| /* |
| * Copyright 2012 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/seq_file.h> |
| |
| #include <drm/drm_pci.h> |
| |
| #include "r600_dpm.h" |
| #include "radeon.h" |
| #include "radeon_asic.h" |
| #include "trinity_dpm.h" |
| #include "trinityd.h" |
| |
| #define TRINITY_MAX_DEEPSLEEP_DIVIDER_ID 5 |
| #define TRINITY_MINIMUM_ENGINE_CLOCK 800 |
| #define SCLK_MIN_DIV_INTV_SHIFT 12 |
| #define TRINITY_DISPCLK_BYPASS_THRESHOLD 10000 |
| |
| #ifndef TRINITY_MGCG_SEQUENCE |
| #define TRINITY_MGCG_SEQUENCE 100 |
| |
| static const u32 trinity_mgcg_shls_default[] = |
| { |
| /* Register, Value, Mask */ |
| 0x0000802c, 0xc0000000, 0xffffffff, |
| 0x00003fc4, 0xc0000000, 0xffffffff, |
| 0x00005448, 0x00000100, 0xffffffff, |
| 0x000055e4, 0x00000100, 0xffffffff, |
| 0x0000160c, 0x00000100, 0xffffffff, |
| 0x00008984, 0x06000100, 0xffffffff, |
| 0x0000c164, 0x00000100, 0xffffffff, |
| 0x00008a18, 0x00000100, 0xffffffff, |
| 0x0000897c, 0x06000100, 0xffffffff, |
| 0x00008b28, 0x00000100, 0xffffffff, |
| 0x00009144, 0x00800200, 0xffffffff, |
| 0x00009a60, 0x00000100, 0xffffffff, |
| 0x00009868, 0x00000100, 0xffffffff, |
| 0x00008d58, 0x00000100, 0xffffffff, |
| 0x00009510, 0x00000100, 0xffffffff, |
| 0x0000949c, 0x00000100, 0xffffffff, |
| 0x00009654, 0x00000100, 0xffffffff, |
| 0x00009030, 0x00000100, 0xffffffff, |
| 0x00009034, 0x00000100, 0xffffffff, |
| 0x00009038, 0x00000100, 0xffffffff, |
| 0x0000903c, 0x00000100, 0xffffffff, |
| 0x00009040, 0x00000100, 0xffffffff, |
| 0x0000a200, 0x00000100, 0xffffffff, |
| 0x0000a204, 0x00000100, 0xffffffff, |
| 0x0000a208, 0x00000100, 0xffffffff, |
| 0x0000a20c, 0x00000100, 0xffffffff, |
| 0x00009744, 0x00000100, 0xffffffff, |
| 0x00003f80, 0x00000100, 0xffffffff, |
| 0x0000a210, 0x00000100, 0xffffffff, |
| 0x0000a214, 0x00000100, 0xffffffff, |
| 0x000004d8, 0x00000100, 0xffffffff, |
| 0x00009664, 0x00000100, 0xffffffff, |
| 0x00009698, 0x00000100, 0xffffffff, |
| 0x000004d4, 0x00000200, 0xffffffff, |
| 0x000004d0, 0x00000000, 0xffffffff, |
| 0x000030cc, 0x00000104, 0xffffffff, |
| 0x0000d0c0, 0x00000100, 0xffffffff, |
| 0x0000d8c0, 0x00000100, 0xffffffff, |
| 0x0000951c, 0x00010000, 0xffffffff, |
| 0x00009160, 0x00030002, 0xffffffff, |
| 0x00009164, 0x00050004, 0xffffffff, |
| 0x00009168, 0x00070006, 0xffffffff, |
| 0x00009178, 0x00070000, 0xffffffff, |
| 0x0000917c, 0x00030002, 0xffffffff, |
| 0x00009180, 0x00050004, 0xffffffff, |
| 0x0000918c, 0x00010006, 0xffffffff, |
| 0x00009190, 0x00090008, 0xffffffff, |
| 0x00009194, 0x00070000, 0xffffffff, |
| 0x00009198, 0x00030002, 0xffffffff, |
| 0x0000919c, 0x00050004, 0xffffffff, |
| 0x000091a8, 0x00010006, 0xffffffff, |
| 0x000091ac, 0x00090008, 0xffffffff, |
| 0x000091b0, 0x00070000, 0xffffffff, |
| 0x000091b4, 0x00030002, 0xffffffff, |
| 0x000091b8, 0x00050004, 0xffffffff, |
| 0x000091c4, 0x00010006, 0xffffffff, |
| 0x000091c8, 0x00090008, 0xffffffff, |
| 0x000091cc, 0x00070000, 0xffffffff, |
| 0x000091d0, 0x00030002, 0xffffffff, |
| 0x000091d4, 0x00050004, 0xffffffff, |
| 0x000091e0, 0x00010006, 0xffffffff, |
| 0x000091e4, 0x00090008, 0xffffffff, |
| 0x000091e8, 0x00000000, 0xffffffff, |
| 0x000091ec, 0x00070000, 0xffffffff, |
| 0x000091f0, 0x00030002, 0xffffffff, |
| 0x000091f4, 0x00050004, 0xffffffff, |
| 0x00009200, 0x00010006, 0xffffffff, |
| 0x00009204, 0x00090008, 0xffffffff, |
| 0x00009208, 0x00070000, 0xffffffff, |
| 0x0000920c, 0x00030002, 0xffffffff, |
| 0x00009210, 0x00050004, 0xffffffff, |
| 0x0000921c, 0x00010006, 0xffffffff, |
| 0x00009220, 0x00090008, 0xffffffff, |
| 0x00009294, 0x00000000, 0xffffffff |
| }; |
| |
| static const u32 trinity_mgcg_shls_enable[] = |
| { |
| /* Register, Value, Mask */ |
| 0x0000802c, 0xc0000000, 0xffffffff, |
| 0x000008f8, 0x00000000, 0xffffffff, |
| 0x000008fc, 0x00000000, 0x000133FF, |
| 0x000008f8, 0x00000001, 0xffffffff, |
| 0x000008fc, 0x00000000, 0xE00B03FC, |
| 0x00009150, 0x96944200, 0xffffffff |
| }; |
| |
| static const u32 trinity_mgcg_shls_disable[] = |
| { |
| /* Register, Value, Mask */ |
| 0x0000802c, 0xc0000000, 0xffffffff, |
| 0x00009150, 0x00600000, 0xffffffff, |
| 0x000008f8, 0x00000000, 0xffffffff, |
| 0x000008fc, 0xffffffff, 0x000133FF, |
| 0x000008f8, 0x00000001, 0xffffffff, |
| 0x000008fc, 0xffffffff, 0xE00B03FC |
| }; |
| #endif |
| |
| #ifndef TRINITY_SYSLS_SEQUENCE |
| #define TRINITY_SYSLS_SEQUENCE 100 |
| |
| static const u32 trinity_sysls_default[] = |
| { |
| /* Register, Value, Mask */ |
| 0x000055e8, 0x00000000, 0xffffffff, |
| 0x0000d0bc, 0x00000000, 0xffffffff, |
| 0x0000d8bc, 0x00000000, 0xffffffff, |
| 0x000015c0, 0x000c1401, 0xffffffff, |
| 0x0000264c, 0x000c0400, 0xffffffff, |
| 0x00002648, 0x000c0400, 0xffffffff, |
| 0x00002650, 0x000c0400, 0xffffffff, |
| 0x000020b8, 0x000c0400, 0xffffffff, |
| 0x000020bc, 0x000c0400, 0xffffffff, |
| 0x000020c0, 0x000c0c80, 0xffffffff, |
| 0x0000f4a0, 0x000000c0, 0xffffffff, |
| 0x0000f4a4, 0x00680fff, 0xffffffff, |
| 0x00002f50, 0x00000404, 0xffffffff, |
| 0x000004c8, 0x00000001, 0xffffffff, |
| 0x0000641c, 0x00000000, 0xffffffff, |
| 0x00000c7c, 0x00000000, 0xffffffff, |
| 0x00006dfc, 0x00000000, 0xffffffff |
| }; |
| |
| static const u32 trinity_sysls_disable[] = |
| { |
| /* Register, Value, Mask */ |
| 0x0000d0c0, 0x00000000, 0xffffffff, |
| 0x0000d8c0, 0x00000000, 0xffffffff, |
| 0x000055e8, 0x00000000, 0xffffffff, |
| 0x0000d0bc, 0x00000000, 0xffffffff, |
| 0x0000d8bc, 0x00000000, 0xffffffff, |
| 0x000015c0, 0x00041401, 0xffffffff, |
| 0x0000264c, 0x00040400, 0xffffffff, |
| 0x00002648, 0x00040400, 0xffffffff, |
| 0x00002650, 0x00040400, 0xffffffff, |
| 0x000020b8, 0x00040400, 0xffffffff, |
| 0x000020bc, 0x00040400, 0xffffffff, |
| 0x000020c0, 0x00040c80, 0xffffffff, |
| 0x0000f4a0, 0x000000c0, 0xffffffff, |
| 0x0000f4a4, 0x00680000, 0xffffffff, |
| 0x00002f50, 0x00000404, 0xffffffff, |
| 0x000004c8, 0x00000001, 0xffffffff, |
| 0x0000641c, 0x00007ffd, 0xffffffff, |
| 0x00000c7c, 0x0000ff00, 0xffffffff, |
| 0x00006dfc, 0x0000007f, 0xffffffff |
| }; |
| |
| static const u32 trinity_sysls_enable[] = |
| { |
| /* Register, Value, Mask */ |
| 0x000055e8, 0x00000001, 0xffffffff, |
| 0x0000d0bc, 0x00000100, 0xffffffff, |
| 0x0000d8bc, 0x00000100, 0xffffffff, |
| 0x000015c0, 0x000c1401, 0xffffffff, |
| 0x0000264c, 0x000c0400, 0xffffffff, |
| 0x00002648, 0x000c0400, 0xffffffff, |
| 0x00002650, 0x000c0400, 0xffffffff, |
| 0x000020b8, 0x000c0400, 0xffffffff, |
| 0x000020bc, 0x000c0400, 0xffffffff, |
| 0x000020c0, 0x000c0c80, 0xffffffff, |
| 0x0000f4a0, 0x000000c0, 0xffffffff, |
| 0x0000f4a4, 0x00680fff, 0xffffffff, |
| 0x00002f50, 0x00000903, 0xffffffff, |
| 0x000004c8, 0x00000000, 0xffffffff, |
| 0x0000641c, 0x00000000, 0xffffffff, |
| 0x00000c7c, 0x00000000, 0xffffffff, |
| 0x00006dfc, 0x00000000, 0xffffffff |
| }; |
| #endif |
| |
| static const u32 trinity_override_mgpg_sequences[] = |
| { |
| /* Register, Value */ |
| 0x00000200, 0xE030032C, |
| 0x00000204, 0x00000FFF, |
| 0x00000200, 0xE0300058, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE0300054, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE0300074, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE0300070, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE0300090, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE030008C, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE03000AC, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE03000A8, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE03000C8, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE03000C4, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE03000E4, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE03000E0, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE0300100, |
| 0x00000204, 0x00030301, |
| 0x00000200, 0xE03000FC, |
| 0x00000204, 0x500010FF, |
| 0x00000200, 0xE0300058, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE0300054, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE0300074, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE0300070, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE0300090, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE030008C, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE03000AC, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000A8, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE03000C8, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000C4, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE03000E4, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000E0, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE0300100, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000FC, |
| 0x00000204, 0x600010FF, |
| 0x00000200, 0xE0300058, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE0300054, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE0300074, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE0300070, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE0300090, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE030008C, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE03000AC, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000A8, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE03000C8, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000C4, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE03000E4, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000E0, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE0300100, |
| 0x00000204, 0x00030303, |
| 0x00000200, 0xE03000FC, |
| 0x00000204, 0x700010FF, |
| 0x00000200, 0xE0300058, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE0300054, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0xE0300074, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE0300070, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0xE0300090, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE030008C, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0xE03000AC, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE03000A8, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0xE03000C4, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0xE03000C8, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE03000E4, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE03000E0, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0xE0300100, |
| 0x00000204, 0x00010303, |
| 0x00000200, 0xE03000FC, |
| 0x00000204, 0x800010FF, |
| 0x00000200, 0x0001f198, |
| 0x00000204, 0x0003ffff, |
| 0x00000200, 0x0001f19C, |
| 0x00000204, 0x3fffffff, |
| 0x00000200, 0xE030032C, |
| 0x00000204, 0x00000000, |
| }; |
| |
| extern void vce_v1_0_enable_mgcg(struct radeon_device *rdev, bool enable); |
| static void trinity_program_clk_gating_hw_sequence(struct radeon_device *rdev, |
| const u32 *seq, u32 count); |
| static void trinity_override_dynamic_mg_powergating(struct radeon_device *rdev); |
| static void trinity_apply_state_adjust_rules(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps); |
| |
| static struct trinity_ps *trinity_get_ps(struct radeon_ps *rps) |
| { |
| struct trinity_ps *ps = rps->ps_priv; |
| |
| return ps; |
| } |
| |
| static struct trinity_power_info *trinity_get_pi(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = rdev->pm.dpm.priv; |
| |
| return pi; |
| } |
| |
| static void trinity_gfx_powergating_initialize(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 p, u; |
| u32 value; |
| struct atom_clock_dividers dividers; |
| u32 xclk = radeon_get_xclk(rdev); |
| u32 sssd = 1; |
| int ret; |
| u32 hw_rev = (RREG32(HW_REV) & ATI_REV_ID_MASK) >> ATI_REV_ID_SHIFT; |
| |
| ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, |
| 25000, false, ÷rs); |
| if (ret) |
| return; |
| |
| value = RREG32_SMC(GFX_POWER_GATING_CNTL); |
| value &= ~(SSSD_MASK | PDS_DIV_MASK); |
| if (sssd) |
| value |= SSSD(1); |
| value |= PDS_DIV(dividers.post_div); |
| WREG32_SMC(GFX_POWER_GATING_CNTL, value); |
| |
| r600_calculate_u_and_p(500, xclk, 16, &p, &u); |
| |
| WREG32(CG_PG_CTRL, SP(p) | SU(u)); |
| |
| WREG32_P(CG_GIPOTS, CG_GIPOT(p), ~CG_GIPOT_MASK); |
| |
| /* XXX double check hw_rev */ |
| if (pi->override_dynamic_mgpg && (hw_rev == 0)) |
| trinity_override_dynamic_mg_powergating(rdev); |
| |
| } |
| |
| #define CGCG_CGTT_LOCAL0_MASK 0xFFFF33FF |
| #define CGCG_CGTT_LOCAL1_MASK 0xFFFB0FFE |
| #define CGTS_SM_CTRL_REG_DISABLE 0x00600000 |
| #define CGTS_SM_CTRL_REG_ENABLE 0x96944200 |
| |
| static void trinity_mg_clockgating_enable(struct radeon_device *rdev, |
| bool enable) |
| { |
| u32 local0; |
| u32 local1; |
| |
| if (enable) { |
| local0 = RREG32_CG(CG_CGTT_LOCAL_0); |
| local1 = RREG32_CG(CG_CGTT_LOCAL_1); |
| |
| WREG32_CG(CG_CGTT_LOCAL_0, |
| (0x00380000 & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) ); |
| WREG32_CG(CG_CGTT_LOCAL_1, |
| (0x0E000000 & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) ); |
| |
| WREG32(CGTS_SM_CTRL_REG, CGTS_SM_CTRL_REG_ENABLE); |
| } else { |
| WREG32(CGTS_SM_CTRL_REG, CGTS_SM_CTRL_REG_DISABLE); |
| |
| local0 = RREG32_CG(CG_CGTT_LOCAL_0); |
| local1 = RREG32_CG(CG_CGTT_LOCAL_1); |
| |
| WREG32_CG(CG_CGTT_LOCAL_0, |
| CGCG_CGTT_LOCAL0_MASK | (local0 & ~CGCG_CGTT_LOCAL0_MASK) ); |
| WREG32_CG(CG_CGTT_LOCAL_1, |
| CGCG_CGTT_LOCAL1_MASK | (local1 & ~CGCG_CGTT_LOCAL1_MASK) ); |
| } |
| } |
| |
| static void trinity_mg_clockgating_initialize(struct radeon_device *rdev) |
| { |
| u32 count; |
| const u32 *seq = NULL; |
| |
| seq = &trinity_mgcg_shls_default[0]; |
| count = sizeof(trinity_mgcg_shls_default) / (3 * sizeof(u32)); |
| |
| trinity_program_clk_gating_hw_sequence(rdev, seq, count); |
| } |
| |
| static void trinity_gfx_clockgating_enable(struct radeon_device *rdev, |
| bool enable) |
| { |
| if (enable) { |
| WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); |
| } else { |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); |
| WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON); |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON); |
| RREG32(GB_ADDR_CONFIG); |
| } |
| } |
| |
| static void trinity_program_clk_gating_hw_sequence(struct radeon_device *rdev, |
| const u32 *seq, u32 count) |
| { |
| u32 i, length = count * 3; |
| |
| for (i = 0; i < length; i += 3) |
| WREG32_P(seq[i], seq[i+1], ~seq[i+2]); |
| } |
| |
| static void trinity_program_override_mgpg_sequences(struct radeon_device *rdev, |
| const u32 *seq, u32 count) |
| { |
| u32 i, length = count * 2; |
| |
| for (i = 0; i < length; i += 2) |
| WREG32(seq[i], seq[i+1]); |
| |
| } |
| |
| static void trinity_override_dynamic_mg_powergating(struct radeon_device *rdev) |
| { |
| u32 count; |
| const u32 *seq = NULL; |
| |
| seq = &trinity_override_mgpg_sequences[0]; |
| count = sizeof(trinity_override_mgpg_sequences) / (2 * sizeof(u32)); |
| |
| trinity_program_override_mgpg_sequences(rdev, seq, count); |
| } |
| |
| static void trinity_ls_clockgating_enable(struct radeon_device *rdev, |
| bool enable) |
| { |
| u32 count; |
| const u32 *seq = NULL; |
| |
| if (enable) { |
| seq = &trinity_sysls_enable[0]; |
| count = sizeof(trinity_sysls_enable) / (3 * sizeof(u32)); |
| } else { |
| seq = &trinity_sysls_disable[0]; |
| count = sizeof(trinity_sysls_disable) / (3 * sizeof(u32)); |
| } |
| |
| trinity_program_clk_gating_hw_sequence(rdev, seq, count); |
| } |
| |
| static void trinity_gfx_powergating_enable(struct radeon_device *rdev, |
| bool enable) |
| { |
| if (enable) { |
| if (RREG32_SMC(CC_SMU_TST_EFUSE1_MISC) & RB_BACKEND_DISABLE_MASK) |
| WREG32_SMC(SMU_SCRATCH_A, (RREG32_SMC(SMU_SCRATCH_A) | 0x01)); |
| |
| WREG32_P(SCLK_PWRMGT_CNTL, DYN_PWR_DOWN_EN, ~DYN_PWR_DOWN_EN); |
| } else { |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_PWR_DOWN_EN); |
| RREG32(GB_ADDR_CONFIG); |
| } |
| } |
| |
| static void trinity_gfx_dynamic_mgpg_enable(struct radeon_device *rdev, |
| bool enable) |
| { |
| u32 value; |
| |
| if (enable) { |
| value = RREG32_SMC(PM_I_CNTL_1); |
| value &= ~DS_PG_CNTL_MASK; |
| value |= DS_PG_CNTL(1); |
| WREG32_SMC(PM_I_CNTL_1, value); |
| |
| value = RREG32_SMC(SMU_S_PG_CNTL); |
| value &= ~DS_PG_EN_MASK; |
| value |= DS_PG_EN(1); |
| WREG32_SMC(SMU_S_PG_CNTL, value); |
| } else { |
| value = RREG32_SMC(SMU_S_PG_CNTL); |
| value &= ~DS_PG_EN_MASK; |
| WREG32_SMC(SMU_S_PG_CNTL, value); |
| |
| value = RREG32_SMC(PM_I_CNTL_1); |
| value &= ~DS_PG_CNTL_MASK; |
| WREG32_SMC(PM_I_CNTL_1, value); |
| } |
| |
| trinity_gfx_dynamic_mgpg_config(rdev); |
| |
| } |
| |
| static void trinity_enable_clock_power_gating(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (pi->enable_gfx_clock_gating) |
| sumo_gfx_clockgating_initialize(rdev); |
| if (pi->enable_mg_clock_gating) |
| trinity_mg_clockgating_initialize(rdev); |
| if (pi->enable_gfx_power_gating) |
| trinity_gfx_powergating_initialize(rdev); |
| if (pi->enable_mg_clock_gating) { |
| trinity_ls_clockgating_enable(rdev, true); |
| trinity_mg_clockgating_enable(rdev, true); |
| } |
| if (pi->enable_gfx_clock_gating) |
| trinity_gfx_clockgating_enable(rdev, true); |
| if (pi->enable_gfx_dynamic_mgpg) |
| trinity_gfx_dynamic_mgpg_enable(rdev, true); |
| if (pi->enable_gfx_power_gating) |
| trinity_gfx_powergating_enable(rdev, true); |
| } |
| |
| static void trinity_disable_clock_power_gating(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (pi->enable_gfx_power_gating) |
| trinity_gfx_powergating_enable(rdev, false); |
| if (pi->enable_gfx_dynamic_mgpg) |
| trinity_gfx_dynamic_mgpg_enable(rdev, false); |
| if (pi->enable_gfx_clock_gating) |
| trinity_gfx_clockgating_enable(rdev, false); |
| if (pi->enable_mg_clock_gating) { |
| trinity_mg_clockgating_enable(rdev, false); |
| trinity_ls_clockgating_enable(rdev, false); |
| } |
| } |
| |
| static void trinity_set_divider_value(struct radeon_device *rdev, |
| u32 index, u32 sclk) |
| { |
| struct atom_clock_dividers dividers; |
| int ret; |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, |
| sclk, false, ÷rs); |
| if (ret) |
| return; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); |
| value &= ~CLK_DIVIDER_MASK; |
| value |= CLK_DIVIDER(dividers.post_div); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); |
| |
| ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, |
| sclk/2, false, ÷rs); |
| if (ret) |
| return; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_PG_CNTL + ix); |
| value &= ~PD_SCLK_DIVIDER_MASK; |
| value |= PD_SCLK_DIVIDER(dividers.post_div); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_PG_CNTL + ix, value); |
| } |
| |
| static void trinity_set_ds_dividers(struct radeon_device *rdev, |
| u32 index, u32 divider) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); |
| value &= ~DS_DIV_MASK; |
| value |= DS_DIV(divider); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); |
| } |
| |
| static void trinity_set_ss_dividers(struct radeon_device *rdev, |
| u32 index, u32 divider) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); |
| value &= ~DS_SH_DIV_MASK; |
| value |= DS_SH_DIV(divider); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); |
| } |
| |
| static void trinity_set_vid(struct radeon_device *rdev, u32 index, u32 vid) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid); |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); |
| value &= ~VID_MASK; |
| value |= VID(vid_7bit); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); |
| value &= ~LVRT_MASK; |
| value |= LVRT(0); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); |
| } |
| |
| static void trinity_set_allos_gnb_slow(struct radeon_device *rdev, |
| u32 index, u32 gnb_slow) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix); |
| value &= ~GNB_SLOW_MASK; |
| value |= GNB_SLOW(gnb_slow); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix, value); |
| } |
| |
| static void trinity_set_force_nbp_state(struct radeon_device *rdev, |
| u32 index, u32 force_nbp_state) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix); |
| value &= ~FORCE_NBPS1_MASK; |
| value |= FORCE_NBPS1(force_nbp_state); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_3 + ix, value); |
| } |
| |
| static void trinity_set_display_wm(struct radeon_device *rdev, |
| u32 index, u32 wm) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); |
| value &= ~DISPLAY_WM_MASK; |
| value |= DISPLAY_WM(wm); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); |
| } |
| |
| static void trinity_set_vce_wm(struct radeon_device *rdev, |
| u32 index, u32 wm) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix); |
| value &= ~VCE_WM_MASK; |
| value |= VCE_WM(wm); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_1 + ix, value); |
| } |
| |
| static void trinity_set_at(struct radeon_device *rdev, |
| u32 index, u32 at) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_AT + ix); |
| value &= ~AT_MASK; |
| value |= AT(at); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_AT + ix, value); |
| } |
| |
| static void trinity_program_power_level(struct radeon_device *rdev, |
| struct trinity_pl *pl, u32 index) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (index >= SUMO_MAX_HARDWARE_POWERLEVELS) |
| return; |
| |
| trinity_set_divider_value(rdev, index, pl->sclk); |
| trinity_set_vid(rdev, index, pl->vddc_index); |
| trinity_set_ss_dividers(rdev, index, pl->ss_divider_index); |
| trinity_set_ds_dividers(rdev, index, pl->ds_divider_index); |
| trinity_set_allos_gnb_slow(rdev, index, pl->allow_gnb_slow); |
| trinity_set_force_nbp_state(rdev, index, pl->force_nbp_state); |
| trinity_set_display_wm(rdev, index, pl->display_wm); |
| trinity_set_vce_wm(rdev, index, pl->vce_wm); |
| trinity_set_at(rdev, index, pi->at[index]); |
| } |
| |
| static void trinity_power_level_enable_disable(struct radeon_device *rdev, |
| u32 index, bool enable) |
| { |
| u32 value; |
| u32 ix = index * TRINITY_SIZEOF_DPM_STATE_TABLE; |
| |
| value = RREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix); |
| value &= ~STATE_VALID_MASK; |
| if (enable) |
| value |= STATE_VALID(1); |
| WREG32_SMC(SMU_SCLK_DPM_STATE_0_CNTL_0 + ix, value); |
| } |
| |
| static bool trinity_dpm_enabled(struct radeon_device *rdev) |
| { |
| if (RREG32_SMC(SMU_SCLK_DPM_CNTL) & SCLK_DPM_EN(1)) |
| return true; |
| else |
| return false; |
| } |
| |
| static void trinity_start_dpm(struct radeon_device *rdev) |
| { |
| u32 value = RREG32_SMC(SMU_SCLK_DPM_CNTL); |
| |
| value &= ~(SCLK_DPM_EN_MASK | SCLK_DPM_BOOT_STATE_MASK | VOLTAGE_CHG_EN_MASK); |
| value |= SCLK_DPM_EN(1) | SCLK_DPM_BOOT_STATE(0) | VOLTAGE_CHG_EN(1); |
| WREG32_SMC(SMU_SCLK_DPM_CNTL, value); |
| |
| WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN); |
| WREG32_P(CG_CG_VOLTAGE_CNTL, 0, ~EN); |
| |
| trinity_dpm_config(rdev, true); |
| } |
| |
| static void trinity_wait_for_dpm_enabled(struct radeon_device *rdev) |
| { |
| int i; |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (RREG32(SCLK_PWRMGT_CNTL) & DYNAMIC_PM_EN) |
| break; |
| udelay(1); |
| } |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_STATE_MASK) == 0) |
| break; |
| udelay(1); |
| } |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) == 0) |
| break; |
| udelay(1); |
| } |
| } |
| |
| static void trinity_stop_dpm(struct radeon_device *rdev) |
| { |
| u32 sclk_dpm_cntl; |
| |
| WREG32_P(CG_CG_VOLTAGE_CNTL, EN, ~EN); |
| |
| sclk_dpm_cntl = RREG32_SMC(SMU_SCLK_DPM_CNTL); |
| sclk_dpm_cntl &= ~(SCLK_DPM_EN_MASK | VOLTAGE_CHG_EN_MASK); |
| WREG32_SMC(SMU_SCLK_DPM_CNTL, sclk_dpm_cntl); |
| |
| trinity_dpm_config(rdev, false); |
| } |
| |
| static void trinity_start_am(struct radeon_device *rdev) |
| { |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~(RESET_SCLK_CNT | RESET_BUSY_CNT)); |
| } |
| |
| static void trinity_reset_am(struct radeon_device *rdev) |
| { |
| WREG32_P(SCLK_PWRMGT_CNTL, RESET_SCLK_CNT | RESET_BUSY_CNT, |
| ~(RESET_SCLK_CNT | RESET_BUSY_CNT)); |
| } |
| |
| static void trinity_wait_for_level_0(struct radeon_device *rdev) |
| { |
| int i; |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) == 0) |
| break; |
| udelay(1); |
| } |
| } |
| |
| static void trinity_enable_power_level_0(struct radeon_device *rdev) |
| { |
| trinity_power_level_enable_disable(rdev, 0, true); |
| } |
| |
| static void trinity_force_level_0(struct radeon_device *rdev) |
| { |
| trinity_dpm_force_state(rdev, 0); |
| } |
| |
| static void trinity_unforce_levels(struct radeon_device *rdev) |
| { |
| trinity_dpm_no_forced_level(rdev); |
| } |
| |
| static void trinity_program_power_levels_0_to_n(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps) |
| { |
| struct trinity_ps *new_ps = trinity_get_ps(new_rps); |
| struct trinity_ps *old_ps = trinity_get_ps(old_rps); |
| u32 i; |
| u32 n_current_state_levels = (old_ps == NULL) ? 1 : old_ps->num_levels; |
| |
| for (i = 0; i < new_ps->num_levels; i++) { |
| trinity_program_power_level(rdev, &new_ps->levels[i], i); |
| trinity_power_level_enable_disable(rdev, i, true); |
| } |
| |
| for (i = new_ps->num_levels; i < n_current_state_levels; i++) |
| trinity_power_level_enable_disable(rdev, i, false); |
| } |
| |
| static void trinity_program_bootup_state(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 i; |
| |
| trinity_program_power_level(rdev, &pi->boot_pl, 0); |
| trinity_power_level_enable_disable(rdev, 0, true); |
| |
| for (i = 1; i < 8; i++) |
| trinity_power_level_enable_disable(rdev, i, false); |
| } |
| |
| static void trinity_setup_uvd_clock_table(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| u32 uvdstates = (ps->vclk_low_divider | |
| ps->vclk_high_divider << 8 | |
| ps->dclk_low_divider << 16 | |
| ps->dclk_high_divider << 24); |
| |
| WREG32_SMC(SMU_UVD_DPM_STATES, uvdstates); |
| } |
| |
| static void trinity_setup_uvd_dpm_interval(struct radeon_device *rdev, |
| u32 interval) |
| { |
| u32 p, u; |
| u32 tp = RREG32_SMC(PM_TP); |
| u32 val; |
| u32 xclk = radeon_get_xclk(rdev); |
| |
| r600_calculate_u_and_p(interval, xclk, 16, &p, &u); |
| |
| val = (p + tp - 1) / tp; |
| |
| WREG32_SMC(SMU_UVD_DPM_CNTL, val); |
| } |
| |
| static bool trinity_uvd_clocks_zero(struct radeon_ps *rps) |
| { |
| if ((rps->vclk == 0) && (rps->dclk == 0)) |
| return true; |
| else |
| return false; |
| } |
| |
| static bool trinity_uvd_clocks_equal(struct radeon_ps *rps1, |
| struct radeon_ps *rps2) |
| { |
| struct trinity_ps *ps1 = trinity_get_ps(rps1); |
| struct trinity_ps *ps2 = trinity_get_ps(rps2); |
| |
| if ((rps1->vclk == rps2->vclk) && |
| (rps1->dclk == rps2->dclk) && |
| (ps1->vclk_low_divider == ps2->vclk_low_divider) && |
| (ps1->vclk_high_divider == ps2->vclk_high_divider) && |
| (ps1->dclk_low_divider == ps2->dclk_low_divider) && |
| (ps1->dclk_high_divider == ps2->dclk_high_divider)) |
| return true; |
| else |
| return false; |
| } |
| |
| static void trinity_setup_uvd_clocks(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (pi->enable_gfx_power_gating) { |
| trinity_gfx_powergating_enable(rdev, false); |
| } |
| |
| if (pi->uvd_dpm) { |
| if (trinity_uvd_clocks_zero(new_rps) && |
| !trinity_uvd_clocks_zero(old_rps)) { |
| trinity_setup_uvd_dpm_interval(rdev, 0); |
| } else if (!trinity_uvd_clocks_zero(new_rps)) { |
| trinity_setup_uvd_clock_table(rdev, new_rps); |
| |
| if (trinity_uvd_clocks_zero(old_rps)) { |
| u32 tmp = RREG32(CG_MISC_REG); |
| tmp &= 0xfffffffd; |
| WREG32(CG_MISC_REG, tmp); |
| |
| radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk); |
| |
| trinity_setup_uvd_dpm_interval(rdev, 3000); |
| } |
| } |
| trinity_uvd_dpm_config(rdev); |
| } else { |
| if (trinity_uvd_clocks_zero(new_rps) || |
| trinity_uvd_clocks_equal(new_rps, old_rps)) |
| return; |
| |
| radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk); |
| } |
| |
| if (pi->enable_gfx_power_gating) { |
| trinity_gfx_powergating_enable(rdev, true); |
| } |
| } |
| |
| static void trinity_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps) |
| { |
| struct trinity_ps *new_ps = trinity_get_ps(new_rps); |
| struct trinity_ps *current_ps = trinity_get_ps(new_rps); |
| |
| if (new_ps->levels[new_ps->num_levels - 1].sclk >= |
| current_ps->levels[current_ps->num_levels - 1].sclk) |
| return; |
| |
| trinity_setup_uvd_clocks(rdev, new_rps, old_rps); |
| } |
| |
| static void trinity_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps) |
| { |
| struct trinity_ps *new_ps = trinity_get_ps(new_rps); |
| struct trinity_ps *current_ps = trinity_get_ps(old_rps); |
| |
| if (new_ps->levels[new_ps->num_levels - 1].sclk < |
| current_ps->levels[current_ps->num_levels - 1].sclk) |
| return; |
| |
| trinity_setup_uvd_clocks(rdev, new_rps, old_rps); |
| } |
| |
| static void trinity_set_vce_clock(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps) |
| { |
| if ((old_rps->evclk != new_rps->evclk) || |
| (old_rps->ecclk != new_rps->ecclk)) { |
| /* turn the clocks on when encoding, off otherwise */ |
| if (new_rps->evclk || new_rps->ecclk) |
| vce_v1_0_enable_mgcg(rdev, false); |
| else |
| vce_v1_0_enable_mgcg(rdev, true); |
| radeon_set_vce_clocks(rdev, new_rps->evclk, new_rps->ecclk); |
| } |
| } |
| |
| static void trinity_program_ttt(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 value = RREG32_SMC(SMU_SCLK_DPM_TTT); |
| |
| value &= ~(HT_MASK | LT_MASK); |
| value |= HT((pi->thermal_auto_throttling + 49) * 8); |
| value |= LT((pi->thermal_auto_throttling + 49 - pi->sys_info.htc_hyst_lmt) * 8); |
| WREG32_SMC(SMU_SCLK_DPM_TTT, value); |
| } |
| |
| static void trinity_enable_att(struct radeon_device *rdev) |
| { |
| u32 value = RREG32_SMC(SMU_SCLK_DPM_TT_CNTL); |
| |
| value &= ~SCLK_TT_EN_MASK; |
| value |= SCLK_TT_EN(1); |
| WREG32_SMC(SMU_SCLK_DPM_TT_CNTL, value); |
| } |
| |
| static void trinity_program_sclk_dpm(struct radeon_device *rdev) |
| { |
| u32 p, u; |
| u32 tp = RREG32_SMC(PM_TP); |
| u32 ni; |
| u32 xclk = radeon_get_xclk(rdev); |
| u32 value; |
| |
| r600_calculate_u_and_p(400, xclk, 16, &p, &u); |
| |
| ni = (p + tp - 1) / tp; |
| |
| value = RREG32_SMC(PM_I_CNTL_1); |
| value &= ~SCLK_DPM_MASK; |
| value |= SCLK_DPM(ni); |
| WREG32_SMC(PM_I_CNTL_1, value); |
| } |
| |
| static int trinity_set_thermal_temperature_range(struct radeon_device *rdev, |
| int min_temp, int max_temp) |
| { |
| int low_temp = 0 * 1000; |
| int high_temp = 255 * 1000; |
| |
| if (low_temp < min_temp) |
| low_temp = min_temp; |
| if (high_temp > max_temp) |
| high_temp = max_temp; |
| if (high_temp < low_temp) { |
| DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); |
| return -EINVAL; |
| } |
| |
| WREG32_P(CG_THERMAL_INT_CTRL, DIG_THERM_INTH(49 + (high_temp / 1000)), ~DIG_THERM_INTH_MASK); |
| WREG32_P(CG_THERMAL_INT_CTRL, DIG_THERM_INTL(49 + (low_temp / 1000)), ~DIG_THERM_INTL_MASK); |
| |
| rdev->pm.dpm.thermal.min_temp = low_temp; |
| rdev->pm.dpm.thermal.max_temp = high_temp; |
| |
| return 0; |
| } |
| |
| static void trinity_update_current_ps(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| struct trinity_ps *new_ps = trinity_get_ps(rps); |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| pi->current_rps = *rps; |
| pi->current_ps = *new_ps; |
| pi->current_rps.ps_priv = &pi->current_ps; |
| } |
| |
| static void trinity_update_requested_ps(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| struct trinity_ps *new_ps = trinity_get_ps(rps); |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| pi->requested_rps = *rps; |
| pi->requested_ps = *new_ps; |
| pi->requested_rps.ps_priv = &pi->requested_ps; |
| } |
| |
| void trinity_dpm_enable_bapm(struct radeon_device *rdev, bool enable) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (pi->enable_bapm) { |
| trinity_acquire_mutex(rdev); |
| trinity_dpm_bapm_enable(rdev, enable); |
| trinity_release_mutex(rdev); |
| } |
| } |
| |
| int trinity_dpm_enable(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| trinity_acquire_mutex(rdev); |
| |
| if (trinity_dpm_enabled(rdev)) { |
| trinity_release_mutex(rdev); |
| return -EINVAL; |
| } |
| |
| trinity_program_bootup_state(rdev); |
| sumo_program_vc(rdev, 0x00C00033); |
| trinity_start_am(rdev); |
| if (pi->enable_auto_thermal_throttling) { |
| trinity_program_ttt(rdev); |
| trinity_enable_att(rdev); |
| } |
| trinity_program_sclk_dpm(rdev); |
| trinity_start_dpm(rdev); |
| trinity_wait_for_dpm_enabled(rdev); |
| trinity_dpm_bapm_enable(rdev, false); |
| trinity_release_mutex(rdev); |
| |
| trinity_update_current_ps(rdev, rdev->pm.dpm.boot_ps); |
| |
| return 0; |
| } |
| |
| int trinity_dpm_late_enable(struct radeon_device *rdev) |
| { |
| int ret; |
| |
| trinity_acquire_mutex(rdev); |
| trinity_enable_clock_power_gating(rdev); |
| |
| if (rdev->irq.installed && |
| r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { |
| ret = trinity_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); |
| if (ret) { |
| trinity_release_mutex(rdev); |
| return ret; |
| } |
| rdev->irq.dpm_thermal = true; |
| radeon_irq_set(rdev); |
| } |
| trinity_release_mutex(rdev); |
| |
| return 0; |
| } |
| |
| void trinity_dpm_disable(struct radeon_device *rdev) |
| { |
| trinity_acquire_mutex(rdev); |
| if (!trinity_dpm_enabled(rdev)) { |
| trinity_release_mutex(rdev); |
| return; |
| } |
| trinity_dpm_bapm_enable(rdev, false); |
| trinity_disable_clock_power_gating(rdev); |
| sumo_clear_vc(rdev); |
| trinity_wait_for_level_0(rdev); |
| trinity_stop_dpm(rdev); |
| trinity_reset_am(rdev); |
| trinity_release_mutex(rdev); |
| |
| if (rdev->irq.installed && |
| r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { |
| rdev->irq.dpm_thermal = false; |
| radeon_irq_set(rdev); |
| } |
| |
| trinity_update_current_ps(rdev, rdev->pm.dpm.boot_ps); |
| } |
| |
| static void trinity_get_min_sclk_divider(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| pi->min_sclk_did = |
| (RREG32_SMC(CC_SMU_MISC_FUSES) & MinSClkDid_MASK) >> MinSClkDid_SHIFT; |
| } |
| |
| static void trinity_setup_nbp_sim(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct trinity_ps *new_ps = trinity_get_ps(rps); |
| u32 nbpsconfig; |
| |
| if (pi->sys_info.nb_dpm_enable) { |
| nbpsconfig = RREG32_SMC(NB_PSTATE_CONFIG); |
| nbpsconfig &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK | DpmXNbPsLo_MASK | DpmXNbPsHi_MASK); |
| nbpsconfig |= (Dpm0PgNbPsLo(new_ps->Dpm0PgNbPsLo) | |
| Dpm0PgNbPsHi(new_ps->Dpm0PgNbPsHi) | |
| DpmXNbPsLo(new_ps->DpmXNbPsLo) | |
| DpmXNbPsHi(new_ps->DpmXNbPsHi)); |
| WREG32_SMC(NB_PSTATE_CONFIG, nbpsconfig); |
| } |
| } |
| |
| int trinity_dpm_force_performance_level(struct radeon_device *rdev, |
| enum radeon_dpm_forced_level level) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_ps *rps = &pi->current_rps; |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| int i, ret; |
| |
| if (ps->num_levels <= 1) |
| return 0; |
| |
| if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { |
| /* not supported by the hw */ |
| return -EINVAL; |
| } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { |
| ret = trinity_dpm_n_levels_disabled(rdev, ps->num_levels - 1); |
| if (ret) |
| return ret; |
| } else { |
| for (i = 0; i < ps->num_levels; i++) { |
| ret = trinity_dpm_n_levels_disabled(rdev, 0); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| rdev->pm.dpm.forced_level = level; |
| |
| return 0; |
| } |
| |
| int trinity_dpm_pre_set_power_state(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps; |
| struct radeon_ps *new_ps = &requested_ps; |
| |
| trinity_update_requested_ps(rdev, new_ps); |
| |
| trinity_apply_state_adjust_rules(rdev, |
| &pi->requested_rps, |
| &pi->current_rps); |
| |
| return 0; |
| } |
| |
| int trinity_dpm_set_power_state(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_ps *new_ps = &pi->requested_rps; |
| struct radeon_ps *old_ps = &pi->current_rps; |
| |
| trinity_acquire_mutex(rdev); |
| if (pi->enable_dpm) { |
| if (pi->enable_bapm) |
| trinity_dpm_bapm_enable(rdev, rdev->pm.dpm.ac_power); |
| trinity_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps); |
| trinity_enable_power_level_0(rdev); |
| trinity_force_level_0(rdev); |
| trinity_wait_for_level_0(rdev); |
| trinity_setup_nbp_sim(rdev, new_ps); |
| trinity_program_power_levels_0_to_n(rdev, new_ps, old_ps); |
| trinity_force_level_0(rdev); |
| trinity_unforce_levels(rdev); |
| trinity_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps); |
| trinity_set_vce_clock(rdev, new_ps, old_ps); |
| } |
| trinity_release_mutex(rdev); |
| |
| return 0; |
| } |
| |
| void trinity_dpm_post_set_power_state(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_ps *new_ps = &pi->requested_rps; |
| |
| trinity_update_current_ps(rdev, new_ps); |
| } |
| |
| void trinity_dpm_setup_asic(struct radeon_device *rdev) |
| { |
| trinity_acquire_mutex(rdev); |
| sumo_program_sstp(rdev); |
| sumo_take_smu_control(rdev, true); |
| trinity_get_min_sclk_divider(rdev); |
| trinity_release_mutex(rdev); |
| } |
| |
| #if 0 |
| void trinity_dpm_reset_asic(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| trinity_acquire_mutex(rdev); |
| if (pi->enable_dpm) { |
| trinity_enable_power_level_0(rdev); |
| trinity_force_level_0(rdev); |
| trinity_wait_for_level_0(rdev); |
| trinity_program_bootup_state(rdev); |
| trinity_force_level_0(rdev); |
| trinity_unforce_levels(rdev); |
| } |
| trinity_release_mutex(rdev); |
| } |
| #endif |
| |
| static u16 trinity_convert_voltage_index_to_value(struct radeon_device *rdev, |
| u32 vid_2bit) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid_2bit); |
| u32 svi_mode = (RREG32_SMC(PM_CONFIG) & SVI_Mode) ? 1 : 0; |
| u32 step = (svi_mode == 0) ? 1250 : 625; |
| u32 delta = vid_7bit * step + 50; |
| |
| if (delta > 155000) |
| return 0; |
| |
| return (155000 - delta) / 100; |
| } |
| |
| static void trinity_patch_boot_state(struct radeon_device *rdev, |
| struct trinity_ps *ps) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| ps->num_levels = 1; |
| ps->nbps_flags = 0; |
| ps->bapm_flags = 0; |
| ps->levels[0] = pi->boot_pl; |
| } |
| |
| static u8 trinity_calculate_vce_wm(struct radeon_device *rdev, u32 sclk) |
| { |
| if (sclk < 20000) |
| return 1; |
| return 0; |
| } |
| |
| static void trinity_construct_boot_state(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| pi->boot_pl.sclk = pi->sys_info.bootup_sclk; |
| pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index; |
| pi->boot_pl.ds_divider_index = 0; |
| pi->boot_pl.ss_divider_index = 0; |
| pi->boot_pl.allow_gnb_slow = 1; |
| pi->boot_pl.force_nbp_state = 0; |
| pi->boot_pl.display_wm = 0; |
| pi->boot_pl.vce_wm = 0; |
| pi->current_ps.num_levels = 1; |
| pi->current_ps.levels[0] = pi->boot_pl; |
| } |
| |
| static u8 trinity_get_sleep_divider_id_from_clock(struct radeon_device *rdev, |
| u32 sclk, u32 min_sclk_in_sr) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 i; |
| u32 temp; |
| u32 min = (min_sclk_in_sr > TRINITY_MINIMUM_ENGINE_CLOCK) ? |
| min_sclk_in_sr : TRINITY_MINIMUM_ENGINE_CLOCK; |
| |
| if (sclk < min) |
| return 0; |
| |
| if (!pi->enable_sclk_ds) |
| return 0; |
| |
| for (i = TRINITY_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { |
| temp = sclk / sumo_get_sleep_divider_from_id(i); |
| if (temp >= min || i == 0) |
| break; |
| } |
| |
| return (u8)i; |
| } |
| |
| static u32 trinity_get_valid_engine_clock(struct radeon_device *rdev, |
| u32 lower_limit) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 i; |
| |
| for (i = 0; i < pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries; i++) { |
| if (pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency >= lower_limit) |
| return pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency; |
| } |
| |
| if (i == pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries) |
| DRM_ERROR("engine clock out of range!"); |
| |
| return 0; |
| } |
| |
| static void trinity_patch_thermal_state(struct radeon_device *rdev, |
| struct trinity_ps *ps, |
| struct trinity_ps *current_ps) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */ |
| u32 current_vddc; |
| u32 current_sclk; |
| u32 current_index = 0; |
| |
| if (current_ps) { |
| current_vddc = current_ps->levels[current_index].vddc_index; |
| current_sclk = current_ps->levels[current_index].sclk; |
| } else { |
| current_vddc = pi->boot_pl.vddc_index; |
| current_sclk = pi->boot_pl.sclk; |
| } |
| |
| ps->levels[0].vddc_index = current_vddc; |
| |
| if (ps->levels[0].sclk > current_sclk) |
| ps->levels[0].sclk = current_sclk; |
| |
| ps->levels[0].ds_divider_index = |
| trinity_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, sclk_in_sr); |
| ps->levels[0].ss_divider_index = ps->levels[0].ds_divider_index; |
| ps->levels[0].allow_gnb_slow = 1; |
| ps->levels[0].force_nbp_state = 0; |
| ps->levels[0].display_wm = 0; |
| ps->levels[0].vce_wm = |
| trinity_calculate_vce_wm(rdev, ps->levels[0].sclk); |
| } |
| |
| static u8 trinity_calculate_display_wm(struct radeon_device *rdev, |
| struct trinity_ps *ps, u32 index) |
| { |
| if (ps == NULL || ps->num_levels <= 1) |
| return 0; |
| else if (ps->num_levels == 2) { |
| if (index == 0) |
| return 0; |
| else |
| return 1; |
| } else { |
| if (index == 0) |
| return 0; |
| else if (ps->levels[index].sclk < 30000) |
| return 0; |
| else |
| return 1; |
| } |
| } |
| |
| static u32 trinity_get_uvd_clock_index(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 i = 0; |
| |
| for (i = 0; i < 4; i++) { |
| if ((rps->vclk == pi->sys_info.uvd_clock_table_entries[i].vclk) && |
| (rps->dclk == pi->sys_info.uvd_clock_table_entries[i].dclk)) |
| break; |
| } |
| |
| if (i >= 4) { |
| DRM_ERROR("UVD clock index not found!\n"); |
| i = 3; |
| } |
| return i; |
| } |
| |
| static void trinity_adjust_uvd_state(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 high_index = 0; |
| u32 low_index = 0; |
| |
| if (pi->uvd_dpm && r600_is_uvd_state(rps->class, rps->class2)) { |
| high_index = trinity_get_uvd_clock_index(rdev, rps); |
| |
| switch(high_index) { |
| case 3: |
| case 2: |
| low_index = 1; |
| break; |
| case 1: |
| case 0: |
| default: |
| low_index = 0; |
| break; |
| } |
| |
| ps->vclk_low_divider = |
| pi->sys_info.uvd_clock_table_entries[high_index].vclk_did; |
| ps->dclk_low_divider = |
| pi->sys_info.uvd_clock_table_entries[high_index].dclk_did; |
| ps->vclk_high_divider = |
| pi->sys_info.uvd_clock_table_entries[low_index].vclk_did; |
| ps->dclk_high_divider = |
| pi->sys_info.uvd_clock_table_entries[low_index].dclk_did; |
| } |
| } |
| |
| static int trinity_get_vce_clock_voltage(struct radeon_device *rdev, |
| u32 evclk, u32 ecclk, u16 *voltage) |
| { |
| u32 i; |
| int ret = -EINVAL; |
| struct radeon_vce_clock_voltage_dependency_table *table = |
| &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; |
| |
| if (((evclk == 0) && (ecclk == 0)) || |
| (table && (table->count == 0))) { |
| *voltage = 0; |
| return 0; |
| } |
| |
| for (i = 0; i < table->count; i++) { |
| if ((evclk <= table->entries[i].evclk) && |
| (ecclk <= table->entries[i].ecclk)) { |
| *voltage = table->entries[i].v; |
| ret = 0; |
| break; |
| } |
| } |
| |
| /* if no match return the highest voltage */ |
| if (ret) |
| *voltage = table->entries[table->count - 1].v; |
| |
| return ret; |
| } |
| |
| static void trinity_apply_state_adjust_rules(struct radeon_device *rdev, |
| struct radeon_ps *new_rps, |
| struct radeon_ps *old_rps) |
| { |
| struct trinity_ps *ps = trinity_get_ps(new_rps); |
| struct trinity_ps *current_ps = trinity_get_ps(old_rps); |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 min_voltage = 0; /* ??? */ |
| u32 min_sclk = pi->sys_info.min_sclk; /* XXX check against disp reqs */ |
| u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */ |
| u32 i; |
| u16 min_vce_voltage; |
| bool force_high; |
| u32 num_active_displays = rdev->pm.dpm.new_active_crtc_count; |
| |
| if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) |
| return trinity_patch_thermal_state(rdev, ps, current_ps); |
| |
| trinity_adjust_uvd_state(rdev, new_rps); |
| |
| if (new_rps->vce_active) { |
| new_rps->evclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].evclk; |
| new_rps->ecclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].ecclk; |
| } else { |
| new_rps->evclk = 0; |
| new_rps->ecclk = 0; |
| } |
| |
| for (i = 0; i < ps->num_levels; i++) { |
| if (ps->levels[i].vddc_index < min_voltage) |
| ps->levels[i].vddc_index = min_voltage; |
| |
| if (ps->levels[i].sclk < min_sclk) |
| ps->levels[i].sclk = |
| trinity_get_valid_engine_clock(rdev, min_sclk); |
| |
| /* patch in vce limits */ |
| if (new_rps->vce_active) { |
| /* sclk */ |
| if (ps->levels[i].sclk < rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk) |
| ps->levels[i].sclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk; |
| /* vddc */ |
| trinity_get_vce_clock_voltage(rdev, new_rps->evclk, new_rps->ecclk, &min_vce_voltage); |
| if (ps->levels[i].vddc_index < min_vce_voltage) |
| ps->levels[i].vddc_index = min_vce_voltage; |
| } |
| |
| ps->levels[i].ds_divider_index = |
| sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, sclk_in_sr); |
| |
| ps->levels[i].ss_divider_index = ps->levels[i].ds_divider_index; |
| |
| ps->levels[i].allow_gnb_slow = 1; |
| ps->levels[i].force_nbp_state = 0; |
| ps->levels[i].display_wm = |
| trinity_calculate_display_wm(rdev, ps, i); |
| ps->levels[i].vce_wm = |
| trinity_calculate_vce_wm(rdev, ps->levels[0].sclk); |
| } |
| |
| if ((new_rps->class & (ATOM_PPLIB_CLASSIFICATION_HDSTATE | ATOM_PPLIB_CLASSIFICATION_SDSTATE)) || |
| ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)) |
| ps->bapm_flags |= TRINITY_POWERSTATE_FLAGS_BAPM_DISABLE; |
| |
| if (pi->sys_info.nb_dpm_enable) { |
| ps->Dpm0PgNbPsLo = 0x1; |
| ps->Dpm0PgNbPsHi = 0x0; |
| ps->DpmXNbPsLo = 0x2; |
| ps->DpmXNbPsHi = 0x1; |
| |
| if ((new_rps->class & (ATOM_PPLIB_CLASSIFICATION_HDSTATE | ATOM_PPLIB_CLASSIFICATION_SDSTATE)) || |
| ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)) { |
| force_high = ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) || |
| ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) && |
| (pi->sys_info.uma_channel_number == 1))); |
| force_high = (num_active_displays >= 3) || force_high; |
| ps->Dpm0PgNbPsLo = force_high ? 0x2 : 0x3; |
| ps->Dpm0PgNbPsHi = 0x1; |
| ps->DpmXNbPsLo = force_high ? 0x2 : 0x3; |
| ps->DpmXNbPsHi = 0x2; |
| ps->levels[ps->num_levels - 1].allow_gnb_slow = 0; |
| } |
| } |
| } |
| |
| static void trinity_cleanup_asic(struct radeon_device *rdev) |
| { |
| sumo_take_smu_control(rdev, false); |
| } |
| |
| #if 0 |
| static void trinity_pre_display_configuration_change(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (pi->voltage_drop_in_dce) |
| trinity_dce_enable_voltage_adjustment(rdev, false); |
| } |
| #endif |
| |
| static void trinity_add_dccac_value(struct radeon_device *rdev) |
| { |
| u32 gpu_cac_avrg_cntl_window_size; |
| u32 num_active_displays = rdev->pm.dpm.new_active_crtc_count; |
| u64 disp_clk = rdev->clock.default_dispclk / 100; |
| u32 dc_cac_value; |
| |
| gpu_cac_avrg_cntl_window_size = |
| (RREG32_SMC(GPU_CAC_AVRG_CNTL) & WINDOW_SIZE_MASK) >> WINDOW_SIZE_SHIFT; |
| |
| dc_cac_value = (u32)((14213 * disp_clk * disp_clk * (u64)num_active_displays) >> |
| (32 - gpu_cac_avrg_cntl_window_size)); |
| |
| WREG32_SMC(DC_CAC_VALUE, dc_cac_value); |
| } |
| |
| void trinity_dpm_display_configuration_changed(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| if (pi->voltage_drop_in_dce) |
| trinity_dce_enable_voltage_adjustment(rdev, true); |
| trinity_add_dccac_value(rdev); |
| } |
| |
| union power_info { |
| struct _ATOM_POWERPLAY_INFO info; |
| struct _ATOM_POWERPLAY_INFO_V2 info_2; |
| struct _ATOM_POWERPLAY_INFO_V3 info_3; |
| struct _ATOM_PPLIB_POWERPLAYTABLE pplib; |
| struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; |
| struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; |
| }; |
| |
| union pplib_clock_info { |
| struct _ATOM_PPLIB_R600_CLOCK_INFO r600; |
| struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; |
| struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; |
| struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; |
| }; |
| |
| union pplib_power_state { |
| struct _ATOM_PPLIB_STATE v1; |
| struct _ATOM_PPLIB_STATE_V2 v2; |
| }; |
| |
| static void trinity_parse_pplib_non_clock_info(struct radeon_device *rdev, |
| struct radeon_ps *rps, |
| struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, |
| u8 table_rev) |
| { |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| |
| rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); |
| rps->class = le16_to_cpu(non_clock_info->usClassification); |
| rps->class2 = le16_to_cpu(non_clock_info->usClassification2); |
| |
| if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { |
| rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); |
| rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); |
| } else { |
| rps->vclk = 0; |
| rps->dclk = 0; |
| } |
| |
| if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { |
| rdev->pm.dpm.boot_ps = rps; |
| trinity_patch_boot_state(rdev, ps); |
| } |
| if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) |
| rdev->pm.dpm.uvd_ps = rps; |
| } |
| |
| static void trinity_parse_pplib_clock_info(struct radeon_device *rdev, |
| struct radeon_ps *rps, int index, |
| union pplib_clock_info *clock_info) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| struct trinity_pl *pl = &ps->levels[index]; |
| u32 sclk; |
| |
| sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); |
| sclk |= clock_info->sumo.ucEngineClockHigh << 16; |
| pl->sclk = sclk; |
| pl->vddc_index = clock_info->sumo.vddcIndex; |
| |
| ps->num_levels = index + 1; |
| |
| if (pi->enable_sclk_ds) { |
| pl->ds_divider_index = 5; |
| pl->ss_divider_index = 5; |
| } |
| } |
| |
| static int trinity_parse_power_table(struct radeon_device *rdev) |
| { |
| struct radeon_mode_info *mode_info = &rdev->mode_info; |
| struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; |
| union pplib_power_state *power_state; |
| int i, j, k, non_clock_array_index, clock_array_index; |
| union pplib_clock_info *clock_info; |
| struct _StateArray *state_array; |
| struct _ClockInfoArray *clock_info_array; |
| struct _NonClockInfoArray *non_clock_info_array; |
| union power_info *power_info; |
| int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); |
| u16 data_offset; |
| u8 frev, crev; |
| u8 *power_state_offset; |
| struct sumo_ps *ps; |
| |
| if (!atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) |
| return -EINVAL; |
| power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); |
| |
| state_array = (struct _StateArray *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib.usStateArrayOffset)); |
| clock_info_array = (struct _ClockInfoArray *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); |
| non_clock_info_array = (struct _NonClockInfoArray *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); |
| |
| rdev->pm.dpm.ps = kcalloc(state_array->ucNumEntries, |
| sizeof(struct radeon_ps), |
| GFP_KERNEL); |
| if (!rdev->pm.dpm.ps) |
| return -ENOMEM; |
| power_state_offset = (u8 *)state_array->states; |
| for (i = 0; i < state_array->ucNumEntries; i++) { |
| u8 *idx; |
| power_state = (union pplib_power_state *)power_state_offset; |
| non_clock_array_index = power_state->v2.nonClockInfoIndex; |
| non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) |
| &non_clock_info_array->nonClockInfo[non_clock_array_index]; |
| if (!rdev->pm.power_state[i].clock_info) |
| return -EINVAL; |
| ps = kzalloc(sizeof(struct sumo_ps), GFP_KERNEL); |
| if (ps == NULL) { |
| kfree(rdev->pm.dpm.ps); |
| return -ENOMEM; |
| } |
| rdev->pm.dpm.ps[i].ps_priv = ps; |
| k = 0; |
| idx = (u8 *)&power_state->v2.clockInfoIndex[0]; |
| for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { |
| clock_array_index = idx[j]; |
| if (clock_array_index >= clock_info_array->ucNumEntries) |
| continue; |
| if (k >= SUMO_MAX_HARDWARE_POWERLEVELS) |
| break; |
| clock_info = (union pplib_clock_info *) |
| ((u8 *)&clock_info_array->clockInfo[0] + |
| (clock_array_index * clock_info_array->ucEntrySize)); |
| trinity_parse_pplib_clock_info(rdev, |
| &rdev->pm.dpm.ps[i], k, |
| clock_info); |
| k++; |
| } |
| trinity_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], |
| non_clock_info, |
| non_clock_info_array->ucEntrySize); |
| power_state_offset += 2 + power_state->v2.ucNumDPMLevels; |
| } |
| rdev->pm.dpm.num_ps = state_array->ucNumEntries; |
| |
| /* fill in the vce power states */ |
| for (i = 0; i < RADEON_MAX_VCE_LEVELS; i++) { |
| u32 sclk; |
| clock_array_index = rdev->pm.dpm.vce_states[i].clk_idx; |
| clock_info = (union pplib_clock_info *) |
| &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize]; |
| sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); |
| sclk |= clock_info->sumo.ucEngineClockHigh << 16; |
| rdev->pm.dpm.vce_states[i].sclk = sclk; |
| rdev->pm.dpm.vce_states[i].mclk = 0; |
| } |
| |
| return 0; |
| } |
| |
| union igp_info { |
| struct _ATOM_INTEGRATED_SYSTEM_INFO info; |
| struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; |
| struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5; |
| struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; |
| struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7; |
| }; |
| |
| static u32 trinity_convert_did_to_freq(struct radeon_device *rdev, u8 did) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| u32 divider; |
| |
| if (did >= 8 && did <= 0x3f) |
| divider = did * 25; |
| else if (did > 0x3f && did <= 0x5f) |
| divider = (did - 64) * 50 + 1600; |
| else if (did > 0x5f && did <= 0x7e) |
| divider = (did - 96) * 100 + 3200; |
| else if (did == 0x7f) |
| divider = 128 * 100; |
| else |
| return 10000; |
| |
| return ((pi->sys_info.dentist_vco_freq * 100) + (divider - 1)) / divider; |
| } |
| |
| static int trinity_parse_sys_info_table(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_mode_info *mode_info = &rdev->mode_info; |
| int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); |
| union igp_info *igp_info; |
| u8 frev, crev; |
| u16 data_offset; |
| int i; |
| |
| if (atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| igp_info = (union igp_info *)(mode_info->atom_context->bios + |
| data_offset); |
| |
| if (crev != 7) { |
| DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); |
| return -EINVAL; |
| } |
| pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_7.ulBootUpEngineClock); |
| pi->sys_info.min_sclk = le32_to_cpu(igp_info->info_7.ulMinEngineClock); |
| pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_7.ulBootUpUMAClock); |
| pi->sys_info.dentist_vco_freq = le32_to_cpu(igp_info->info_7.ulDentistVCOFreq); |
| pi->sys_info.bootup_nb_voltage_index = |
| le16_to_cpu(igp_info->info_7.usBootUpNBVoltage); |
| if (igp_info->info_7.ucHtcTmpLmt == 0) |
| pi->sys_info.htc_tmp_lmt = 203; |
| else |
| pi->sys_info.htc_tmp_lmt = igp_info->info_7.ucHtcTmpLmt; |
| if (igp_info->info_7.ucHtcHystLmt == 0) |
| pi->sys_info.htc_hyst_lmt = 5; |
| else |
| pi->sys_info.htc_hyst_lmt = igp_info->info_7.ucHtcHystLmt; |
| if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) { |
| DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n"); |
| } |
| |
| if (pi->enable_nbps_policy) |
| pi->sys_info.nb_dpm_enable = igp_info->info_7.ucNBDPMEnable; |
| else |
| pi->sys_info.nb_dpm_enable = 0; |
| |
| for (i = 0; i < TRINITY_NUM_NBPSTATES; i++) { |
| pi->sys_info.nbp_mclk[i] = le32_to_cpu(igp_info->info_7.ulNbpStateMemclkFreq[i]); |
| pi->sys_info.nbp_nclk[i] = le32_to_cpu(igp_info->info_7.ulNbpStateNClkFreq[i]); |
| } |
| |
| pi->sys_info.nbp_voltage_index[0] = le16_to_cpu(igp_info->info_7.usNBP0Voltage); |
| pi->sys_info.nbp_voltage_index[1] = le16_to_cpu(igp_info->info_7.usNBP1Voltage); |
| pi->sys_info.nbp_voltage_index[2] = le16_to_cpu(igp_info->info_7.usNBP2Voltage); |
| pi->sys_info.nbp_voltage_index[3] = le16_to_cpu(igp_info->info_7.usNBP3Voltage); |
| |
| if (!pi->sys_info.nb_dpm_enable) { |
| for (i = 1; i < TRINITY_NUM_NBPSTATES; i++) { |
| pi->sys_info.nbp_mclk[i] = pi->sys_info.nbp_mclk[0]; |
| pi->sys_info.nbp_nclk[i] = pi->sys_info.nbp_nclk[0]; |
| pi->sys_info.nbp_voltage_index[i] = pi->sys_info.nbp_voltage_index[0]; |
| } |
| } |
| |
| pi->sys_info.uma_channel_number = igp_info->info_7.ucUMAChannelNumber; |
| |
| sumo_construct_sclk_voltage_mapping_table(rdev, |
| &pi->sys_info.sclk_voltage_mapping_table, |
| igp_info->info_7.sAvail_SCLK); |
| sumo_construct_vid_mapping_table(rdev, &pi->sys_info.vid_mapping_table, |
| igp_info->info_7.sAvail_SCLK); |
| |
| pi->sys_info.uvd_clock_table_entries[0].vclk_did = |
| igp_info->info_7.ucDPMState0VclkFid; |
| pi->sys_info.uvd_clock_table_entries[1].vclk_did = |
| igp_info->info_7.ucDPMState1VclkFid; |
| pi->sys_info.uvd_clock_table_entries[2].vclk_did = |
| igp_info->info_7.ucDPMState2VclkFid; |
| pi->sys_info.uvd_clock_table_entries[3].vclk_did = |
| igp_info->info_7.ucDPMState3VclkFid; |
| |
| pi->sys_info.uvd_clock_table_entries[0].dclk_did = |
| igp_info->info_7.ucDPMState0DclkFid; |
| pi->sys_info.uvd_clock_table_entries[1].dclk_did = |
| igp_info->info_7.ucDPMState1DclkFid; |
| pi->sys_info.uvd_clock_table_entries[2].dclk_did = |
| igp_info->info_7.ucDPMState2DclkFid; |
| pi->sys_info.uvd_clock_table_entries[3].dclk_did = |
| igp_info->info_7.ucDPMState3DclkFid; |
| |
| for (i = 0; i < 4; i++) { |
| pi->sys_info.uvd_clock_table_entries[i].vclk = |
| trinity_convert_did_to_freq(rdev, |
| pi->sys_info.uvd_clock_table_entries[i].vclk_did); |
| pi->sys_info.uvd_clock_table_entries[i].dclk = |
| trinity_convert_did_to_freq(rdev, |
| pi->sys_info.uvd_clock_table_entries[i].dclk_did); |
| } |
| |
| |
| |
| } |
| return 0; |
| } |
| |
| int trinity_dpm_init(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi; |
| int ret, i; |
| |
| pi = kzalloc(sizeof(struct trinity_power_info), GFP_KERNEL); |
| if (pi == NULL) |
| return -ENOMEM; |
| rdev->pm.dpm.priv = pi; |
| |
| for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) |
| pi->at[i] = TRINITY_AT_DFLT; |
| |
| if (radeon_bapm == -1) { |
| /* There are stability issues reported on with |
| * bapm enabled when switching between AC and battery |
| * power. At the same time, some MSI boards hang |
| * if it's not enabled and dpm is enabled. Just enable |
| * it for MSI boards right now. |
| */ |
| if (rdev->pdev->subsystem_vendor == 0x1462) |
| pi->enable_bapm = true; |
| else |
| pi->enable_bapm = false; |
| } else if (radeon_bapm == 0) { |
| pi->enable_bapm = false; |
| } else { |
| pi->enable_bapm = true; |
| } |
| pi->enable_nbps_policy = true; |
| pi->enable_sclk_ds = true; |
| pi->enable_gfx_power_gating = true; |
| pi->enable_gfx_clock_gating = true; |
| pi->enable_mg_clock_gating = false; |
| pi->enable_gfx_dynamic_mgpg = false; |
| pi->override_dynamic_mgpg = false; |
| pi->enable_auto_thermal_throttling = true; |
| pi->voltage_drop_in_dce = false; /* need to restructure dpm/modeset interaction */ |
| pi->uvd_dpm = true; /* ??? */ |
| |
| ret = trinity_parse_sys_info_table(rdev); |
| if (ret) |
| return ret; |
| |
| trinity_construct_boot_state(rdev); |
| |
| ret = r600_get_platform_caps(rdev); |
| if (ret) |
| return ret; |
| |
| ret = r600_parse_extended_power_table(rdev); |
| if (ret) |
| return ret; |
| |
| ret = trinity_parse_power_table(rdev); |
| if (ret) |
| return ret; |
| |
| pi->thermal_auto_throttling = pi->sys_info.htc_tmp_lmt; |
| pi->enable_dpm = true; |
| |
| return 0; |
| } |
| |
| void trinity_dpm_print_power_state(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| int i; |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| |
| r600_dpm_print_class_info(rps->class, rps->class2); |
| r600_dpm_print_cap_info(rps->caps); |
| printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); |
| for (i = 0; i < ps->num_levels; i++) { |
| struct trinity_pl *pl = &ps->levels[i]; |
| printk("\t\tpower level %d sclk: %u vddc: %u\n", |
| i, pl->sclk, |
| trinity_convert_voltage_index_to_value(rdev, pl->vddc_index)); |
| } |
| r600_dpm_print_ps_status(rdev, rps); |
| } |
| |
| void trinity_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, |
| struct seq_file *m) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_ps *rps = &pi->current_rps; |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| struct trinity_pl *pl; |
| u32 current_index = |
| (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) >> |
| CURRENT_STATE_SHIFT; |
| |
| if (current_index >= ps->num_levels) { |
| seq_printf(m, "invalid dpm profile %d\n", current_index); |
| } else { |
| pl = &ps->levels[current_index]; |
| seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); |
| seq_printf(m, "power level %d sclk: %u vddc: %u\n", |
| current_index, pl->sclk, |
| trinity_convert_voltage_index_to_value(rdev, pl->vddc_index)); |
| } |
| } |
| |
| u32 trinity_dpm_get_current_sclk(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct radeon_ps *rps = &pi->current_rps; |
| struct trinity_ps *ps = trinity_get_ps(rps); |
| struct trinity_pl *pl; |
| u32 current_index = |
| (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_MASK) >> |
| CURRENT_STATE_SHIFT; |
| |
| if (current_index >= ps->num_levels) { |
| return 0; |
| } else { |
| pl = &ps->levels[current_index]; |
| return pl->sclk; |
| } |
| } |
| |
| u32 trinity_dpm_get_current_mclk(struct radeon_device *rdev) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| return pi->sys_info.bootup_uma_clk; |
| } |
| |
| void trinity_dpm_fini(struct radeon_device *rdev) |
| { |
| int i; |
| |
| trinity_cleanup_asic(rdev); /* ??? */ |
| |
| for (i = 0; i < rdev->pm.dpm.num_ps; i++) { |
| kfree(rdev->pm.dpm.ps[i].ps_priv); |
| } |
| kfree(rdev->pm.dpm.ps); |
| kfree(rdev->pm.dpm.priv); |
| r600_free_extended_power_table(rdev); |
| } |
| |
| u32 trinity_dpm_get_sclk(struct radeon_device *rdev, bool low) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| struct trinity_ps *requested_state = trinity_get_ps(&pi->requested_rps); |
| |
| if (low) |
| return requested_state->levels[0].sclk; |
| else |
| return requested_state->levels[requested_state->num_levels - 1].sclk; |
| } |
| |
| u32 trinity_dpm_get_mclk(struct radeon_device *rdev, bool low) |
| { |
| struct trinity_power_info *pi = trinity_get_pi(rdev); |
| |
| return pi->sys_info.bootup_uma_clk; |
| } |