 10;
pxl_clk_params.pll_id = CLOCK_SOURCE_ID_DFS;
if (clk_mgr_dce->dfs_bypass_active)
pxl_clk_params.flags.SET_DISPCLK_DFS_BYPASS = true;
bp->funcs->program_display_engine_pll(bp, &pxl_clk_params);
if (clk_mgr_dce->dfs_bypass_active) {
/* Cache the fixed display clock*/
clk_mgr_dce->dfs_bypass_disp_clk =
pxl_clk_params.dfs_bypass_display_clock;
actual_clock = pxl_clk_params.dfs_bypass_display_clock;
}
/* from power down, we need mark the clock state as ClocksStateNominal
* from HWReset, so when resume we will call pplib voltage regulator.*/
if (requested_clk_khz == 0)
clk_mgr_dce->cur_min_clks_state = DM_PP_CLOCKS_STATE_NOMINAL;
if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
dmcu->funcs->set_psr_wait_loop(dmcu, actual_clock / 1000 / 7);
return actual_clock;
}
int dce112_set_clock(struct clk_mgr *clk_mgr, int requested_clk_khz)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
struct bp_set_dce_clock_parameters dce_clk_params;
struct dc_bios *bp = clk_mgr->ctx->dc_bios;
struct dc *core_dc = clk_mgr->ctx->dc;
struct dmcu *dmcu = core_dc->res_pool->dmcu;
int actual_clock = requested_clk_khz;
/* Prepare to program display clock*/
memset(&dce_clk_params, 0, sizeof(dce_clk_params));
/* Make sure requested clock isn't lower than minimum threshold*/
if (requested_clk_khz > 0)
requested_clk_khz = max(requested_clk_khz,
clk_mgr_dce->dentist_vco_freq_khz / 62);
dce_clk_params.target_clock_frequency = requested_clk_khz;
dce_clk_params.pll_id = CLOCK_SOURCE_ID_DFS;
dce_clk_params.clock_type = DCECLOCK_TYPE_DISPLAY_CLOCK;
bp->funcs->set_dce_clock(bp, &dce_clk_params);
actual_clock = dce_clk_params.target_clock_frequency;
/* from power down, we need mark the clock state as ClocksStateNominal
* from HWReset, so when resume we will call pplib voltage regulator.*/
if (requested_clk_khz == 0)
clk_mgr_dce->cur_min_clks_state = DM_PP_CLOCKS_STATE_NOMINAL;
/*Program DP ref Clock*/
/*VBIOS will determine DPREFCLK frequency, so we don't set it*/
dce_clk_params.target_clock_frequency = 0;
dce_clk_params.clock_type = DCECLOCK_TYPE_DPREFCLK;
if (!ASICREV_IS_VEGA20_P(clk_mgr->ctx->asic_id.hw_internal_rev))
dce_clk_params.flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK =
(dce_clk_params.pll_id ==
CLOCK_SOURCE_COMBO_DISPLAY_PLL0);
else
dce_clk_params.flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK = false;
bp->funcs->set_dce_clock(bp, &dce_clk_params);
if (!IS_FPGA_MAXIMUS_DC(core_dc->ctx->dce_environment)) {
if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
if (clk_mgr_dce->dfs_bypass_disp_clk != actual_clock)
dmcu->funcs->set_psr_wait_loop(dmcu,
actual_clock / 1000 / 7);
}
}
clk_mgr_dce->dfs_bypass_disp_clk = actual_clock;
return actual_clock;
}
static void dce_clock_read_integrated_info(struct dce_clk_mgr *clk_mgr_dce)
{
struct dc_debug_options *debug = &clk_mgr_dce->base.ctx->dc->debug;
struct dc_bios *bp = clk_mgr_dce->base.ctx->dc_bios;
struct integrated_info info = { { { 0 } } };
struct dc_firmware_info fw_info = { { 0 } };
int i;
if (bp->integrated_info)
info = *bp->integrated_info;
clk_mgr_dce->dentist_vco_freq_khz = info.dentist_vco_freq;
if (clk_mgr_dce->dentist_vco_freq_khz == 0) {
bp->funcs->get_firmware_info(bp, &fw_info);
clk_mgr_dce->dentist_vco_freq_khz =
fw_info.smu_gpu_pll_output_freq;
if (clk_mgr_dce->dentist_vco_freq_khz == 0)
clk_mgr_dce->dentist_vco_freq_khz = 3600000;
}
/*update the maximum display clock for each power state*/
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
enum dm_pp_clocks_state clk_state = DM_PP_CLOCKS_STATE_INVALID;
switch (i) {
case 0:
clk_state = DM_PP_CLOCKS_STATE_ULTRA_LOW;
break;
case 1:
clk_state = DM_PP_CLOCKS_STATE_LOW;
break;
case 2:
clk_state = DM_PP_CLOCKS_STATE_NOMINAL;
break;
case 3:
clk_state = DM_PP_CLOCKS_STATE_PERFORMANCE;
break;
default:
clk_state = DM_PP_CLOCKS_STATE_INVALID;
break;
}
/*Do not allow bad VBIOS/SBIOS to override with invalid values,
* check for > 100MHz*/
if (info.disp_clk_voltage[i].max_supported_clk >= 100000)
clk_mgr_dce->max_clks_by_state[clk_state].display_clk_khz =
info.disp_clk_voltage[i].max_supported_clk;
}
if (!debug->disable_dfs_bypass && bp->integrated_info)
if (bp->integrated_info->gpu_cap_info & DFS_BYPASS_ENABLE)
clk_mgr_dce->dfs_bypass_enabled = true;
}
void dce_clock_read_ss_info(struct dce_clk_mgr *clk_mgr_dce)
{
struct dc_bios *bp = clk_mgr_dce->base.ctx->dc_bios;
int ss_info_num = bp->funcs->get_ss_entry_number(
bp, AS_SIGNAL_TYPE_GPU_PLL);
if (ss_info_num) {
struct spread_spectrum_info info = { { 0 } };
enum bp_result result = bp->funcs->get_spread_spectrum_info(
bp, AS_SIGNAL_TYPE_GPU_PLL, 0, &info);
/* Based on VBIOS, VBIOS will keep entry for GPU PLL SS
* even if SS not enabled and in that case
* SSInfo.spreadSpectrumPercentage !=0 would be sign
* that SS is enabled
*/
if (result == BP_RESULT_OK &&
info.spread_spectrum_percentage != 0) {
clk_mgr_dce->ss_on_dprefclk = true;
clk_mgr_dce->dprefclk_ss_divider = info.spread_percentage_divider;
if (info.type.CENTER_MODE == 0) {
/* TODO: Currently for DP Reference clock we
* need only SS percentage for
* downspread */
clk_mgr_dce->dprefclk_ss_percentage =
info.spread_spectrum_percentage;
}
return;
}
result = bp->funcs->get_spread_spectrum_info(
bp, AS_SIGNAL_TYPE_DISPLAY_PORT, 0, &info);
/* Based on VBIOS, VBIOS will keep entry for DPREFCLK SS
* even if SS not enabled and in that case
* SSInfo.spreadSpectrumPercentage !=0 would be sign
* that SS is enabled
*/
if (result == BP_RESULT_OK &&
info.spread_spectrum_percentage != 0) {
clk_mgr_dce->ss_on_dprefclk = true;
clk_mgr_dce->dprefclk_ss_divider = info.spread_percentage_divider;
if (info.type.CENTER_MODE == 0) {
/* Currently for DP Reference clock we
* need only SS percentage for
* downspread */
clk_mgr_dce->dprefclk_ss_percentage =
info.spread_spectrum_percentage;
}
}
}
}
/**
* dce121_clock_patch_xgmi_ss_info() - Save XGMI spread spectrum info
* @clk_mgr: clock manager base structure
*
* Reads from VBIOS the XGMI spread spectrum info and saves it within
* the dce clock manager. This operation will overwrite the existing dprefclk
* SS values if the vBIOS query succeeds. Otherwise, it does nothing. It also
* sets the ->xgmi_enabled flag.
*/
void dce121_clock_patch_xgmi_ss_info(struct clk_mgr *clk_mgr)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
enum bp_result result;
struct spread_spectrum_info info = { { 0 } };
struct dc_bios *bp = clk_mgr_dce->base.ctx->dc_bios;
clk_mgr_dce->xgmi_enabled = false;
result = bp->funcs->get_spread_spectrum_info(bp, AS_SIGNAL_TYPE_XGMI,
0, &info);
if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) {
clk_mgr_dce->xgmi_enabled = true;
clk_mgr_dce->ss_on_dprefclk = true;
clk_mgr_dce->dprefclk_ss_divider =
info.spread_percentage_divider;
if (info.type.CENTER_MODE == 0) {
/* Currently for DP Reference clock we
* need only SS percentage for
* downspread */
clk_mgr_dce->dprefclk_ss_percentage =
info.spread_spectrum_percentage;
}
}
}
void dce110_fill_display_configs(
const struct dc_state *context,
struct dm_pp_display_configuration *pp_display_cfg)
{
int j;
int num_cfgs = 0;
for (j = 0; j < context->stream_count; j++) {
int k;
const struct dc_stream_state *stream = context->streams[j];
struct dm_pp_single_disp_config *cfg =
&pp_display_cfg->disp_configs[num_cfgs];
const struct pipe_ctx *pipe_ctx = NULL;
for (k = 0; k < MAX_PIPES; k++)
if (stream == context->res_ctx.pipe_ctx[k].stream) {
pipe_ctx = &context->res_ctx.pipe_ctx[k];
break;
}
ASSERT(pipe_ctx != NULL);
/* only notify active stream */
if (stream->dpms_off)
continue;
num_cfgs++;
cfg->signal = pipe_ctx->stream->signal;
cfg->pipe_idx = pipe_ctx->stream_res.tg->inst;
cfg->src_height = stream->src.height;
cfg->src_width = stream->src.width;
cfg->ddi_channel_mapping =
stream->link->ddi_channel_mapping.raw;
cfg->transmitter =
stream->link->link_enc->transmitter;
cfg->link_settings.lane_count =
stream->link->cur_link_settings.lane_count;
cfg->link_settings.link_rate =
stream->link->cur_link_settings.link_rate;
cfg->link_settings.link_spread =
stream->link->cur_link_settings.link_spread;
cfg->sym_clock = stream->phy_pix_clk;
/* Round v_refresh*/
cfg->v_refresh = stream->timing.pix_clk_100hz * 100;
cfg->v_refresh /= stream->timing.h_total;
cfg->v_refresh = (cfg->v_refresh + stream->timing.v_total / 2)
/ stream->timing.v_total;
}
pp_display_cfg->display_count = num_cfgs;
}
static uint32_t dce110_get_min_vblank_time_us(const struct dc_state *context)
{
uint8_t j;
uint32_t min_vertical_blank_time = -1;
for (j = 0; j < context->stream_count; j++) {
struct dc_stream_state *stream = context->streams[j];
uint32_t vertical_blank_in_pixels = 0;
uint32_t vertical_blank_time = 0;
vertical_blank_in_pixels = stream->timing.h_total *
(stream->timing.v_total
- stream->timing.v_addressable);
vertical_blank_time = vertical_blank_in_pixels
* 10000 / stream->timing.pix_clk_100hz;
if (min_vertical_blank_time > vertical_blank_time)
min_vertical_blank_time = vertical_blank_time;
}
return min_vertical_blank_time;
}
static int determine_sclk_from_bounding_box(
const struct dc *dc,
int required_sclk)
{
int i;
/*
* Some asics do not give us sclk levels, so we just report the actual
* required sclk
*/
if (dc->sclk_lvls.num_levels == 0)
return required_sclk;
for (i = 0; i < dc->sclk_lvls.num_levels; i++) {
if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk)
return dc->sclk_lvls.clocks_in_khz[i];
}
/*
* even maximum level could not satisfy requirement, this
* is unexpected at this stage, should have been caught at
* validation time
*/
ASSERT(0);
return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1];
}
static void dce_pplib_apply_display_requirements(
struct dc *dc,
struct dc_state *context)
{
struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
pp_display_cfg->avail_mclk_switch_time_us = dce110_get_min_vblank_time_us(context);
dce110_fill_display_configs(context, pp_display_cfg);
if (memcmp(&dc->current_state->pp_display_cfg, pp_display_cfg, sizeof(*pp_display_cfg)) != 0)
dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
}
static void dce11_pplib_apply_display_requirements(
struct dc *dc,
struct dc_state *context)
{
struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
pp_display_cfg->all_displays_in_sync =
context->bw_ctx.bw.dce.all_displays_in_sync;
pp_display_cfg->nb_pstate_switch_disable =
context->bw_ctx.bw.dce.nbp_state_change_enable == false;
pp_display_cfg->cpu_cc6_disable =
context->bw_ctx.bw.dce.cpuc_state_change_enable == false;
pp_display_cfg->cpu_pstate_disable =
context->bw_ctx.bw.dce.cpup_state_change_enable == false;
pp_display_cfg->cpu_pstate_separation_time =
context->bw_ctx.bw.dce.blackout_recovery_time_us;
pp_display_cfg->min_memory_clock_khz = context->bw_ctx.bw.dce.yclk_khz
/ MEMORY_TYPE_MULTIPLIER_CZ;
pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box(
dc,
context->bw_ctx.bw.dce.sclk_khz);
/*
* As workaround for >4x4K lightup set dcfclock to min_engine_clock value.
* This is not required for less than 5 displays,
* thus don't request decfclk in dc to avoid impact
* on power saving.
*
*/
pp_display_cfg->min_dcfclock_khz = (context->stream_count > 4)?
pp_display_cfg->min_engine_clock_khz : 0;
pp_display_cfg->min_engine_clock_deep_sleep_khz
= context->bw_ctx.bw.dce.sclk_deep_sleep_khz;
pp_display_cfg->avail_mclk_switch_time_us =
dce110_get_min_vblank_time_us(context);
/* TODO: dce11.2*/
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0;
pp_display_cfg->disp_clk_khz = dc->res_pool->clk_mgr->clks.dispclk_khz;
dce110_fill_display_configs(context, pp_display_cfg);
/* TODO: is this still applicable?*/
if (pp_display_cfg->display_count == 1) {
const struct dc_crtc_timing *timing =
&context->streams[0]->timing;
pp_display_cfg->crtc_index =
pp_display_cfg->disp_configs[0].pipe_idx;
pp_display_cfg->line_time_in_us = timing->h_total * 10000 / timing->pix_clk_100hz;
}
if (memcmp(&dc->current_state->pp_display_cfg, pp_display_cfg, sizeof(*pp_display_cfg)) != 0)
dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
}
static void dce_update_clocks(struct clk_mgr *clk_mgr,
struct dc_state *context,
bool safe_to_lower)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
struct dm_pp_power_level_change_request level_change_req;
int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz;
/*TODO: W/A for dal3 linux, investigate why this works */
if (!clk_mgr_dce->dfs_bypass_active)
patched_disp_clk = patched_disp_clk * 115 / 100;
level_change_req.power_level = dce_get_required_clocks_state(clk_mgr, context);
/* get max clock state from PPLIB */
if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower)
|| level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) {
if (dm_pp_apply_power_level_change_request(clk_mgr->ctx, &level_change_req))
clk_mgr_dce->cur_min_clks_state = level_change_req.power_level;
}
if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) {
patched_disp_clk = dce_set_clock(clk_mgr, patched_disp_clk);
clk_mgr->clks.dispclk_khz = patched_disp_clk;
}
dce_pplib_apply_display_requirements(clk_mgr->ctx->dc, context);
}
static void dce11_update_clocks(struct clk_mgr *clk_mgr,
struct dc_state *context,
bool safe_to_lower)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
struct dm_pp_power_level_change_request level_change_req;
int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz;
/*TODO: W/A for dal3 linux, investigate why this works */
if (!clk_mgr_dce->dfs_bypass_active)
patched_disp_clk = patched_disp_clk * 115 / 100;
level_change_req.power_level = dce_get_required_clocks_state(clk_mgr, context);
/* get max clock state from PPLIB */
if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower)
|| level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) {
if (dm_pp_apply_power_level_change_request(clk_mgr->ctx, &level_change_req))
clk_mgr_dce->cur_min_clks_state = level_change_req.power_level;
}
if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) {
context->bw_ctx.bw.dce.dispclk_khz = dce_set_clock(clk_mgr, patched_disp_clk);
clk_mgr->clks.dispclk_khz = patched_disp_clk;
}
dce11_pplib_apply_display_requirements(clk_mgr->ctx->dc, context);
}
static void dce112_update_clocks(struct clk_mgr *clk_mgr,
struct dc_state *context,
bool safe_to_lower)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
struct dm_pp_power_level_change_request level_change_req;
int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz;
/*TODO: W/A for dal3 linux, investigate why this works */
if (!clk_mgr_dce->dfs_bypass_active)
patched_disp_clk = patched_disp_clk * 115 / 100;
level_change_req.power_level = dce_get_required_clocks_state(clk_mgr, context);
/* get max clock state from PPLIB */
if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower)
|| level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) {
if (dm_pp_apply_power_level_change_request(clk_mgr->ctx, &level_change_req))
clk_mgr_dce->cur_min_clks_state = level_change_req.power_level;
}
if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) {
patched_disp_clk = dce112_set_clock(clk_mgr, patched_disp_clk);
clk_mgr->clks.dispclk_khz = patched_disp_clk;
}
dce11_pplib_apply_display_requirements(clk_mgr->ctx->dc, context);
}
static void dce12_update_clocks(struct clk_mgr *clk_mgr,
struct dc_state *context,
bool safe_to_lower)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr);
struct dm_pp_clock_for_voltage_req clock_voltage_req = {0};
int max_pix_clk = get_max_pixel_clock_for_all_paths(context);
int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz;
/*TODO: W/A for dal3 linux, investigate why this works */
if (!clk_mgr_dce->dfs_bypass_active)
patched_disp_clk = patched_disp_clk * 115 / 100;
if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) {
clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DISPLAY_CLK;
/*
* When xGMI is enabled, the display clk needs to be adjusted
* with the WAFL link's SS percentage.
*/
if (clk_mgr_dce->xgmi_enabled)
patched_disp_clk = clk_mgr_adjust_dp_ref_freq_for_ss(
clk_mgr_dce, patched_disp_clk);
clock_voltage_req.clocks_in_khz = patched_disp_clk;
clk_mgr->clks.dispclk_khz = dce112_set_clock(clk_mgr, patched_disp_clk);
dm_pp_apply_clock_for_voltage_request(clk_mgr->ctx, &clock_voltage_req);
}
if (should_set_clock(safe_to_lower, max_pix_clk, clk_mgr->clks.phyclk_khz)) {
clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DISPLAYPHYCLK;
clock_voltage_req.clocks_in_khz = max_pix_clk;
clk_mgr->clks.phyclk_khz = max_pix_clk;
dm_pp_apply_clock_for_voltage_request(clk_mgr->ctx, &clock_voltage_req);
}
dce11_pplib_apply_display_requirements(clk_mgr->ctx->dc, context);
}
static const struct clk_mgr_funcs dce120_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.update_clocks = dce12_update_clocks
};
static const struct clk_mgr_funcs dce112_funcs = {
.get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz,
.update_clocks = dce112_update_clocks
};
static const struct clk_mgr_funcs dce110_funcs = {
.get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz,
.update_clocks = dce11_update_clocks,
};
static const struct clk_mgr_funcs dce_funcs = {
.get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz,
.update_clocks = dce_update_clocks
};
static void dce_clk_mgr_construct(
struct dce_clk_mgr *clk_mgr_dce,
struct dc_context *ctx,
const struct clk_mgr_registers *regs,
const struct clk_mgr_shift *clk_shift,
const struct clk_mgr_mask *clk_mask)
{
struct clk_mgr *base = &clk_mgr_dce->base;
struct dm_pp_static_clock_info static_clk_info = {0};
base->ctx = ctx;
base->funcs = &dce_funcs;
clk_mgr_dce->regs = regs;
clk_mgr_dce->clk_mgr_shift = clk_shift;
clk_mgr_dce->clk_mgr_mask = clk_mask;
clk_mgr_dce->dfs_bypass_disp_clk = 0;
clk_mgr_dce->dprefclk_ss_percentage = 0;
clk_mgr_dce->dprefclk_ss_divider = 1000;
clk_mgr_dce->ss_on_dprefclk = false;
if (dm_pp_get_static_clocks(ctx, &static_clk_info))
clk_mgr_dce->max_clks_state = static_clk_info.max_clocks_state;
else
clk_mgr_dce->max_clks_state = DM_PP_CLOCKS_STATE_NOMINAL;
clk_mgr_dce->cur_min_clks_state = DM_PP_CLOCKS_STATE_INVALID;
dce_clock_read_integrated_info(clk_mgr_dce);
dce_clock_read_ss_info(clk_mgr_dce);
}
struct clk_mgr *dce_clk_mgr_create(
struct dc_context *ctx,
const struct clk_mgr_registers *regs,
const struct clk_mgr_shift *clk_shift,
const struct clk_mgr_mask *clk_mask)
{
struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL);
if (clk_mgr_dce == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
memcpy(clk_mgr_dce->max_clks_by_state,
dce80_max_clks_by_state,
sizeof(dce80_max_clks_by_state));
dce_clk_mgr_construct(
clk_mgr_dce, ctx, regs, clk_shift, clk_mask);
return &clk_mgr_dce->base;
}
struct clk_mgr *dce110_clk_mgr_create(
struct dc_context *ctx,
const struct clk_mgr_registers *regs,
const struct clk_mgr_shift *clk_shift,
const struct clk_mgr_mask *clk_mask)
{
struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL);
if (clk_mgr_dce == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
memcpy(clk_mgr_dce->max_clks_by_state,
dce110_max_clks_by_state,
sizeof(dce110_max_clks_by_state));
dce_clk_mgr_construct(
clk_mgr_dce, ctx, regs, clk_shift, clk_mask);
clk_mgr_dce->base.funcs = &dce110_funcs;
return &clk_mgr_dce->base;
}
struct clk_mgr *dce112_clk_mgr_create(
struct dc_context *ctx,
const struct clk_mgr_registers *regs,
const struct clk_mgr_shift *clk_shift,
const struct clk_mgr_mask *clk_mask)
{
struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL);
if (clk_mgr_dce == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
memcpy(clk_mgr_dce->max_clks_by_state,
dce112_max_clks_by_state,
sizeof(dce112_max_clks_by_state));
dce_clk_mgr_construct(
clk_mgr_dce, ctx, regs, clk_shift, clk_mask);
clk_mgr_dce->base.funcs = &dce112_funcs;
return &clk_mgr_dce->base;
}
struct clk_mgr *dce120_clk_mgr_create(struct dc_context *ctx)
{
struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL);
if (clk_mgr_dce == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
memcpy(clk_mgr_dce->max_clks_by_state,
dce120_max_clks_by_state,
sizeof(dce120_max_clks_by_state));
dce_clk_mgr_construct(
clk_mgr_dce, ctx, NULL, NULL, NULL);
clk_mgr_dce->dprefclk_khz = 600000;
clk_mgr_dce->base.funcs = &dce120_funcs;
return &clk_mgr_dce->base;
}
struct clk_mgr *dce121_clk_mgr_create(struct dc_context *ctx)
{
struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce),
GFP_KERNEL);
if (clk_mgr_dce == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
memcpy(clk_mgr_dce->max_clks_by_state, dce120_max_clks_by_state,
sizeof(dce120_max_clks_by_state));
dce_clk_mgr_construct(clk_mgr_dce, ctx, NULL, NULL, NULL);
clk_mgr_dce->dprefclk_khz = 625000;
clk_mgr_dce->base.funcs = &dce120_funcs;
return &clk_mgr_dce->base;
}
void dce_clk_mgr_destroy(struct clk_mgr **clk_mgr)
{
struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(*clk_mgr);
kfree(clk_mgr_dce);
*clk_mgr = NULL;
}