blob: 3ee4a4e7689d7041090358203fc4abee9523a9ca [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014-2019 Intel Corporation
*/
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "intel_guc.h"
#include "intel_guc_ads.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
/**
* DOC: GuC
*
* The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
* designed to offload some of the functionality usually performed by the host
* driver; currently the main operations it can take care of are:
*
* - Authentication of the HuC, which is required to fully enable HuC usage.
* - Low latency graphics context scheduling (a.k.a. GuC submission).
* - GT Power management.
*
* The enable_guc module parameter can be used to select which of those
* operations to enable within GuC. Note that not all the operations are
* supported on all gen9+ platforms.
*
* Enabling the GuC is not mandatory and therefore the firmware is only loaded
* if at least one of the operations is selected. However, not loading the GuC
* might result in the loss of some features that do require the GuC (currently
* just the HuC, but more are expected to land in the future).
*/
static void gen8_guc_raise_irq(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
intel_uncore_write(gt->uncore, GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}
static void gen11_guc_raise_irq(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
intel_uncore_write(gt->uncore, GEN11_GUC_HOST_INTERRUPT, 0);
}
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
GEM_BUG_ON(i >= guc->send_regs.count);
return _MMIO(guc->send_regs.base + 4 * i);
}
void intel_guc_init_send_regs(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
enum forcewake_domains fw_domains = 0;
unsigned int i;
if (INTEL_GEN(gt->i915) >= 11) {
guc->send_regs.base =
i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
} else {
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
}
for (i = 0; i < guc->send_regs.count; i++) {
fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
guc_send_reg(guc, i),
FW_REG_READ | FW_REG_WRITE);
}
guc->send_regs.fw_domains = fw_domains;
}
static void gen9_reset_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(&gt->i915->runtime_pm);
spin_lock_irq(&gt->irq_lock);
gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
spin_unlock_irq(&gt->irq_lock);
}
static void gen9_enable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(&gt->i915->runtime_pm);
spin_lock_irq(&gt->irq_lock);
if (!guc->interrupts.enabled) {
WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
gt->pm_guc_events);
guc->interrupts.enabled = true;
gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
}
spin_unlock_irq(&gt->irq_lock);
}
static void gen9_disable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(&gt->i915->runtime_pm);
spin_lock_irq(&gt->irq_lock);
guc->interrupts.enabled = false;
gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
spin_unlock_irq(&gt->irq_lock);
intel_synchronize_irq(gt->i915);
gen9_reset_guc_interrupts(guc);
}
static void gen11_reset_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(&gt->irq_lock);
gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
spin_unlock_irq(&gt->irq_lock);
}
static void gen11_enable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(&gt->irq_lock);
if (!guc->interrupts.enabled) {
u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
intel_uncore_write(gt->uncore,
GEN11_GUC_SG_INTR_ENABLE, events);
intel_uncore_write(gt->uncore,
GEN11_GUC_SG_INTR_MASK, ~events);
guc->interrupts.enabled = true;
}
spin_unlock_irq(&gt->irq_lock);
}
static void gen11_disable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(&gt->irq_lock);
guc->interrupts.enabled = false;
intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
spin_unlock_irq(&gt->irq_lock);
intel_synchronize_irq(gt->i915);
gen11_reset_guc_interrupts(guc);
}
void intel_guc_init_early(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
intel_guc_fw_init_early(guc);
intel_guc_ct_init_early(&guc->ct);
intel_guc_log_init_early(&guc->log);
intel_guc_submission_init_early(guc);
mutex_init(&guc->send_mutex);
spin_lock_init(&guc->irq_lock);
guc->send = intel_guc_send_nop;
guc->handler = intel_guc_to_host_event_handler_nop;
if (INTEL_GEN(i915) >= 11) {
guc->notify = gen11_guc_raise_irq;
guc->interrupts.reset = gen11_reset_guc_interrupts;
guc->interrupts.enable = gen11_enable_guc_interrupts;
guc->interrupts.disable = gen11_disable_guc_interrupts;
} else {
guc->notify = gen8_guc_raise_irq;
guc->interrupts.reset = gen9_reset_guc_interrupts;
guc->interrupts.enable = gen9_enable_guc_interrupts;
guc->interrupts.disable = gen9_disable_guc_interrupts;
}
}
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
{
u32 level = intel_guc_log_get_level(&guc->log);
u32 flags = 0;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
u32 flags = 0;
if (!intel_guc_is_submission_supported(guc))
flags |= GUC_CTL_DISABLE_SCHEDULER;
return flags;
}
static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
{
u32 flags = 0;
if (intel_guc_is_submission_supported(guc)) {
u32 ctxnum, base;
base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
base >>= PAGE_SHIFT;
flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
}
return flags;
}
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
u32 flags;
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
#define UNIT SZ_1M
#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
#else
#define UNIT SZ_4K
#define FLAG 0
#endif
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
BUILD_BUG_ON(!DPC_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
BUILD_BUG_ON(!ISR_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
FLAG |
((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
#undef UNIT
#undef FLAG
return flags;
}
static u32 guc_ctl_ads_flags(struct intel_guc *guc)
{
u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
return flags;
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
static void guc_init_params(struct intel_guc *guc)
{
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
void intel_guc_write_params(struct intel_guc *guc)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
int i;
/*
* All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
* they are power context saved so it's ok to release forcewake
* when we are done here and take it again at xfer time.
*/
intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
}
int intel_guc_init(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
int ret;
ret = intel_uc_fw_init(&guc->fw);
if (ret)
goto err_fetch;
ret = intel_guc_log_create(&guc->log);
if (ret)
goto err_fw;
ret = intel_guc_ads_create(guc);
if (ret)
goto err_log;
GEM_BUG_ON(!guc->ads_vma);
ret = intel_guc_ct_init(&guc->ct);
if (ret)
goto err_ads;
if (intel_guc_is_submission_supported(guc)) {
/*
* This is stuff we need to have available at fw load time
* if we are planning to enable submission later
*/
ret = intel_guc_submission_init(guc);
if (ret)
goto err_ct;
}
/* now that everything is perma-pinned, initialize the parameters */
guc_init_params(guc);
/* We need to notify the guc whenever we change the GGTT */
i915_ggtt_enable_guc(gt->ggtt);
return 0;
err_ct:
intel_guc_ct_fini(&guc->ct);
err_ads:
intel_guc_ads_destroy(guc);
err_log:
intel_guc_log_destroy(&guc->log);
err_fw:
intel_uc_fw_fini(&guc->fw);
err_fetch:
intel_uc_fw_cleanup_fetch(&guc->fw);
DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
return ret;
}
void intel_guc_fini(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
if (!intel_uc_fw_is_available(&guc->fw))
return;
i915_ggtt_disable_guc(gt->ggtt);
if (intel_guc_is_submission_supported(guc))
intel_guc_submission_fini(guc);
intel_guc_ct_fini(&guc->ct);
intel_guc_ads_destroy(guc);
intel_guc_log_destroy(&guc->log);
intel_uc_fw_fini(&guc->fw);
intel_uc_fw_cleanup_fetch(&guc->fw);
}
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
WARN(1, "Unexpected send: action=%#x\n", *action);
return -ENODEV;
}
void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
{
WARN(1, "Unexpected event: no suitable handler\n");
}
/*
* This function implements the MMIO based host to GuC interface.
*/
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
u32 status;
int i;
int ret;
GEM_BUG_ON(!len);
GEM_BUG_ON(len > guc->send_regs.count);
/* We expect only action code */
GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
/* If CT is available, we expect to use MMIO only during init/fini */
GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
mutex_lock(&guc->send_mutex);
intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
for (i = 0; i < len; i++)
intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
intel_guc_notify(guc);
/*
* No GuC command should ever take longer than 10ms.
* Fast commands should still complete in 10us.
*/
ret = __intel_wait_for_register_fw(uncore,
guc_send_reg(guc, 0),
INTEL_GUC_MSG_TYPE_MASK,
INTEL_GUC_MSG_TYPE_RESPONSE <<
INTEL_GUC_MSG_TYPE_SHIFT,
10, 10, &status);
/* If GuC explicitly returned an error, convert it to -EIO */
if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
ret = -EIO;
if (ret) {
DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
action[0], ret, status);
goto out;
}
if (response_buf) {
int count = min(response_buf_size, guc->send_regs.count - 1);
for (i = 0; i < count; i++)
response_buf[i] = intel_uncore_read(uncore,
guc_send_reg(guc, i + 1));
}
/* Use data from the GuC response as our return value */
ret = INTEL_GUC_MSG_TO_DATA(status);
out:
intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
mutex_unlock(&guc->send_mutex);
return ret;
}
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
const u32 *payload, u32 len)
{
u32 msg;
if (unlikely(!len))
return -EPROTO;
/* Make sure to handle only enabled messages */
msg = payload[0] & guc->msg_enabled_mask;
if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
intel_guc_log_handle_flush_event(&guc->log);
return 0;
}
int intel_guc_sample_forcewake(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
u32 action[2];
action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
/* WaRsDisableCoarsePowerGating:skl,cnl */
if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
action[1] = 0;
else
/* bit 0 and 1 are for Render and Media domain separately */
action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
* @guc: intel_guc structure
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
*
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
* intel_huc_auth().
*
* Return: non-zero code on error
*/
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
u32 action[] = {
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
rsa_offset
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @guc: the guc
*/
int intel_guc_suspend(struct intel_guc *guc)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
int ret;
u32 status;
u32 action[] = {
INTEL_GUC_ACTION_ENTER_S_STATE,
GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
};
/*
* If GuC communication is enabled but submission is not supported,
* we do not need to suspend the GuC.
*/
if (!intel_guc_submission_is_enabled(guc))
return 0;
/*
* The ENTER_S_STATE action queues the save/restore operation in GuC FW
* and then returns, so waiting on the H2G is not enough to guarantee
* GuC is done. When all the processing is done, GuC writes
* INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
* on that. Note that GuC does not ensure that the value in the register
* is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
* in progress so we need to take care of that ourselves as well.
*/
intel_uncore_write(uncore, SOFT_SCRATCH(14),
INTEL_GUC_SLEEP_STATE_INVALID_MASK);
ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
if (ret)
return ret;
ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
INTEL_GUC_SLEEP_STATE_INVALID_MASK,
0, 0, 10, &status);
if (ret)
return ret;
if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
DRM_ERROR("GuC failed to change sleep state. "
"action=0x%x, err=%u\n",
action[0], status);
return -EIO;
}
return 0;
}
/**
* intel_guc_reset_engine() - ask GuC to reset an engine
* @guc: intel_guc structure
* @engine: engine to be reset
*/
int intel_guc_reset_engine(struct intel_guc *guc,
struct intel_engine_cs *engine)
{
/* XXX: to be implemented with submission interface rework */
return -ENODEV;
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @guc: the guc
*/
int intel_guc_resume(struct intel_guc *guc)
{
u32 action[] = {
INTEL_GUC_ACTION_EXIT_S_STATE,
GUC_POWER_D0,
};
/*
* If GuC communication is enabled but submission is not supported,
* we do not need to resume the GuC but we do need to enable the
* GuC communication on resume (above).
*/
if (!intel_guc_submission_is_enabled(guc))
return 0;
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* DOC: GuC Memory Management
*
* GuC can't allocate any memory for its own usage, so all the allocations must
* be handled by the host driver. GuC accesses the memory via the GGTT, with the
* exception of the top and bottom parts of the 4GB address space, which are
* instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
* or other parts of the HW. The driver must take care not to place objects that
* the GuC is going to access in these reserved ranges. The layout of the GuC
* address space is shown below:
*
* ::
*
* +===========> +====================+ <== FFFF_FFFF
* ^ | Reserved |
* | +====================+ <== GUC_GGTT_TOP
* | | |
* | | DRAM |
* GuC | |
* Address +===> +====================+ <== GuC ggtt_pin_bias
* Space ^ | |
* | | | |
* | GuC | GuC |
* | WOPCM | WOPCM |
* | Size | |
* | | | |
* v v | |
* +=======+===> +====================+ <== 0000_0000
*
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
* to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
*/
/**
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
*
* This is a wrapper to create an object for use with the GuC. In order to
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
* both some backing storage and a range inside the Global GTT. We must pin
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
* range is reserved inside GuC.
*
* Return: A i915_vma if successful, otherwise an ERR_PTR.
*/
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u64 flags;
int ret;
obj = i915_gem_object_create_shmem(gt->i915, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma))
goto err;
flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
ret = i915_vma_pin(vma, 0, 0, flags);
if (ret) {
vma = ERR_PTR(ret);
goto err;
}
return i915_vma_make_unshrinkable(vma);
err:
i915_gem_object_put(obj);
return vma;
}