| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2012 Fusion-io All rights reserved. |
| * Copyright (C) 2012 Intel Corp. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/bio.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/raid/pq.h> |
| #include <linux/hash.h> |
| #include <linux/list_sort.h> |
| #include <linux/raid/xor.h> |
| #include <linux/mm.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "async-thread.h" |
| |
| /* set when additional merges to this rbio are not allowed */ |
| #define RBIO_RMW_LOCKED_BIT 1 |
| |
| /* |
| * set when this rbio is sitting in the hash, but it is just a cache |
| * of past RMW |
| */ |
| #define RBIO_CACHE_BIT 2 |
| |
| /* |
| * set when it is safe to trust the stripe_pages for caching |
| */ |
| #define RBIO_CACHE_READY_BIT 3 |
| |
| #define RBIO_CACHE_SIZE 1024 |
| |
| enum btrfs_rbio_ops { |
| BTRFS_RBIO_WRITE, |
| BTRFS_RBIO_READ_REBUILD, |
| BTRFS_RBIO_PARITY_SCRUB, |
| BTRFS_RBIO_REBUILD_MISSING, |
| }; |
| |
| struct btrfs_raid_bio { |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_bio *bbio; |
| |
| /* while we're doing rmw on a stripe |
| * we put it into a hash table so we can |
| * lock the stripe and merge more rbios |
| * into it. |
| */ |
| struct list_head hash_list; |
| |
| /* |
| * LRU list for the stripe cache |
| */ |
| struct list_head stripe_cache; |
| |
| /* |
| * for scheduling work in the helper threads |
| */ |
| struct btrfs_work work; |
| |
| /* |
| * bio list and bio_list_lock are used |
| * to add more bios into the stripe |
| * in hopes of avoiding the full rmw |
| */ |
| struct bio_list bio_list; |
| spinlock_t bio_list_lock; |
| |
| /* also protected by the bio_list_lock, the |
| * plug list is used by the plugging code |
| * to collect partial bios while plugged. The |
| * stripe locking code also uses it to hand off |
| * the stripe lock to the next pending IO |
| */ |
| struct list_head plug_list; |
| |
| /* |
| * flags that tell us if it is safe to |
| * merge with this bio |
| */ |
| unsigned long flags; |
| |
| /* size of each individual stripe on disk */ |
| int stripe_len; |
| |
| /* number of data stripes (no p/q) */ |
| int nr_data; |
| |
| int real_stripes; |
| |
| int stripe_npages; |
| /* |
| * set if we're doing a parity rebuild |
| * for a read from higher up, which is handled |
| * differently from a parity rebuild as part of |
| * rmw |
| */ |
| enum btrfs_rbio_ops operation; |
| |
| /* first bad stripe */ |
| int faila; |
| |
| /* second bad stripe (for raid6 use) */ |
| int failb; |
| |
| int scrubp; |
| /* |
| * number of pages needed to represent the full |
| * stripe |
| */ |
| int nr_pages; |
| |
| /* |
| * size of all the bios in the bio_list. This |
| * helps us decide if the rbio maps to a full |
| * stripe or not |
| */ |
| int bio_list_bytes; |
| |
| int generic_bio_cnt; |
| |
| refcount_t refs; |
| |
| atomic_t stripes_pending; |
| |
| atomic_t error; |
| /* |
| * these are two arrays of pointers. We allocate the |
| * rbio big enough to hold them both and setup their |
| * locations when the rbio is allocated |
| */ |
| |
| /* pointers to pages that we allocated for |
| * reading/writing stripes directly from the disk (including P/Q) |
| */ |
| struct page **stripe_pages; |
| |
| /* |
| * pointers to the pages in the bio_list. Stored |
| * here for faster lookup |
| */ |
| struct page **bio_pages; |
| |
| /* |
| * bitmap to record which horizontal stripe has data |
| */ |
| unsigned long *dbitmap; |
| |
| /* allocated with real_stripes-many pointers for finish_*() calls */ |
| void **finish_pointers; |
| |
| /* allocated with stripe_npages-many bits for finish_*() calls */ |
| unsigned long *finish_pbitmap; |
| }; |
| |
| static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); |
| static noinline void finish_rmw(struct btrfs_raid_bio *rbio); |
| static void rmw_work(struct btrfs_work *work); |
| static void read_rebuild_work(struct btrfs_work *work); |
| static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); |
| static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); |
| static void __free_raid_bio(struct btrfs_raid_bio *rbio); |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio); |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); |
| |
| static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
| int need_check); |
| static void scrub_parity_work(struct btrfs_work *work); |
| |
| static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) |
| { |
| btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL); |
| btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); |
| } |
| |
| /* |
| * the stripe hash table is used for locking, and to collect |
| * bios in hopes of making a full stripe |
| */ |
| int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) |
| { |
| struct btrfs_stripe_hash_table *table; |
| struct btrfs_stripe_hash_table *x; |
| struct btrfs_stripe_hash *cur; |
| struct btrfs_stripe_hash *h; |
| int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; |
| int i; |
| int table_size; |
| |
| if (info->stripe_hash_table) |
| return 0; |
| |
| /* |
| * The table is large, starting with order 4 and can go as high as |
| * order 7 in case lock debugging is turned on. |
| * |
| * Try harder to allocate and fallback to vmalloc to lower the chance |
| * of a failing mount. |
| */ |
| table_size = sizeof(*table) + sizeof(*h) * num_entries; |
| table = kvzalloc(table_size, GFP_KERNEL); |
| if (!table) |
| return -ENOMEM; |
| |
| spin_lock_init(&table->cache_lock); |
| INIT_LIST_HEAD(&table->stripe_cache); |
| |
| h = table->table; |
| |
| for (i = 0; i < num_entries; i++) { |
| cur = h + i; |
| INIT_LIST_HEAD(&cur->hash_list); |
| spin_lock_init(&cur->lock); |
| } |
| |
| x = cmpxchg(&info->stripe_hash_table, NULL, table); |
| if (x) |
| kvfree(x); |
| return 0; |
| } |
| |
| /* |
| * caching an rbio means to copy anything from the |
| * bio_pages array into the stripe_pages array. We |
| * use the page uptodate bit in the stripe cache array |
| * to indicate if it has valid data |
| * |
| * once the caching is done, we set the cache ready |
| * bit. |
| */ |
| static void cache_rbio_pages(struct btrfs_raid_bio *rbio) |
| { |
| int i; |
| char *s; |
| char *d; |
| int ret; |
| |
| ret = alloc_rbio_pages(rbio); |
| if (ret) |
| return; |
| |
| for (i = 0; i < rbio->nr_pages; i++) { |
| if (!rbio->bio_pages[i]) |
| continue; |
| |
| s = kmap(rbio->bio_pages[i]); |
| d = kmap(rbio->stripe_pages[i]); |
| |
| copy_page(d, s); |
| |
| kunmap(rbio->bio_pages[i]); |
| kunmap(rbio->stripe_pages[i]); |
| SetPageUptodate(rbio->stripe_pages[i]); |
| } |
| set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| } |
| |
| /* |
| * we hash on the first logical address of the stripe |
| */ |
| static int rbio_bucket(struct btrfs_raid_bio *rbio) |
| { |
| u64 num = rbio->bbio->raid_map[0]; |
| |
| /* |
| * we shift down quite a bit. We're using byte |
| * addressing, and most of the lower bits are zeros. |
| * This tends to upset hash_64, and it consistently |
| * returns just one or two different values. |
| * |
| * shifting off the lower bits fixes things. |
| */ |
| return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); |
| } |
| |
| /* |
| * stealing an rbio means taking all the uptodate pages from the stripe |
| * array in the source rbio and putting them into the destination rbio |
| */ |
| static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) |
| { |
| int i; |
| struct page *s; |
| struct page *d; |
| |
| if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) |
| return; |
| |
| for (i = 0; i < dest->nr_pages; i++) { |
| s = src->stripe_pages[i]; |
| if (!s || !PageUptodate(s)) { |
| continue; |
| } |
| |
| d = dest->stripe_pages[i]; |
| if (d) |
| __free_page(d); |
| |
| dest->stripe_pages[i] = s; |
| src->stripe_pages[i] = NULL; |
| } |
| } |
| |
| /* |
| * merging means we take the bio_list from the victim and |
| * splice it into the destination. The victim should |
| * be discarded afterwards. |
| * |
| * must be called with dest->rbio_list_lock held |
| */ |
| static void merge_rbio(struct btrfs_raid_bio *dest, |
| struct btrfs_raid_bio *victim) |
| { |
| bio_list_merge(&dest->bio_list, &victim->bio_list); |
| dest->bio_list_bytes += victim->bio_list_bytes; |
| dest->generic_bio_cnt += victim->generic_bio_cnt; |
| bio_list_init(&victim->bio_list); |
| } |
| |
| /* |
| * used to prune items that are in the cache. The caller |
| * must hold the hash table lock. |
| */ |
| static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| { |
| int bucket = rbio_bucket(rbio); |
| struct btrfs_stripe_hash_table *table; |
| struct btrfs_stripe_hash *h; |
| int freeit = 0; |
| |
| /* |
| * check the bit again under the hash table lock. |
| */ |
| if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| return; |
| |
| table = rbio->fs_info->stripe_hash_table; |
| h = table->table + bucket; |
| |
| /* hold the lock for the bucket because we may be |
| * removing it from the hash table |
| */ |
| spin_lock(&h->lock); |
| |
| /* |
| * hold the lock for the bio list because we need |
| * to make sure the bio list is empty |
| */ |
| spin_lock(&rbio->bio_list_lock); |
| |
| if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| list_del_init(&rbio->stripe_cache); |
| table->cache_size -= 1; |
| freeit = 1; |
| |
| /* if the bio list isn't empty, this rbio is |
| * still involved in an IO. We take it out |
| * of the cache list, and drop the ref that |
| * was held for the list. |
| * |
| * If the bio_list was empty, we also remove |
| * the rbio from the hash_table, and drop |
| * the corresponding ref |
| */ |
| if (bio_list_empty(&rbio->bio_list)) { |
| if (!list_empty(&rbio->hash_list)) { |
| list_del_init(&rbio->hash_list); |
| refcount_dec(&rbio->refs); |
| BUG_ON(!list_empty(&rbio->plug_list)); |
| } |
| } |
| } |
| |
| spin_unlock(&rbio->bio_list_lock); |
| spin_unlock(&h->lock); |
| |
| if (freeit) |
| __free_raid_bio(rbio); |
| } |
| |
| /* |
| * prune a given rbio from the cache |
| */ |
| static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| { |
| struct btrfs_stripe_hash_table *table; |
| unsigned long flags; |
| |
| if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| return; |
| |
| table = rbio->fs_info->stripe_hash_table; |
| |
| spin_lock_irqsave(&table->cache_lock, flags); |
| __remove_rbio_from_cache(rbio); |
| spin_unlock_irqrestore(&table->cache_lock, flags); |
| } |
| |
| /* |
| * remove everything in the cache |
| */ |
| static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
| { |
| struct btrfs_stripe_hash_table *table; |
| unsigned long flags; |
| struct btrfs_raid_bio *rbio; |
| |
| table = info->stripe_hash_table; |
| |
| spin_lock_irqsave(&table->cache_lock, flags); |
| while (!list_empty(&table->stripe_cache)) { |
| rbio = list_entry(table->stripe_cache.next, |
| struct btrfs_raid_bio, |
| stripe_cache); |
| __remove_rbio_from_cache(rbio); |
| } |
| spin_unlock_irqrestore(&table->cache_lock, flags); |
| } |
| |
| /* |
| * remove all cached entries and free the hash table |
| * used by unmount |
| */ |
| void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) |
| { |
| if (!info->stripe_hash_table) |
| return; |
| btrfs_clear_rbio_cache(info); |
| kvfree(info->stripe_hash_table); |
| info->stripe_hash_table = NULL; |
| } |
| |
| /* |
| * insert an rbio into the stripe cache. It |
| * must have already been prepared by calling |
| * cache_rbio_pages |
| * |
| * If this rbio was already cached, it gets |
| * moved to the front of the lru. |
| * |
| * If the size of the rbio cache is too big, we |
| * prune an item. |
| */ |
| static void cache_rbio(struct btrfs_raid_bio *rbio) |
| { |
| struct btrfs_stripe_hash_table *table; |
| unsigned long flags; |
| |
| if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) |
| return; |
| |
| table = rbio->fs_info->stripe_hash_table; |
| |
| spin_lock_irqsave(&table->cache_lock, flags); |
| spin_lock(&rbio->bio_list_lock); |
| |
| /* bump our ref if we were not in the list before */ |
| if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| refcount_inc(&rbio->refs); |
| |
| if (!list_empty(&rbio->stripe_cache)){ |
| list_move(&rbio->stripe_cache, &table->stripe_cache); |
| } else { |
| list_add(&rbio->stripe_cache, &table->stripe_cache); |
| table->cache_size += 1; |
| } |
| |
| spin_unlock(&rbio->bio_list_lock); |
| |
| if (table->cache_size > RBIO_CACHE_SIZE) { |
| struct btrfs_raid_bio *found; |
| |
| found = list_entry(table->stripe_cache.prev, |
| struct btrfs_raid_bio, |
| stripe_cache); |
| |
| if (found != rbio) |
| __remove_rbio_from_cache(found); |
| } |
| |
| spin_unlock_irqrestore(&table->cache_lock, flags); |
| } |
| |
| /* |
| * helper function to run the xor_blocks api. It is only |
| * able to do MAX_XOR_BLOCKS at a time, so we need to |
| * loop through. |
| */ |
| static void run_xor(void **pages, int src_cnt, ssize_t len) |
| { |
| int src_off = 0; |
| int xor_src_cnt = 0; |
| void *dest = pages[src_cnt]; |
| |
| while(src_cnt > 0) { |
| xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); |
| xor_blocks(xor_src_cnt, len, dest, pages + src_off); |
| |
| src_cnt -= xor_src_cnt; |
| src_off += xor_src_cnt; |
| } |
| } |
| |
| /* |
| * Returns true if the bio list inside this rbio covers an entire stripe (no |
| * rmw required). |
| */ |
| static int rbio_is_full(struct btrfs_raid_bio *rbio) |
| { |
| unsigned long flags; |
| unsigned long size = rbio->bio_list_bytes; |
| int ret = 1; |
| |
| spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| if (size != rbio->nr_data * rbio->stripe_len) |
| ret = 0; |
| BUG_ON(size > rbio->nr_data * rbio->stripe_len); |
| spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * returns 1 if it is safe to merge two rbios together. |
| * The merging is safe if the two rbios correspond to |
| * the same stripe and if they are both going in the same |
| * direction (read vs write), and if neither one is |
| * locked for final IO |
| * |
| * The caller is responsible for locking such that |
| * rmw_locked is safe to test |
| */ |
| static int rbio_can_merge(struct btrfs_raid_bio *last, |
| struct btrfs_raid_bio *cur) |
| { |
| if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || |
| test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) |
| return 0; |
| |
| /* |
| * we can't merge with cached rbios, since the |
| * idea is that when we merge the destination |
| * rbio is going to run our IO for us. We can |
| * steal from cached rbios though, other functions |
| * handle that. |
| */ |
| if (test_bit(RBIO_CACHE_BIT, &last->flags) || |
| test_bit(RBIO_CACHE_BIT, &cur->flags)) |
| return 0; |
| |
| if (last->bbio->raid_map[0] != |
| cur->bbio->raid_map[0]) |
| return 0; |
| |
| /* we can't merge with different operations */ |
| if (last->operation != cur->operation) |
| return 0; |
| /* |
| * We've need read the full stripe from the drive. |
| * check and repair the parity and write the new results. |
| * |
| * We're not allowed to add any new bios to the |
| * bio list here, anyone else that wants to |
| * change this stripe needs to do their own rmw. |
| */ |
| if (last->operation == BTRFS_RBIO_PARITY_SCRUB) |
| return 0; |
| |
| if (last->operation == BTRFS_RBIO_REBUILD_MISSING) |
| return 0; |
| |
| if (last->operation == BTRFS_RBIO_READ_REBUILD) { |
| int fa = last->faila; |
| int fb = last->failb; |
| int cur_fa = cur->faila; |
| int cur_fb = cur->failb; |
| |
| if (last->faila >= last->failb) { |
| fa = last->failb; |
| fb = last->faila; |
| } |
| |
| if (cur->faila >= cur->failb) { |
| cur_fa = cur->failb; |
| cur_fb = cur->faila; |
| } |
| |
| if (fa != cur_fa || fb != cur_fb) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, |
| int index) |
| { |
| return stripe * rbio->stripe_npages + index; |
| } |
| |
| /* |
| * these are just the pages from the rbio array, not from anything |
| * the FS sent down to us |
| */ |
| static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, |
| int index) |
| { |
| return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; |
| } |
| |
| /* |
| * helper to index into the pstripe |
| */ |
| static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) |
| { |
| return rbio_stripe_page(rbio, rbio->nr_data, index); |
| } |
| |
| /* |
| * helper to index into the qstripe, returns null |
| * if there is no qstripe |
| */ |
| static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) |
| { |
| if (rbio->nr_data + 1 == rbio->real_stripes) |
| return NULL; |
| return rbio_stripe_page(rbio, rbio->nr_data + 1, index); |
| } |
| |
| /* |
| * The first stripe in the table for a logical address |
| * has the lock. rbios are added in one of three ways: |
| * |
| * 1) Nobody has the stripe locked yet. The rbio is given |
| * the lock and 0 is returned. The caller must start the IO |
| * themselves. |
| * |
| * 2) Someone has the stripe locked, but we're able to merge |
| * with the lock owner. The rbio is freed and the IO will |
| * start automatically along with the existing rbio. 1 is returned. |
| * |
| * 3) Someone has the stripe locked, but we're not able to merge. |
| * The rbio is added to the lock owner's plug list, or merged into |
| * an rbio already on the plug list. When the lock owner unlocks, |
| * the next rbio on the list is run and the IO is started automatically. |
| * 1 is returned |
| * |
| * If we return 0, the caller still owns the rbio and must continue with |
| * IO submission. If we return 1, the caller must assume the rbio has |
| * already been freed. |
| */ |
| static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) |
| { |
| int bucket = rbio_bucket(rbio); |
| struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; |
| struct btrfs_raid_bio *cur; |
| struct btrfs_raid_bio *pending; |
| unsigned long flags; |
| struct btrfs_raid_bio *freeit = NULL; |
| struct btrfs_raid_bio *cache_drop = NULL; |
| int ret = 0; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| list_for_each_entry(cur, &h->hash_list, hash_list) { |
| if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { |
| spin_lock(&cur->bio_list_lock); |
| |
| /* can we steal this cached rbio's pages? */ |
| if (bio_list_empty(&cur->bio_list) && |
| list_empty(&cur->plug_list) && |
| test_bit(RBIO_CACHE_BIT, &cur->flags) && |
| !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { |
| list_del_init(&cur->hash_list); |
| refcount_dec(&cur->refs); |
| |
| steal_rbio(cur, rbio); |
| cache_drop = cur; |
| spin_unlock(&cur->bio_list_lock); |
| |
| goto lockit; |
| } |
| |
| /* can we merge into the lock owner? */ |
| if (rbio_can_merge(cur, rbio)) { |
| merge_rbio(cur, rbio); |
| spin_unlock(&cur->bio_list_lock); |
| freeit = rbio; |
| ret = 1; |
| goto out; |
| } |
| |
| |
| /* |
| * we couldn't merge with the running |
| * rbio, see if we can merge with the |
| * pending ones. We don't have to |
| * check for rmw_locked because there |
| * is no way they are inside finish_rmw |
| * right now |
| */ |
| list_for_each_entry(pending, &cur->plug_list, |
| plug_list) { |
| if (rbio_can_merge(pending, rbio)) { |
| merge_rbio(pending, rbio); |
| spin_unlock(&cur->bio_list_lock); |
| freeit = rbio; |
| ret = 1; |
| goto out; |
| } |
| } |
| |
| /* no merging, put us on the tail of the plug list, |
| * our rbio will be started with the currently |
| * running rbio unlocks |
| */ |
| list_add_tail(&rbio->plug_list, &cur->plug_list); |
| spin_unlock(&cur->bio_list_lock); |
| ret = 1; |
| goto out; |
| } |
| } |
| lockit: |
| refcount_inc(&rbio->refs); |
| list_add(&rbio->hash_list, &h->hash_list); |
| out: |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (cache_drop) |
| remove_rbio_from_cache(cache_drop); |
| if (freeit) |
| __free_raid_bio(freeit); |
| return ret; |
| } |
| |
| /* |
| * called as rmw or parity rebuild is completed. If the plug list has more |
| * rbios waiting for this stripe, the next one on the list will be started |
| */ |
| static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) |
| { |
| int bucket; |
| struct btrfs_stripe_hash *h; |
| unsigned long flags; |
| int keep_cache = 0; |
| |
| bucket = rbio_bucket(rbio); |
| h = rbio->fs_info->stripe_hash_table->table + bucket; |
| |
| if (list_empty(&rbio->plug_list)) |
| cache_rbio(rbio); |
| |
| spin_lock_irqsave(&h->lock, flags); |
| spin_lock(&rbio->bio_list_lock); |
| |
| if (!list_empty(&rbio->hash_list)) { |
| /* |
| * if we're still cached and there is no other IO |
| * to perform, just leave this rbio here for others |
| * to steal from later |
| */ |
| if (list_empty(&rbio->plug_list) && |
| test_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| keep_cache = 1; |
| clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| BUG_ON(!bio_list_empty(&rbio->bio_list)); |
| goto done; |
| } |
| |
| list_del_init(&rbio->hash_list); |
| refcount_dec(&rbio->refs); |
| |
| /* |
| * we use the plug list to hold all the rbios |
| * waiting for the chance to lock this stripe. |
| * hand the lock over to one of them. |
| */ |
| if (!list_empty(&rbio->plug_list)) { |
| struct btrfs_raid_bio *next; |
| struct list_head *head = rbio->plug_list.next; |
| |
| next = list_entry(head, struct btrfs_raid_bio, |
| plug_list); |
| |
| list_del_init(&rbio->plug_list); |
| |
| list_add(&next->hash_list, &h->hash_list); |
| refcount_inc(&next->refs); |
| spin_unlock(&rbio->bio_list_lock); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| if (next->operation == BTRFS_RBIO_READ_REBUILD) |
| start_async_work(next, read_rebuild_work); |
| else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { |
| steal_rbio(rbio, next); |
| start_async_work(next, read_rebuild_work); |
| } else if (next->operation == BTRFS_RBIO_WRITE) { |
| steal_rbio(rbio, next); |
| start_async_work(next, rmw_work); |
| } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
| steal_rbio(rbio, next); |
| start_async_work(next, scrub_parity_work); |
| } |
| |
| goto done_nolock; |
| } |
| } |
| done: |
| spin_unlock(&rbio->bio_list_lock); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| done_nolock: |
| if (!keep_cache) |
| remove_rbio_from_cache(rbio); |
| } |
| |
| static void __free_raid_bio(struct btrfs_raid_bio *rbio) |
| { |
| int i; |
| |
| if (!refcount_dec_and_test(&rbio->refs)) |
| return; |
| |
| WARN_ON(!list_empty(&rbio->stripe_cache)); |
| WARN_ON(!list_empty(&rbio->hash_list)); |
| WARN_ON(!bio_list_empty(&rbio->bio_list)); |
| |
| for (i = 0; i < rbio->nr_pages; i++) { |
| if (rbio->stripe_pages[i]) { |
| __free_page(rbio->stripe_pages[i]); |
| rbio->stripe_pages[i] = NULL; |
| } |
| } |
| |
| btrfs_put_bbio(rbio->bbio); |
| kfree(rbio); |
| } |
| |
| static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) |
| { |
| struct bio *next; |
| |
| while (cur) { |
| next = cur->bi_next; |
| cur->bi_next = NULL; |
| cur->bi_status = err; |
| bio_endio(cur); |
| cur = next; |
| } |
| } |
| |
| /* |
| * this frees the rbio and runs through all the bios in the |
| * bio_list and calls end_io on them |
| */ |
| static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) |
| { |
| struct bio *cur = bio_list_get(&rbio->bio_list); |
| struct bio *extra; |
| |
| if (rbio->generic_bio_cnt) |
| btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); |
| |
| /* |
| * At this moment, rbio->bio_list is empty, however since rbio does not |
| * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the |
| * hash list, rbio may be merged with others so that rbio->bio_list |
| * becomes non-empty. |
| * Once unlock_stripe() is done, rbio->bio_list will not be updated any |
| * more and we can call bio_endio() on all queued bios. |
| */ |
| unlock_stripe(rbio); |
| extra = bio_list_get(&rbio->bio_list); |
| __free_raid_bio(rbio); |
| |
| rbio_endio_bio_list(cur, err); |
| if (extra) |
| rbio_endio_bio_list(extra, err); |
| } |
| |
| /* |
| * end io function used by finish_rmw. When we finally |
| * get here, we've written a full stripe |
| */ |
| static void raid_write_end_io(struct bio *bio) |
| { |
| struct btrfs_raid_bio *rbio = bio->bi_private; |
| blk_status_t err = bio->bi_status; |
| int max_errors; |
| |
| if (err) |
| fail_bio_stripe(rbio, bio); |
| |
| bio_put(bio); |
| |
| if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| return; |
| |
| err = BLK_STS_OK; |
| |
| /* OK, we have read all the stripes we need to. */ |
| max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? |
| 0 : rbio->bbio->max_errors; |
| if (atomic_read(&rbio->error) > max_errors) |
| err = BLK_STS_IOERR; |
| |
| rbio_orig_end_io(rbio, err); |
| } |
| |
| /* |
| * the read/modify/write code wants to use the original bio for |
| * any pages it included, and then use the rbio for everything |
| * else. This function decides if a given index (stripe number) |
| * and page number in that stripe fall inside the original bio |
| * or the rbio. |
| * |
| * if you set bio_list_only, you'll get a NULL back for any ranges |
| * that are outside the bio_list |
| * |
| * This doesn't take any refs on anything, you get a bare page pointer |
| * and the caller must bump refs as required. |
| * |
| * You must call index_rbio_pages once before you can trust |
| * the answers from this function. |
| */ |
| static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, |
| int index, int pagenr, int bio_list_only) |
| { |
| int chunk_page; |
| struct page *p = NULL; |
| |
| chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; |
| |
| spin_lock_irq(&rbio->bio_list_lock); |
| p = rbio->bio_pages[chunk_page]; |
| spin_unlock_irq(&rbio->bio_list_lock); |
| |
| if (p || bio_list_only) |
| return p; |
| |
| return rbio->stripe_pages[chunk_page]; |
| } |
| |
| /* |
| * number of pages we need for the entire stripe across all the |
| * drives |
| */ |
| static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) |
| { |
| return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; |
| } |
| |
| /* |
| * allocation and initial setup for the btrfs_raid_bio. Not |
| * this does not allocate any pages for rbio->pages. |
| */ |
| static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, |
| struct btrfs_bio *bbio, |
| u64 stripe_len) |
| { |
| struct btrfs_raid_bio *rbio; |
| int nr_data = 0; |
| int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; |
| int num_pages = rbio_nr_pages(stripe_len, real_stripes); |
| int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); |
| void *p; |
| |
| rbio = kzalloc(sizeof(*rbio) + |
| sizeof(*rbio->stripe_pages) * num_pages + |
| sizeof(*rbio->bio_pages) * num_pages + |
| sizeof(*rbio->finish_pointers) * real_stripes + |
| sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + |
| sizeof(*rbio->finish_pbitmap) * |
| BITS_TO_LONGS(stripe_npages), |
| GFP_NOFS); |
| if (!rbio) |
| return ERR_PTR(-ENOMEM); |
| |
| bio_list_init(&rbio->bio_list); |
| INIT_LIST_HEAD(&rbio->plug_list); |
| spin_lock_init(&rbio->bio_list_lock); |
| INIT_LIST_HEAD(&rbio->stripe_cache); |
| INIT_LIST_HEAD(&rbio->hash_list); |
| rbio->bbio = bbio; |
| rbio->fs_info = fs_info; |
| rbio->stripe_len = stripe_len; |
| rbio->nr_pages = num_pages; |
| rbio->real_stripes = real_stripes; |
| rbio->stripe_npages = stripe_npages; |
| rbio->faila = -1; |
| rbio->failb = -1; |
| refcount_set(&rbio->refs, 1); |
| atomic_set(&rbio->error, 0); |
| atomic_set(&rbio->stripes_pending, 0); |
| |
| /* |
| * the stripe_pages, bio_pages, etc arrays point to the extra |
| * memory we allocated past the end of the rbio |
| */ |
| p = rbio + 1; |
| #define CONSUME_ALLOC(ptr, count) do { \ |
| ptr = p; \ |
| p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ |
| } while (0) |
| CONSUME_ALLOC(rbio->stripe_pages, num_pages); |
| CONSUME_ALLOC(rbio->bio_pages, num_pages); |
| CONSUME_ALLOC(rbio->finish_pointers, real_stripes); |
| CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); |
| CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); |
| #undef CONSUME_ALLOC |
| |
| if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
| nr_data = real_stripes - 1; |
| else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) |
| nr_data = real_stripes - 2; |
| else |
| BUG(); |
| |
| rbio->nr_data = nr_data; |
| return rbio; |
| } |
| |
| /* allocate pages for all the stripes in the bio, including parity */ |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) |
| { |
| int i; |
| struct page *page; |
| |
| for (i = 0; i < rbio->nr_pages; i++) { |
| if (rbio->stripe_pages[i]) |
| continue; |
| page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| if (!page) |
| return -ENOMEM; |
| rbio->stripe_pages[i] = page; |
| } |
| return 0; |
| } |
| |
| /* only allocate pages for p/q stripes */ |
| static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
| { |
| int i; |
| struct page *page; |
| |
| i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); |
| |
| for (; i < rbio->nr_pages; i++) { |
| if (rbio->stripe_pages[i]) |
| continue; |
| page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| if (!page) |
| return -ENOMEM; |
| rbio->stripe_pages[i] = page; |
| } |
| return 0; |
| } |
| |
| /* |
| * add a single page from a specific stripe into our list of bios for IO |
| * this will try to merge into existing bios if possible, and returns |
| * zero if all went well. |
| */ |
| static int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
| struct bio_list *bio_list, |
| struct page *page, |
| int stripe_nr, |
| unsigned long page_index, |
| unsigned long bio_max_len) |
| { |
| struct bio *last = bio_list->tail; |
| u64 last_end = 0; |
| int ret; |
| struct bio *bio; |
| struct btrfs_bio_stripe *stripe; |
| u64 disk_start; |
| |
| stripe = &rbio->bbio->stripes[stripe_nr]; |
| disk_start = stripe->physical + (page_index << PAGE_SHIFT); |
| |
| /* if the device is missing, just fail this stripe */ |
| if (!stripe->dev->bdev) |
| return fail_rbio_index(rbio, stripe_nr); |
| |
| /* see if we can add this page onto our existing bio */ |
| if (last) { |
| last_end = (u64)last->bi_iter.bi_sector << 9; |
| last_end += last->bi_iter.bi_size; |
| |
| /* |
| * we can't merge these if they are from different |
| * devices or if they are not contiguous |
| */ |
| if (last_end == disk_start && stripe->dev->bdev && |
| !last->bi_status && |
| last->bi_disk == stripe->dev->bdev->bd_disk && |
| last->bi_partno == stripe->dev->bdev->bd_partno) { |
| ret = bio_add_page(last, page, PAGE_SIZE, 0); |
| if (ret == PAGE_SIZE) |
| return 0; |
| } |
| } |
| |
| /* put a new bio on the list */ |
| bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); |
| bio->bi_iter.bi_size = 0; |
| bio_set_dev(bio, stripe->dev->bdev); |
| bio->bi_iter.bi_sector = disk_start >> 9; |
| |
| bio_add_page(bio, page, PAGE_SIZE, 0); |
| bio_list_add(bio_list, bio); |
| return 0; |
| } |
| |
| /* |
| * while we're doing the read/modify/write cycle, we could |
| * have errors in reading pages off the disk. This checks |
| * for errors and if we're not able to read the page it'll |
| * trigger parity reconstruction. The rmw will be finished |
| * after we've reconstructed the failed stripes |
| */ |
| static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) |
| { |
| if (rbio->faila >= 0 || rbio->failb >= 0) { |
| BUG_ON(rbio->faila == rbio->real_stripes - 1); |
| __raid56_parity_recover(rbio); |
| } else { |
| finish_rmw(rbio); |
| } |
| } |
| |
| /* |
| * helper function to walk our bio list and populate the bio_pages array with |
| * the result. This seems expensive, but it is faster than constantly |
| * searching through the bio list as we setup the IO in finish_rmw or stripe |
| * reconstruction. |
| * |
| * This must be called before you trust the answers from page_in_rbio |
| */ |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio) |
| { |
| struct bio *bio; |
| u64 start; |
| unsigned long stripe_offset; |
| unsigned long page_index; |
| |
| spin_lock_irq(&rbio->bio_list_lock); |
| bio_list_for_each(bio, &rbio->bio_list) { |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| int i = 0; |
| |
| start = (u64)bio->bi_iter.bi_sector << 9; |
| stripe_offset = start - rbio->bbio->raid_map[0]; |
| page_index = stripe_offset >> PAGE_SHIFT; |
| |
| if (bio_flagged(bio, BIO_CLONED)) |
| bio->bi_iter = btrfs_io_bio(bio)->iter; |
| |
| bio_for_each_segment(bvec, bio, iter) { |
| rbio->bio_pages[page_index + i] = bvec.bv_page; |
| i++; |
| } |
| } |
| spin_unlock_irq(&rbio->bio_list_lock); |
| } |
| |
| /* |
| * this is called from one of two situations. We either |
| * have a full stripe from the higher layers, or we've read all |
| * the missing bits off disk. |
| * |
| * This will calculate the parity and then send down any |
| * changed blocks. |
| */ |
| static noinline void finish_rmw(struct btrfs_raid_bio *rbio) |
| { |
| struct btrfs_bio *bbio = rbio->bbio; |
| void **pointers = rbio->finish_pointers; |
| int nr_data = rbio->nr_data; |
| int stripe; |
| int pagenr; |
| int p_stripe = -1; |
| int q_stripe = -1; |
| struct bio_list bio_list; |
| struct bio *bio; |
| int ret; |
| |
| bio_list_init(&bio_list); |
| |
| if (rbio->real_stripes - rbio->nr_data == 1) { |
| p_stripe = rbio->real_stripes - 1; |
| } else if (rbio->real_stripes - rbio->nr_data == 2) { |
| p_stripe = rbio->real_stripes - 2; |
| q_stripe = rbio->real_stripes - 1; |
| } else { |
| BUG(); |
| } |
| |
| /* at this point we either have a full stripe, |
| * or we've read the full stripe from the drive. |
| * recalculate the parity and write the new results. |
| * |
| * We're not allowed to add any new bios to the |
| * bio list here, anyone else that wants to |
| * change this stripe needs to do their own rmw. |
| */ |
| spin_lock_irq(&rbio->bio_list_lock); |
| set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| spin_unlock_irq(&rbio->bio_list_lock); |
| |
| atomic_set(&rbio->error, 0); |
| |
| /* |
| * now that we've set rmw_locked, run through the |
| * bio list one last time and map the page pointers |
| * |
| * We don't cache full rbios because we're assuming |
| * the higher layers are unlikely to use this area of |
| * the disk again soon. If they do use it again, |
| * hopefully they will send another full bio. |
| */ |
| index_rbio_pages(rbio); |
| if (!rbio_is_full(rbio)) |
| cache_rbio_pages(rbio); |
| else |
| clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| |
| for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| struct page *p; |
| /* first collect one page from each data stripe */ |
| for (stripe = 0; stripe < nr_data; stripe++) { |
| p = page_in_rbio(rbio, stripe, pagenr, 0); |
| pointers[stripe] = kmap(p); |
| } |
| |
| /* then add the parity stripe */ |
| p = rbio_pstripe_page(rbio, pagenr); |
| SetPageUptodate(p); |
| pointers[stripe++] = kmap(p); |
| |
| if (q_stripe != -1) { |
| |
| /* |
| * raid6, add the qstripe and call the |
| * library function to fill in our p/q |
| */ |
| p = rbio_qstripe_page(rbio, pagenr); |
| SetPageUptodate(p); |
| pointers[stripe++] = kmap(p); |
| |
| raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
| pointers); |
| } else { |
| /* raid5 */ |
| copy_page(pointers[nr_data], pointers[0]); |
| run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
| } |
| |
| |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
| kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
| } |
| |
| /* |
| * time to start writing. Make bios for everything from the |
| * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| * everything else. |
| */ |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| struct page *page; |
| if (stripe < rbio->nr_data) { |
| page = page_in_rbio(rbio, stripe, pagenr, 1); |
| if (!page) |
| continue; |
| } else { |
| page = rbio_stripe_page(rbio, stripe, pagenr); |
| } |
| |
| ret = rbio_add_io_page(rbio, &bio_list, |
| page, stripe, pagenr, rbio->stripe_len); |
| if (ret) |
| goto cleanup; |
| } |
| } |
| |
| if (likely(!bbio->num_tgtdevs)) |
| goto write_data; |
| |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| if (!bbio->tgtdev_map[stripe]) |
| continue; |
| |
| for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| struct page *page; |
| if (stripe < rbio->nr_data) { |
| page = page_in_rbio(rbio, stripe, pagenr, 1); |
| if (!page) |
| continue; |
| } else { |
| page = rbio_stripe_page(rbio, stripe, pagenr); |
| } |
| |
| ret = rbio_add_io_page(rbio, &bio_list, page, |
| rbio->bbio->tgtdev_map[stripe], |
| pagenr, rbio->stripe_len); |
| if (ret) |
| goto cleanup; |
| } |
| } |
| |
| write_data: |
| atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); |
| BUG_ON(atomic_read(&rbio->stripes_pending) == 0); |
| |
| while (1) { |
| bio = bio_list_pop(&bio_list); |
| if (!bio) |
| break; |
| |
| bio->bi_private = rbio; |
| bio->bi_end_io = raid_write_end_io; |
| bio->bi_opf = REQ_OP_WRITE; |
| |
| submit_bio(bio); |
| } |
| return; |
| |
| cleanup: |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| |
| while ((bio = bio_list_pop(&bio_list))) |
| bio_put(bio); |
| } |
| |
| /* |
| * helper to find the stripe number for a given bio. Used to figure out which |
| * stripe has failed. This expects the bio to correspond to a physical disk, |
| * so it looks up based on physical sector numbers. |
| */ |
| static int find_bio_stripe(struct btrfs_raid_bio *rbio, |
| struct bio *bio) |
| { |
| u64 physical = bio->bi_iter.bi_sector; |
| u64 stripe_start; |
| int i; |
| struct btrfs_bio_stripe *stripe; |
| |
| physical <<= 9; |
| |
| for (i = 0; i < rbio->bbio->num_stripes; i++) { |
| stripe = &rbio->bbio->stripes[i]; |
| stripe_start = stripe->physical; |
| if (physical >= stripe_start && |
| physical < stripe_start + rbio->stripe_len && |
| stripe->dev->bdev && |
| bio->bi_disk == stripe->dev->bdev->bd_disk && |
| bio->bi_partno == stripe->dev->bdev->bd_partno) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * helper to find the stripe number for a given |
| * bio (before mapping). Used to figure out which stripe has |
| * failed. This looks up based on logical block numbers. |
| */ |
| static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, |
| struct bio *bio) |
| { |
| u64 logical = bio->bi_iter.bi_sector; |
| u64 stripe_start; |
| int i; |
| |
| logical <<= 9; |
| |
| for (i = 0; i < rbio->nr_data; i++) { |
| stripe_start = rbio->bbio->raid_map[i]; |
| if (logical >= stripe_start && |
| logical < stripe_start + rbio->stripe_len) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * returns -EIO if we had too many failures |
| */ |
| static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| |
| /* we already know this stripe is bad, move on */ |
| if (rbio->faila == failed || rbio->failb == failed) |
| goto out; |
| |
| if (rbio->faila == -1) { |
| /* first failure on this rbio */ |
| rbio->faila = failed; |
| atomic_inc(&rbio->error); |
| } else if (rbio->failb == -1) { |
| /* second failure on this rbio */ |
| rbio->failb = failed; |
| atomic_inc(&rbio->error); |
| } else { |
| ret = -EIO; |
| } |
| out: |
| spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * helper to fail a stripe based on a physical disk |
| * bio. |
| */ |
| static int fail_bio_stripe(struct btrfs_raid_bio *rbio, |
| struct bio *bio) |
| { |
| int failed = find_bio_stripe(rbio, bio); |
| |
| if (failed < 0) |
| return -EIO; |
| |
| return fail_rbio_index(rbio, failed); |
| } |
| |
| /* |
| * this sets each page in the bio uptodate. It should only be used on private |
| * rbio pages, nothing that comes in from the higher layers |
| */ |
| static void set_bio_pages_uptodate(struct bio *bio) |
| { |
| struct bio_vec *bvec; |
| int i; |
| |
| ASSERT(!bio_flagged(bio, BIO_CLONED)); |
| |
| bio_for_each_segment_all(bvec, bio, i) |
| SetPageUptodate(bvec->bv_page); |
| } |
| |
| /* |
| * end io for the read phase of the rmw cycle. All the bios here are physical |
| * stripe bios we've read from the disk so we can recalculate the parity of the |
| * stripe. |
| * |
| * This will usually kick off finish_rmw once all the bios are read in, but it |
| * may trigger parity reconstruction if we had any errors along the way |
| */ |
| static void raid_rmw_end_io(struct bio *bio) |
| { |
| struct btrfs_raid_bio *rbio = bio->bi_private; |
| |
| if (bio->bi_status) |
| fail_bio_stripe(rbio, bio); |
| else |
| set_bio_pages_uptodate(bio); |
| |
| bio_put(bio); |
| |
| if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| return; |
| |
| if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
| goto cleanup; |
| |
| /* |
| * this will normally call finish_rmw to start our write |
| * but if there are any failed stripes we'll reconstruct |
| * from parity first |
| */ |
| validate_rbio_for_rmw(rbio); |
| return; |
| |
| cleanup: |
| |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| } |
| |
| /* |
| * the stripe must be locked by the caller. It will |
| * unlock after all the writes are done |
| */ |
| static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) |
| { |
| int bios_to_read = 0; |
| struct bio_list bio_list; |
| int ret; |
| int pagenr; |
| int stripe; |
| struct bio *bio; |
| |
| bio_list_init(&bio_list); |
| |
| ret = alloc_rbio_pages(rbio); |
| if (ret) |
| goto cleanup; |
| |
| index_rbio_pages(rbio); |
| |
| atomic_set(&rbio->error, 0); |
| /* |
| * build a list of bios to read all the missing parts of this |
| * stripe |
| */ |
| for (stripe = 0; stripe < rbio->nr_data; stripe++) { |
| for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| struct page *page; |
| /* |
| * we want to find all the pages missing from |
| * the rbio and read them from the disk. If |
| * page_in_rbio finds a page in the bio list |
| * we don't need to read it off the stripe. |
| */ |
| page = page_in_rbio(rbio, stripe, pagenr, 1); |
| if (page) |
| continue; |
| |
| page = rbio_stripe_page(rbio, stripe, pagenr); |
| /* |
| * the bio cache may have handed us an uptodate |
| * page. If so, be happy and use it |
| */ |
| if (PageUptodate(page)) |
| continue; |
| |
| ret = rbio_add_io_page(rbio, &bio_list, page, |
| stripe, pagenr, rbio->stripe_len); |
| if (ret) |
| goto cleanup; |
| } |
| } |
| |
| bios_to_read = bio_list_size(&bio_list); |
| if (!bios_to_read) { |
| /* |
| * this can happen if others have merged with |
| * us, it means there is nothing left to read. |
| * But if there are missing devices it may not be |
| * safe to do the full stripe write yet. |
| */ |
| goto finish; |
| } |
| |
| /* |
| * the bbio may be freed once we submit the last bio. Make sure |
| * not to touch it after that |
| */ |
| atomic_set(&rbio->stripes_pending, bios_to_read); |
| while (1) { |
| bio = bio_list_pop(&bio_list); |
| if (!bio) |
| break; |
| |
| bio->bi_private = rbio; |
| bio->bi_end_io = raid_rmw_end_io; |
| bio->bi_opf = REQ_OP_READ; |
| |
| btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
| |
| submit_bio(bio); |
| } |
| /* the actual write will happen once the reads are done */ |
| return 0; |
| |
| cleanup: |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| |
| while ((bio = bio_list_pop(&bio_list))) |
| bio_put(bio); |
| |
| return -EIO; |
| |
| finish: |
| validate_rbio_for_rmw(rbio); |
| return 0; |
| } |
| |
| /* |
| * if the upper layers pass in a full stripe, we thank them by only allocating |
| * enough pages to hold the parity, and sending it all down quickly. |
| */ |
| static int full_stripe_write(struct btrfs_raid_bio *rbio) |
| { |
| int ret; |
| |
| ret = alloc_rbio_parity_pages(rbio); |
| if (ret) { |
| __free_raid_bio(rbio); |
| return ret; |
| } |
| |
| ret = lock_stripe_add(rbio); |
| if (ret == 0) |
| finish_rmw(rbio); |
| return 0; |
| } |
| |
| /* |
| * partial stripe writes get handed over to async helpers. |
| * We're really hoping to merge a few more writes into this |
| * rbio before calculating new parity |
| */ |
| static int partial_stripe_write(struct btrfs_raid_bio *rbio) |
| { |
| int ret; |
| |
| ret = lock_stripe_add(rbio); |
| if (ret == 0) |
| start_async_work(rbio, rmw_work); |
| return 0; |
| } |
| |
| /* |
| * sometimes while we were reading from the drive to |
| * recalculate parity, enough new bios come into create |
| * a full stripe. So we do a check here to see if we can |
| * go directly to finish_rmw |
| */ |
| static int __raid56_parity_write(struct btrfs_raid_bio *rbio) |
| { |
| /* head off into rmw land if we don't have a full stripe */ |
| if (!rbio_is_full(rbio)) |
| return partial_stripe_write(rbio); |
| return full_stripe_write(rbio); |
| } |
| |
| /* |
| * We use plugging call backs to collect full stripes. |
| * Any time we get a partial stripe write while plugged |
| * we collect it into a list. When the unplug comes down, |
| * we sort the list by logical block number and merge |
| * everything we can into the same rbios |
| */ |
| struct btrfs_plug_cb { |
| struct blk_plug_cb cb; |
| struct btrfs_fs_info *info; |
| struct list_head rbio_list; |
| struct btrfs_work work; |
| }; |
| |
| /* |
| * rbios on the plug list are sorted for easier merging. |
| */ |
| static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, |
| plug_list); |
| struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, |
| plug_list); |
| u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
| u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; |
| |
| if (a_sector < b_sector) |
| return -1; |
| if (a_sector > b_sector) |
| return 1; |
| return 0; |
| } |
| |
| static void run_plug(struct btrfs_plug_cb *plug) |
| { |
| struct btrfs_raid_bio *cur; |
| struct btrfs_raid_bio *last = NULL; |
| |
| /* |
| * sort our plug list then try to merge |
| * everything we can in hopes of creating full |
| * stripes. |
| */ |
| list_sort(NULL, &plug->rbio_list, plug_cmp); |
| while (!list_empty(&plug->rbio_list)) { |
| cur = list_entry(plug->rbio_list.next, |
| struct btrfs_raid_bio, plug_list); |
| list_del_init(&cur->plug_list); |
| |
| if (rbio_is_full(cur)) { |
| int ret; |
| |
| /* we have a full stripe, send it down */ |
| ret = full_stripe_write(cur); |
| BUG_ON(ret); |
| continue; |
| } |
| if (last) { |
| if (rbio_can_merge(last, cur)) { |
| merge_rbio(last, cur); |
| __free_raid_bio(cur); |
| continue; |
| |
| } |
| __raid56_parity_write(last); |
| } |
| last = cur; |
| } |
| if (last) { |
| __raid56_parity_write(last); |
| } |
| kfree(plug); |
| } |
| |
| /* |
| * if the unplug comes from schedule, we have to push the |
| * work off to a helper thread |
| */ |
| static void unplug_work(struct btrfs_work *work) |
| { |
| struct btrfs_plug_cb *plug; |
| plug = container_of(work, struct btrfs_plug_cb, work); |
| run_plug(plug); |
| } |
| |
| static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) |
| { |
| struct btrfs_plug_cb *plug; |
| plug = container_of(cb, struct btrfs_plug_cb, cb); |
| |
| if (from_schedule) { |
| btrfs_init_work(&plug->work, btrfs_rmw_helper, |
| unplug_work, NULL, NULL); |
| btrfs_queue_work(plug->info->rmw_workers, |
| &plug->work); |
| return; |
| } |
| run_plug(plug); |
| } |
| |
| /* |
| * our main entry point for writes from the rest of the FS. |
| */ |
| int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, |
| struct btrfs_bio *bbio, u64 stripe_len) |
| { |
| struct btrfs_raid_bio *rbio; |
| struct btrfs_plug_cb *plug = NULL; |
| struct blk_plug_cb *cb; |
| int ret; |
| |
| rbio = alloc_rbio(fs_info, bbio, stripe_len); |
| if (IS_ERR(rbio)) { |
| btrfs_put_bbio(bbio); |
| return PTR_ERR(rbio); |
| } |
| bio_list_add(&rbio->bio_list, bio); |
| rbio->bio_list_bytes = bio->bi_iter.bi_size; |
| rbio->operation = BTRFS_RBIO_WRITE; |
| |
| btrfs_bio_counter_inc_noblocked(fs_info); |
| rbio->generic_bio_cnt = 1; |
| |
| /* |
| * don't plug on full rbios, just get them out the door |
| * as quickly as we can |
| */ |
| if (rbio_is_full(rbio)) { |
| ret = full_stripe_write(rbio); |
| if (ret) |
| btrfs_bio_counter_dec(fs_info); |
| return ret; |
| } |
| |
| cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); |
| if (cb) { |
| plug = container_of(cb, struct btrfs_plug_cb, cb); |
| if (!plug->info) { |
| plug->info = fs_info; |
| INIT_LIST_HEAD(&plug->rbio_list); |
| } |
| list_add_tail(&rbio->plug_list, &plug->rbio_list); |
| ret = 0; |
| } else { |
| ret = __raid56_parity_write(rbio); |
| if (ret) |
| btrfs_bio_counter_dec(fs_info); |
| } |
| return ret; |
| } |
| |
| /* |
| * all parity reconstruction happens here. We've read in everything |
| * we can find from the drives and this does the heavy lifting of |
| * sorting the good from the bad. |
| */ |
| static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) |
| { |
| int pagenr, stripe; |
| void **pointers; |
| int faila = -1, failb = -1; |
| struct page *page; |
| blk_status_t err; |
| int i; |
| |
| pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
| if (!pointers) { |
| err = BLK_STS_RESOURCE; |
| goto cleanup_io; |
| } |
| |
| faila = rbio->faila; |
| failb = rbio->failb; |
| |
| if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { |
| spin_lock_irq(&rbio->bio_list_lock); |
| set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| spin_unlock_irq(&rbio->bio_list_lock); |
| } |
| |
| index_rbio_pages(rbio); |
| |
| for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| /* |
| * Now we just use bitmap to mark the horizontal stripes in |
| * which we have data when doing parity scrub. |
| */ |
| if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && |
| !test_bit(pagenr, rbio->dbitmap)) |
| continue; |
| |
| /* setup our array of pointers with pages |
| * from each stripe |
| */ |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| /* |
| * if we're rebuilding a read, we have to use |
| * pages from the bio list |
| */ |
| if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && |
| (stripe == faila || stripe == failb)) { |
| page = page_in_rbio(rbio, stripe, pagenr, 0); |
| } else { |
| page = rbio_stripe_page(rbio, stripe, pagenr); |
| } |
| pointers[stripe] = kmap(page); |
| } |
| |
| /* all raid6 handling here */ |
| if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { |
| /* |
| * single failure, rebuild from parity raid5 |
| * style |
| */ |
| if (failb < 0) { |
| if (faila == rbio->nr_data) { |
| /* |
| * Just the P stripe has failed, without |
| * a bad data or Q stripe. |
| * TODO, we should redo the xor here. |
| */ |
| err = BLK_STS_IOERR; |
| goto cleanup; |
| } |
| /* |
| * a single failure in raid6 is rebuilt |
| * in the pstripe code below |
| */ |
| goto pstripe; |
| } |
| |
| /* make sure our ps and qs are in order */ |
| if (faila > failb) { |
| int tmp = failb; |
| failb = faila; |
| faila = tmp; |
| } |
| |
| /* if the q stripe is failed, do a pstripe reconstruction |
| * from the xors. |
| * If both the q stripe and the P stripe are failed, we're |
| * here due to a crc mismatch and we can't give them the |
| * data they want |
| */ |
| if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { |
| if (rbio->bbio->raid_map[faila] == |
| RAID5_P_STRIPE) { |
| err = BLK_STS_IOERR; |
| goto cleanup; |
| } |
| /* |
| * otherwise we have one bad data stripe and |
| * a good P stripe. raid5! |
| */ |
| goto pstripe; |
| } |
| |
| if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { |
| raid6_datap_recov(rbio->real_stripes, |
| PAGE_SIZE, faila, pointers); |
| } else { |
| raid6_2data_recov(rbio->real_stripes, |
| PAGE_SIZE, faila, failb, |
| pointers); |
| } |
| } else { |
| void *p; |
| |
| /* rebuild from P stripe here (raid5 or raid6) */ |
| BUG_ON(failb != -1); |
| pstripe: |
| /* Copy parity block into failed block to start with */ |
| copy_page(pointers[faila], pointers[rbio->nr_data]); |
| |
| /* rearrange the pointer array */ |
| p = pointers[faila]; |
| for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) |
| pointers[stripe] = pointers[stripe + 1]; |
| pointers[rbio->nr_data - 1] = p; |
| |
| /* xor in the rest */ |
| run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); |
| } |
| /* if we're doing this rebuild as part of an rmw, go through |
| * and set all of our private rbio pages in the |
| * failed stripes as uptodate. This way finish_rmw will |
| * know they can be trusted. If this was a read reconstruction, |
| * other endio functions will fiddle the uptodate bits |
| */ |
| if (rbio->operation == BTRFS_RBIO_WRITE) { |
| for (i = 0; i < rbio->stripe_npages; i++) { |
| if (faila != -1) { |
| page = rbio_stripe_page(rbio, faila, i); |
| SetPageUptodate(page); |
| } |
| if (failb != -1) { |
| page = rbio_stripe_page(rbio, failb, i); |
| SetPageUptodate(page); |
| } |
| } |
| } |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| /* |
| * if we're rebuilding a read, we have to use |
| * pages from the bio list |
| */ |
| if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && |
| (stripe == faila || stripe == failb)) { |
| page = page_in_rbio(rbio, stripe, pagenr, 0); |
| } else { |
| page = rbio_stripe_page(rbio, stripe, pagenr); |
| } |
| kunmap(page); |
| } |
| } |
| |
| err = BLK_STS_OK; |
| cleanup: |
| kfree(pointers); |
| |
| cleanup_io: |
| /* |
| * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a |
| * valid rbio which is consistent with ondisk content, thus such a |
| * valid rbio can be cached to avoid further disk reads. |
| */ |
| if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { |
| /* |
| * - In case of two failures, where rbio->failb != -1: |
| * |
| * Do not cache this rbio since the above read reconstruction |
| * (raid6_datap_recov() or raid6_2data_recov()) may have |
| * changed some content of stripes which are not identical to |
| * on-disk content any more, otherwise, a later write/recover |
| * may steal stripe_pages from this rbio and end up with |
| * corruptions or rebuild failures. |
| * |
| * - In case of single failure, where rbio->failb == -1: |
| * |
| * Cache this rbio iff the above read reconstruction is |
| * executed without problems. |
| */ |
| if (err == BLK_STS_OK && rbio->failb < 0) |
| cache_rbio_pages(rbio); |
| else |
| clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| |
| rbio_orig_end_io(rbio, err); |
| } else if (err == BLK_STS_OK) { |
| rbio->faila = -1; |
| rbio->failb = -1; |
| |
| if (rbio->operation == BTRFS_RBIO_WRITE) |
| finish_rmw(rbio); |
| else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) |
| finish_parity_scrub(rbio, 0); |
| else |
| BUG(); |
| } else { |
| rbio_orig_end_io(rbio, err); |
| } |
| } |
| |
| /* |
| * This is called only for stripes we've read from disk to |
| * reconstruct the parity. |
| */ |
| static void raid_recover_end_io(struct bio *bio) |
| { |
| struct btrfs_raid_bio *rbio = bio->bi_private; |
| |
| /* |
| * we only read stripe pages off the disk, set them |
| * up to date if there were no errors |
| */ |
| if (bio->bi_status) |
| fail_bio_stripe(rbio, bio); |
| else |
| set_bio_pages_uptodate(bio); |
| bio_put(bio); |
| |
| if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| return; |
| |
| if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| else |
| __raid_recover_end_io(rbio); |
| } |
| |
| /* |
| * reads everything we need off the disk to reconstruct |
| * the parity. endio handlers trigger final reconstruction |
| * when the IO is done. |
| * |
| * This is used both for reads from the higher layers and for |
| * parity construction required to finish a rmw cycle. |
| */ |
| static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) |
| { |
| int bios_to_read = 0; |
| struct bio_list bio_list; |
| int ret; |
| int pagenr; |
| int stripe; |
| struct bio *bio; |
| |
| bio_list_init(&bio_list); |
| |
| ret = alloc_rbio_pages(rbio); |
| if (ret) |
| goto cleanup; |
| |
| atomic_set(&rbio->error, 0); |
| |
| /* |
| * read everything that hasn't failed. Thanks to the |
| * stripe cache, it is possible that some or all of these |
| * pages are going to be uptodate. |
| */ |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| if (rbio->faila == stripe || rbio->failb == stripe) { |
| atomic_inc(&rbio->error); |
| continue; |
| } |
| |
| for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| struct page *p; |
| |
| /* |
| * the rmw code may have already read this |
| * page in |
| */ |
| p = rbio_stripe_page(rbio, stripe, pagenr); |
| if (PageUptodate(p)) |
| continue; |
| |
| ret = rbio_add_io_page(rbio, &bio_list, |
| rbio_stripe_page(rbio, stripe, pagenr), |
| stripe, pagenr, rbio->stripe_len); |
| if (ret < 0) |
| goto cleanup; |
| } |
| } |
| |
| bios_to_read = bio_list_size(&bio_list); |
| if (!bios_to_read) { |
| /* |
| * we might have no bios to read just because the pages |
| * were up to date, or we might have no bios to read because |
| * the devices were gone. |
| */ |
| if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { |
| __raid_recover_end_io(rbio); |
| goto out; |
| } else { |
| goto cleanup; |
| } |
| } |
| |
| /* |
| * the bbio may be freed once we submit the last bio. Make sure |
| * not to touch it after that |
| */ |
| atomic_set(&rbio->stripes_pending, bios_to_read); |
| while (1) { |
| bio = bio_list_pop(&bio_list); |
| if (!bio) |
| break; |
| |
| bio->bi_private = rbio; |
| bio->bi_end_io = raid_recover_end_io; |
| bio->bi_opf = REQ_OP_READ; |
| |
| btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
| |
| submit_bio(bio); |
| } |
| out: |
| return 0; |
| |
| cleanup: |
| if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| rbio->operation == BTRFS_RBIO_REBUILD_MISSING) |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| |
| while ((bio = bio_list_pop(&bio_list))) |
| bio_put(bio); |
| |
| return -EIO; |
| } |
| |
| /* |
| * the main entry point for reads from the higher layers. This |
| * is really only called when the normal read path had a failure, |
| * so we assume the bio they send down corresponds to a failed part |
| * of the drive. |
| */ |
| int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, |
| struct btrfs_bio *bbio, u64 stripe_len, |
| int mirror_num, int generic_io) |
| { |
| struct btrfs_raid_bio *rbio; |
| int ret; |
| |
| if (generic_io) { |
| ASSERT(bbio->mirror_num == mirror_num); |
| btrfs_io_bio(bio)->mirror_num = mirror_num; |
| } |
| |
| rbio = alloc_rbio(fs_info, bbio, stripe_len); |
| if (IS_ERR(rbio)) { |
| if (generic_io) |
| btrfs_put_bbio(bbio); |
| return PTR_ERR(rbio); |
| } |
| |
| rbio->operation = BTRFS_RBIO_READ_REBUILD; |
| bio_list_add(&rbio->bio_list, bio); |
| rbio->bio_list_bytes = bio->bi_iter.bi_size; |
| |
| rbio->faila = find_logical_bio_stripe(rbio, bio); |
| if (rbio->faila == -1) { |
| btrfs_warn(fs_info, |
| "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", |
| __func__, (u64)bio->bi_iter.bi_sector << 9, |
| (u64)bio->bi_iter.bi_size, bbio->map_type); |
| if (generic_io) |
| btrfs_put_bbio(bbio); |
| kfree(rbio); |
| return -EIO; |
| } |
| |
| if (generic_io) { |
| btrfs_bio_counter_inc_noblocked(fs_info); |
| rbio->generic_bio_cnt = 1; |
| } else { |
| btrfs_get_bbio(bbio); |
| } |
| |
| /* |
| * Loop retry: |
| * for 'mirror == 2', reconstruct from all other stripes. |
| * for 'mirror_num > 2', select a stripe to fail on every retry. |
| */ |
| if (mirror_num > 2) { |
| /* |
| * 'mirror == 3' is to fail the p stripe and |
| * reconstruct from the q stripe. 'mirror > 3' is to |
| * fail a data stripe and reconstruct from p+q stripe. |
| */ |
| rbio->failb = rbio->real_stripes - (mirror_num - 1); |
| ASSERT(rbio->failb > 0); |
| if (rbio->failb <= rbio->faila) |
| rbio->failb--; |
| } |
| |
| ret = lock_stripe_add(rbio); |
| |
| /* |
| * __raid56_parity_recover will end the bio with |
| * any errors it hits. We don't want to return |
| * its error value up the stack because our caller |
| * will end up calling bio_endio with any nonzero |
| * return |
| */ |
| if (ret == 0) |
| __raid56_parity_recover(rbio); |
| /* |
| * our rbio has been added to the list of |
| * rbios that will be handled after the |
| * currently lock owner is done |
| */ |
| return 0; |
| |
| } |
| |
| static void rmw_work(struct btrfs_work *work) |
| { |
| struct btrfs_raid_bio *rbio; |
| |
| rbio = container_of(work, struct btrfs_raid_bio, work); |
| raid56_rmw_stripe(rbio); |
| } |
| |
| static void read_rebuild_work(struct btrfs_work *work) |
| { |
| struct btrfs_raid_bio *rbio; |
| |
| rbio = container_of(work, struct btrfs_raid_bio, work); |
| __raid56_parity_recover(rbio); |
| } |
| |
| /* |
| * The following code is used to scrub/replace the parity stripe |
| * |
| * Caller must have already increased bio_counter for getting @bbio. |
| * |
| * Note: We need make sure all the pages that add into the scrub/replace |
| * raid bio are correct and not be changed during the scrub/replace. That |
| * is those pages just hold metadata or file data with checksum. |
| */ |
| |
| struct btrfs_raid_bio * |
| raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| struct btrfs_bio *bbio, u64 stripe_len, |
| struct btrfs_device *scrub_dev, |
| unsigned long *dbitmap, int stripe_nsectors) |
| { |
| struct btrfs_raid_bio *rbio; |
| int i; |
| |
| rbio = alloc_rbio(fs_info, bbio, stripe_len); |
| if (IS_ERR(rbio)) |
| return NULL; |
| bio_list_add(&rbio->bio_list, bio); |
| /* |
| * This is a special bio which is used to hold the completion handler |
| * and make the scrub rbio is similar to the other types |
| */ |
| ASSERT(!bio->bi_iter.bi_size); |
| rbio->operation = BTRFS_RBIO_PARITY_SCRUB; |
| |
| /* |
| * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted |
| * to the end position, so this search can start from the first parity |
| * stripe. |
| */ |
| for (i = rbio->nr_data; i < rbio->real_stripes; i++) { |
| if (bbio->stripes[i].dev == scrub_dev) { |
| rbio->scrubp = i; |
| break; |
| } |
| } |
| ASSERT(i < rbio->real_stripes); |
| |
| /* Now we just support the sectorsize equals to page size */ |
| ASSERT(fs_info->sectorsize == PAGE_SIZE); |
| ASSERT(rbio->stripe_npages == stripe_nsectors); |
| bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); |
| |
| /* |
| * We have already increased bio_counter when getting bbio, record it |
| * so we can free it at rbio_orig_end_io(). |
| */ |
| rbio->generic_bio_cnt = 1; |
| |
| return rbio; |
| } |
| |
| /* Used for both parity scrub and missing. */ |
| void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, |
| u64 logical) |
| { |
| int stripe_offset; |
| int index; |
| |
| ASSERT(logical >= rbio->bbio->raid_map[0]); |
| ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + |
| rbio->stripe_len * rbio->nr_data); |
| stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); |
| index = stripe_offset >> PAGE_SHIFT; |
| rbio->bio_pages[index] = page; |
| } |
| |
| /* |
| * We just scrub the parity that we have correct data on the same horizontal, |
| * so we needn't allocate all pages for all the stripes. |
| */ |
| static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) |
| { |
| int i; |
| int bit; |
| int index; |
| struct page *page; |
| |
| for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { |
| for (i = 0; i < rbio->real_stripes; i++) { |
| index = i * rbio->stripe_npages + bit; |
| if (rbio->stripe_pages[index]) |
| continue; |
| |
| page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| if (!page) |
| return -ENOMEM; |
| rbio->stripe_pages[index] = page; |
| } |
| } |
| return 0; |
| } |
| |
| static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
| int need_check) |
| { |
| struct btrfs_bio *bbio = rbio->bbio; |
| void **pointers = rbio->finish_pointers; |
| unsigned long *pbitmap = rbio->finish_pbitmap; |
| int nr_data = rbio->nr_data; |
| int stripe; |
| int pagenr; |
| int p_stripe = -1; |
| int q_stripe = -1; |
| struct page *p_page = NULL; |
| struct page *q_page = NULL; |
| struct bio_list bio_list; |
| struct bio *bio; |
| int is_replace = 0; |
| int ret; |
| |
| bio_list_init(&bio_list); |
| |
| if (rbio->real_stripes - rbio->nr_data == 1) { |
| p_stripe = rbio->real_stripes - 1; |
| } else if (rbio->real_stripes - rbio->nr_data == 2) { |
| p_stripe = rbio->real_stripes - 2; |
| q_stripe = rbio->real_stripes - 1; |
| } else { |
| BUG(); |
| } |
| |
| if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { |
| is_replace = 1; |
| bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); |
| } |
| |
| /* |
| * Because the higher layers(scrubber) are unlikely to |
| * use this area of the disk again soon, so don't cache |
| * it. |
| */ |
| clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| |
| if (!need_check) |
| goto writeback; |
| |
| p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| if (!p_page) |
| goto cleanup; |
| SetPageUptodate(p_page); |
| |
| if (q_stripe != -1) { |
| q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| if (!q_page) { |
| __free_page(p_page); |
| goto cleanup; |
| } |
| SetPageUptodate(q_page); |
| } |
| |
| atomic_set(&rbio->error, 0); |
| |
| for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
| struct page *p; |
| void *parity; |
| /* first collect one page from each data stripe */ |
| for (stripe = 0; stripe < nr_data; stripe++) { |
| p = page_in_rbio(rbio, stripe, pagenr, 0); |
| pointers[stripe] = kmap(p); |
| } |
| |
| /* then add the parity stripe */ |
| pointers[stripe++] = kmap(p_page); |
| |
| if (q_stripe != -1) { |
| |
| /* |
| * raid6, add the qstripe and call the |
| * library function to fill in our p/q |
| */ |
| pointers[stripe++] = kmap(q_page); |
| |
| raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
| pointers); |
| } else { |
| /* raid5 */ |
| copy_page(pointers[nr_data], pointers[0]); |
| run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
| } |
| |
| /* Check scrubbing parity and repair it */ |
| p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
| parity = kmap(p); |
| if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) |
| copy_page(parity, pointers[rbio->scrubp]); |
| else |
| /* Parity is right, needn't writeback */ |
| bitmap_clear(rbio->dbitmap, pagenr, 1); |
| kunmap(p); |
| |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
| kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
| } |
| |
| __free_page(p_page); |
| if (q_page) |
| __free_page(q_page); |
| |
| writeback: |
| /* |
| * time to start writing. Make bios for everything from the |
| * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| * everything else. |
| */ |
| for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
| struct page *page; |
| |
| page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
| ret = rbio_add_io_page(rbio, &bio_list, |
| page, rbio->scrubp, pagenr, rbio->stripe_len); |
| if (ret) |
| goto cleanup; |
| } |
| |
| if (!is_replace) |
| goto submit_write; |
| |
| for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { |
| struct page *page; |
| |
| page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
| ret = rbio_add_io_page(rbio, &bio_list, page, |
| bbio->tgtdev_map[rbio->scrubp], |
| pagenr, rbio->stripe_len); |
| if (ret) |
| goto cleanup; |
| } |
| |
| submit_write: |
| nr_data = bio_list_size(&bio_list); |
| if (!nr_data) { |
| /* Every parity is right */ |
| rbio_orig_end_io(rbio, BLK_STS_OK); |
| return; |
| } |
| |
| atomic_set(&rbio->stripes_pending, nr_data); |
| |
| while (1) { |
| bio = bio_list_pop(&bio_list); |
| if (!bio) |
| break; |
| |
| bio->bi_private = rbio; |
| bio->bi_end_io = raid_write_end_io; |
| bio->bi_opf = REQ_OP_WRITE; |
| |
| submit_bio(bio); |
| } |
| return; |
| |
| cleanup: |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| |
| while ((bio = bio_list_pop(&bio_list))) |
| bio_put(bio); |
| } |
| |
| static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) |
| { |
| if (stripe >= 0 && stripe < rbio->nr_data) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * While we're doing the parity check and repair, we could have errors |
| * in reading pages off the disk. This checks for errors and if we're |
| * not able to read the page it'll trigger parity reconstruction. The |
| * parity scrub will be finished after we've reconstructed the failed |
| * stripes |
| */ |
| static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) |
| { |
| if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
| goto cleanup; |
| |
| if (rbio->faila >= 0 || rbio->failb >= 0) { |
| int dfail = 0, failp = -1; |
| |
| if (is_data_stripe(rbio, rbio->faila)) |
| dfail++; |
| else if (is_parity_stripe(rbio->faila)) |
| failp = rbio->faila; |
| |
| if (is_data_stripe(rbio, rbio->failb)) |
| dfail++; |
| else if (is_parity_stripe(rbio->failb)) |
| failp = rbio->failb; |
| |
| /* |
| * Because we can not use a scrubbing parity to repair |
| * the data, so the capability of the repair is declined. |
| * (In the case of RAID5, we can not repair anything) |
| */ |
| if (dfail > rbio->bbio->max_errors - 1) |
| goto cleanup; |
| |
| /* |
| * If all data is good, only parity is correctly, just |
| * repair the parity. |
| */ |
| if (dfail == 0) { |
| finish_parity_scrub(rbio, 0); |
| return; |
| } |
| |
| /* |
| * Here means we got one corrupted data stripe and one |
| * corrupted parity on RAID6, if the corrupted parity |
| * is scrubbing parity, luckily, use the other one to repair |
| * the data, or we can not repair the data stripe. |
| */ |
| if (failp != rbio->scrubp) |
| goto cleanup; |
| |
| __raid_recover_end_io(rbio); |
| } else { |
| finish_parity_scrub(rbio, 1); |
| } |
| return; |
| |
| cleanup: |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| } |
| |
| /* |
| * end io for the read phase of the rmw cycle. All the bios here are physical |
| * stripe bios we've read from the disk so we can recalculate the parity of the |
| * stripe. |
| * |
| * This will usually kick off finish_rmw once all the bios are read in, but it |
| * may trigger parity reconstruction if we had any errors along the way |
| */ |
| static void raid56_parity_scrub_end_io(struct bio *bio) |
| { |
| struct btrfs_raid_bio *rbio = bio->bi_private; |
| |
| if (bio->bi_status) |
| fail_bio_stripe(rbio, bio); |
| else |
| set_bio_pages_uptodate(bio); |
| |
| bio_put(bio); |
| |
| if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| return; |
| |
| /* |
| * this will normally call finish_rmw to start our write |
| * but if there are any failed stripes we'll reconstruct |
| * from parity first |
| */ |
| validate_rbio_for_parity_scrub(rbio); |
| } |
| |
| static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) |
| { |
| int bios_to_read = 0; |
| struct bio_list bio_list; |
| int ret; |
| int pagenr; |
| int stripe; |
| struct bio *bio; |
| |
| bio_list_init(&bio_list); |
| |
| ret = alloc_rbio_essential_pages(rbio); |
| if (ret) |
| goto cleanup; |
| |
| atomic_set(&rbio->error, 0); |
| /* |
| * build a list of bios to read all the missing parts of this |
| * stripe |
| */ |
| for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
| struct page *page; |
| /* |
| * we want to find all the pages missing from |
| * the rbio and read them from the disk. If |
| * page_in_rbio finds a page in the bio list |
| * we don't need to read it off the stripe. |
| */ |
| page = page_in_rbio(rbio, stripe, pagenr, 1); |
| if (page) |
| continue; |
| |
| page = rbio_stripe_page(rbio, stripe, pagenr); |
| /* |
| * the bio cache may have handed us an uptodate |
| * page. If so, be happy and use it |
| */ |
| if (PageUptodate(page)) |
| continue; |
| |
| ret = rbio_add_io_page(rbio, &bio_list, page, |
| stripe, pagenr, rbio->stripe_len); |
| if (ret) |
| goto cleanup; |
| } |
| } |
| |
| bios_to_read = bio_list_size(&bio_list); |
| if (!bios_to_read) { |
| /* |
| * this can happen if others have merged with |
| * us, it means there is nothing left to read. |
| * But if there are missing devices it may not be |
| * safe to do the full stripe write yet. |
| */ |
| goto finish; |
| } |
| |
| /* |
| * the bbio may be freed once we submit the last bio. Make sure |
| * not to touch it after that |
| */ |
| atomic_set(&rbio->stripes_pending, bios_to_read); |
| while (1) { |
| bio = bio_list_pop(&bio_list); |
| if (!bio) |
| break; |
| |
| bio->bi_private = rbio; |
| bio->bi_end_io = raid56_parity_scrub_end_io; |
| bio->bi_opf = REQ_OP_READ; |
| |
| btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
| |
| submit_bio(bio); |
| } |
| /* the actual write will happen once the reads are done */ |
| return; |
| |
| cleanup: |
| rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| |
| while ((bio = bio_list_pop(&bio_list))) |
| bio_put(bio); |
| |
| return; |
| |
| finish: |
| validate_rbio_for_parity_scrub(rbio); |
| } |
| |
| static void scrub_parity_work(struct btrfs_work *work) |
| { |
| struct btrfs_raid_bio *rbio; |
| |
| rbio = container_of(work, struct btrfs_raid_bio, work); |
| raid56_parity_scrub_stripe(rbio); |
| } |
| |
| void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) |
| { |
| if (!lock_stripe_add(rbio)) |
| start_async_work(rbio, scrub_parity_work); |
| } |
| |
| /* The following code is used for dev replace of a missing RAID 5/6 device. */ |
| |
| struct btrfs_raid_bio * |
| raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| struct btrfs_bio *bbio, u64 length) |
| { |
| struct btrfs_raid_bio *rbio; |
| |
| rbio = alloc_rbio(fs_info, bbio, length); |
| if (IS_ERR(rbio)) |
| return NULL; |
| |
| rbio->operation = BTRFS_RBIO_REBUILD_MISSING; |
| bio_list_add(&rbio->bio_list, bio); |
| /* |
| * This is a special bio which is used to hold the completion handler |
| * and make the scrub rbio is similar to the other types |
| */ |
| ASSERT(!bio->bi_iter.bi_size); |
| |
| rbio->faila = find_logical_bio_stripe(rbio, bio); |
| if (rbio->faila == -1) { |
| BUG(); |
| kfree(rbio); |
| return NULL; |
| } |
| |
| /* |
| * When we get bbio, we have already increased bio_counter, record it |
| * so we can free it at rbio_orig_end_io() |
| */ |
| rbio->generic_bio_cnt = 1; |
| |
| return rbio; |
| } |
| |
| void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) |
| { |
| if (!lock_stripe_add(rbio)) |
| start_async_work(rbio, read_rebuild_work); |
| } |