blob: 9341e0e0eb556125b7370ded600e9adbd7f4d5b6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Aspeed AST2400/2500/2600 ADC
*
* Copyright (C) 2017 Google, Inc.
* Copyright (C) 2021 Aspeed Technology Inc.
*
* ADC clock formula:
* Ast2400/Ast2500:
* clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
* Ast2600:
* clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/bitfield.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/iio/iio.h>
#include <linux/iio/driver.h>
#include <linux/iopoll.h>
#define ASPEED_RESOLUTION_BITS 10
#define ASPEED_CLOCKS_PER_SAMPLE 12
#define ASPEED_REG_ENGINE_CONTROL 0x00
#define ASPEED_REG_INTERRUPT_CONTROL 0x04
#define ASPEED_REG_VGA_DETECT_CONTROL 0x08
#define ASPEED_REG_CLOCK_CONTROL 0x0C
#define ASPEED_REG_COMPENSATION_TRIM 0xC4
/*
* The register offset between 0xC8~0xCC can be read and won't affect the
* hardware logic in each version of ADC.
*/
#define ASPEED_REG_MAX 0xD0
#define ASPEED_ADC_ENGINE_ENABLE BIT(0)
#define ASPEED_ADC_OP_MODE GENMASK(3, 1)
#define ASPEED_ADC_OP_MODE_PWR_DOWN 0
#define ASPEED_ADC_OP_MODE_STANDBY 1
#define ASPEED_ADC_OP_MODE_NORMAL 7
#define ASPEED_ADC_CTRL_COMPENSATION BIT(4)
#define ASPEED_ADC_AUTO_COMPENSATION BIT(5)
/*
* Bit 6 determines not only the reference voltage range but also the dividing
* circuit for battery sensing.
*/
#define ASPEED_ADC_REF_VOLTAGE GENMASK(7, 6)
#define ASPEED_ADC_REF_VOLTAGE_2500mV 0
#define ASPEED_ADC_REF_VOLTAGE_1200mV 1
#define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH 2
#define ASPEED_ADC_REF_VOLTAGE_EXT_LOW 3
#define ASPEED_ADC_BAT_SENSING_DIV BIT(6)
#define ASPEED_ADC_BAT_SENSING_DIV_2_3 0
#define ASPEED_ADC_BAT_SENSING_DIV_1_3 1
#define ASPEED_ADC_CTRL_INIT_RDY BIT(8)
#define ASPEED_ADC_CH7_MODE BIT(12)
#define ASPEED_ADC_CH7_NORMAL 0
#define ASPEED_ADC_CH7_BAT 1
#define ASPEED_ADC_BAT_SENSING_ENABLE BIT(13)
#define ASPEED_ADC_CTRL_CHANNEL GENMASK(31, 16)
#define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch) FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
#define ASPEED_ADC_INIT_POLLING_TIME 500
#define ASPEED_ADC_INIT_TIMEOUT 500000
/*
* When the sampling rate is too high, the ADC may not have enough charging
* time, resulting in a low voltage value. Thus, the default uses a slow
* sampling rate for most use cases.
*/
#define ASPEED_ADC_DEF_SAMPLING_RATE 65000
struct aspeed_adc_trim_locate {
const unsigned int offset;
const unsigned int field;
};
struct aspeed_adc_model_data {
const char *model_name;
unsigned int min_sampling_rate; // Hz
unsigned int max_sampling_rate; // Hz
unsigned int vref_fixed_mv;
bool wait_init_sequence;
bool need_prescaler;
bool bat_sense_sup;
u8 scaler_bit_width;
unsigned int num_channels;
const struct aspeed_adc_trim_locate *trim_locate;
};
struct adc_gain {
u8 mult;
u8 div;
};
struct aspeed_adc_data {
struct device *dev;
const struct aspeed_adc_model_data *model_data;
struct regulator *regulator;
void __iomem *base;
spinlock_t clk_lock;
struct clk_hw *fixed_div_clk;
struct clk_hw *clk_prescaler;
struct clk_hw *clk_scaler;
struct reset_control *rst;
int vref_mv;
u32 sample_period_ns;
int cv;
bool battery_sensing;
struct adc_gain battery_mode_gain;
};
#define ASPEED_CHAN(_idx, _data_reg_addr) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (_idx), \
.address = (_data_reg_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_OFFSET), \
}
static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
ASPEED_CHAN(0, 0x10),
ASPEED_CHAN(1, 0x12),
ASPEED_CHAN(2, 0x14),
ASPEED_CHAN(3, 0x16),
ASPEED_CHAN(4, 0x18),
ASPEED_CHAN(5, 0x1A),
ASPEED_CHAN(6, 0x1C),
ASPEED_CHAN(7, 0x1E),
ASPEED_CHAN(8, 0x20),
ASPEED_CHAN(9, 0x22),
ASPEED_CHAN(10, 0x24),
ASPEED_CHAN(11, 0x26),
ASPEED_CHAN(12, 0x28),
ASPEED_CHAN(13, 0x2A),
ASPEED_CHAN(14, 0x2C),
ASPEED_CHAN(15, 0x2E),
};
#define ASPEED_BAT_CHAN(_idx, _data_reg_addr) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (_idx), \
.address = (_data_reg_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
}
static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
ASPEED_CHAN(0, 0x10),
ASPEED_CHAN(1, 0x12),
ASPEED_CHAN(2, 0x14),
ASPEED_CHAN(3, 0x16),
ASPEED_CHAN(4, 0x18),
ASPEED_CHAN(5, 0x1A),
ASPEED_CHAN(6, 0x1C),
ASPEED_BAT_CHAN(7, 0x1E),
};
static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
{
struct device_node *syscon;
struct regmap *scu;
u32 scu_otp, trimming_val;
struct aspeed_adc_data *data = iio_priv(indio_dev);
syscon = of_find_node_by_name(NULL, "syscon");
if (syscon == NULL) {
dev_warn(data->dev, "Couldn't find syscon node\n");
return -EOPNOTSUPP;
}
scu = syscon_node_to_regmap(syscon);
of_node_put(syscon);
if (IS_ERR(scu)) {
dev_warn(data->dev, "Failed to get syscon regmap\n");
return -EOPNOTSUPP;
}
if (data->model_data->trim_locate) {
if (regmap_read(scu, data->model_data->trim_locate->offset,
&scu_otp)) {
dev_warn(data->dev,
"Failed to get adc trimming data\n");
trimming_val = 0x8;
} else {
trimming_val =
((scu_otp) &
(data->model_data->trim_locate->field)) >>
__ffs(data->model_data->trim_locate->field);
}
dev_dbg(data->dev,
"trimming val = %d, offset = %08x, fields = %08x\n",
trimming_val, data->model_data->trim_locate->offset,
data->model_data->trim_locate->field);
writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
}
return 0;
}
static int aspeed_adc_compensation(struct iio_dev *indio_dev)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
u32 index, adc_raw = 0;
u32 adc_engine_control_reg_val;
adc_engine_control_reg_val =
readl(data->base + ASPEED_REG_ENGINE_CONTROL);
adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
adc_engine_control_reg_val |=
(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
ASPEED_ADC_ENGINE_ENABLE);
/*
* Enable compensating sensing:
* After that, the input voltage of ADC will force to half of the reference
* voltage. So the expected reading raw data will become half of the max
* value. We can get compensating value = 0x200 - ADC read raw value.
* It is recommended to average at least 10 samples to get a final CV.
*/
writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
data->base + ASPEED_REG_ENGINE_CONTROL);
/*
* After enable compensating sensing mode need to wait some time for ADC stable
* Experiment result is 1ms.
*/
mdelay(1);
for (index = 0; index < 16; index++) {
/*
* Waiting for the sampling period ensures that the value acquired
* is fresh each time.
*/
ndelay(data->sample_period_ns);
adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
}
adc_raw >>= 4;
data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
writel(adc_engine_control_reg_val,
data->base + ASPEED_REG_ENGINE_CONTROL);
dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
return 0;
}
static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
if (rate < data->model_data->min_sampling_rate ||
rate > data->model_data->max_sampling_rate)
return -EINVAL;
/* Each sampling needs 12 clocks to convert.*/
clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
rate = clk_get_rate(data->clk_scaler->clk);
data->sample_period_ns = DIV_ROUND_UP_ULL(
(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
data->sample_period_ns);
return 0;
}
static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
u32 adc_engine_control_reg_val;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (data->battery_sensing && chan->channel == 7) {
adc_engine_control_reg_val =
readl(data->base + ASPEED_REG_ENGINE_CONTROL);
writel(adc_engine_control_reg_val |
FIELD_PREP(ASPEED_ADC_CH7_MODE,
ASPEED_ADC_CH7_BAT) |
ASPEED_ADC_BAT_SENSING_ENABLE,
data->base + ASPEED_REG_ENGINE_CONTROL);
/*
* After enable battery sensing mode need to wait some time for adc stable
* Experiment result is 1ms.
*/
mdelay(1);
*val = readw(data->base + chan->address);
*val = (*val * data->battery_mode_gain.mult) /
data->battery_mode_gain.div;
/* Restore control register value */
writel(adc_engine_control_reg_val,
data->base + ASPEED_REG_ENGINE_CONTROL);
} else
*val = readw(data->base + chan->address);
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
if (data->battery_sensing && chan->channel == 7)
*val = (data->cv * data->battery_mode_gain.mult) /
data->battery_mode_gain.div;
else
*val = data->cv;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = data->vref_mv;
*val2 = ASPEED_RESOLUTION_BITS;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = clk_get_rate(data->clk_scaler->clk) /
ASPEED_CLOCKS_PER_SAMPLE;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return aspeed_adc_set_sampling_rate(indio_dev, val);
case IIO_CHAN_INFO_SCALE:
case IIO_CHAN_INFO_RAW:
/*
* Technically, these could be written but the only reasons
* for doing so seem better handled in userspace. EPERM is
* returned to signal this is a policy choice rather than a
* hardware limitation.
*/
return -EPERM;
default:
return -EINVAL;
}
}
static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
return -EINVAL;
*readval = readl(data->base + reg);
return 0;
}
static const struct iio_info aspeed_adc_iio_info = {
.read_raw = aspeed_adc_read_raw,
.write_raw = aspeed_adc_write_raw,
.debugfs_reg_access = aspeed_adc_reg_access,
};
static void aspeed_adc_unregister_fixed_divider(void *data)
{
struct clk_hw *clk = data;
clk_hw_unregister_fixed_factor(clk);
}
static void aspeed_adc_reset_assert(void *data)
{
struct reset_control *rst = data;
reset_control_assert(rst);
}
static void aspeed_adc_clk_disable_unprepare(void *data)
{
struct clk *clk = data;
clk_disable_unprepare(clk);
}
static void aspeed_adc_power_down(void *data)
{
struct aspeed_adc_data *priv_data = data;
writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
priv_data->base + ASPEED_REG_ENGINE_CONTROL);
}
static void aspeed_adc_reg_disable(void *data)
{
struct regulator *reg = data;
regulator_disable(reg);
}
static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
int ret;
u32 adc_engine_control_reg_val;
if (data->model_data->vref_fixed_mv) {
data->vref_mv = data->model_data->vref_fixed_mv;
return 0;
}
adc_engine_control_reg_val =
readl(data->base + ASPEED_REG_ENGINE_CONTROL);
data->regulator = devm_regulator_get_optional(data->dev, "vref");
if (!IS_ERR(data->regulator)) {
ret = regulator_enable(data->regulator);
if (ret)
return ret;
ret = devm_add_action_or_reset(
data->dev, aspeed_adc_reg_disable, data->regulator);
if (ret)
return ret;
data->vref_mv = regulator_get_voltage(data->regulator);
/* Conversion from uV to mV */
data->vref_mv /= 1000;
if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
writel(adc_engine_control_reg_val |
FIELD_PREP(
ASPEED_ADC_REF_VOLTAGE,
ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
data->base + ASPEED_REG_ENGINE_CONTROL);
else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
writel(adc_engine_control_reg_val |
FIELD_PREP(
ASPEED_ADC_REF_VOLTAGE,
ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
data->base + ASPEED_REG_ENGINE_CONTROL);
else {
dev_err(data->dev, "Regulator voltage %d not support",
data->vref_mv);
return -EOPNOTSUPP;
}
} else {
if (PTR_ERR(data->regulator) != -ENODEV)
return PTR_ERR(data->regulator);
data->vref_mv = 2500000;
of_property_read_u32(data->dev->of_node,
"aspeed,int-vref-microvolt",
&data->vref_mv);
/* Conversion from uV to mV */
data->vref_mv /= 1000;
if (data->vref_mv == 2500)
writel(adc_engine_control_reg_val |
FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
ASPEED_ADC_REF_VOLTAGE_2500mV),
data->base + ASPEED_REG_ENGINE_CONTROL);
else if (data->vref_mv == 1200)
writel(adc_engine_control_reg_val |
FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
ASPEED_ADC_REF_VOLTAGE_1200mV),
data->base + ASPEED_REG_ENGINE_CONTROL);
else {
dev_err(data->dev, "Voltage %d not support", data->vref_mv);
return -EOPNOTSUPP;
}
}
return 0;
}
static int aspeed_adc_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
struct aspeed_adc_data *data;
int ret;
u32 adc_engine_control_reg_val;
unsigned long scaler_flags = 0;
char clk_name[32], clk_parent_name[32];
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->dev = &pdev->dev;
data->model_data = of_device_get_match_data(&pdev->dev);
platform_set_drvdata(pdev, indio_dev);
data->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(data->base))
return PTR_ERR(data->base);
/* Register ADC clock prescaler with source specified by device tree. */
spin_lock_init(&data->clk_lock);
snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
of_clk_get_parent_name(pdev->dev.of_node, 0));
snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
data->model_data->model_name);
data->fixed_div_clk = clk_hw_register_fixed_factor(
&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
if (IS_ERR(data->fixed_div_clk))
return PTR_ERR(data->fixed_div_clk);
ret = devm_add_action_or_reset(data->dev,
aspeed_adc_unregister_fixed_divider,
data->fixed_div_clk);
if (ret)
return ret;
snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
if (data->model_data->need_prescaler) {
snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
data->model_data->model_name);
data->clk_prescaler = devm_clk_hw_register_divider(
&pdev->dev, clk_name, clk_parent_name, 0,
data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
&data->clk_lock);
if (IS_ERR(data->clk_prescaler))
return PTR_ERR(data->clk_prescaler);
snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
clk_name);
scaler_flags = CLK_SET_RATE_PARENT;
}
/*
* Register ADC clock scaler downstream from the prescaler. Allow rate
* setting to adjust the prescaler as well.
*/
snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
data->model_data->model_name);
data->clk_scaler = devm_clk_hw_register_divider(
&pdev->dev, clk_name, clk_parent_name, scaler_flags,
data->base + ASPEED_REG_CLOCK_CONTROL, 0,
data->model_data->scaler_bit_width,
data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
&data->clk_lock);
if (IS_ERR(data->clk_scaler))
return PTR_ERR(data->clk_scaler);
data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
if (IS_ERR(data->rst)) {
dev_err(&pdev->dev,
"invalid or missing reset controller device tree entry");
return PTR_ERR(data->rst);
}
reset_control_deassert(data->rst);
ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
data->rst);
if (ret)
return ret;
ret = aspeed_adc_vref_config(indio_dev);
if (ret)
return ret;
if (of_find_property(data->dev->of_node, "aspeed,trim-data-valid",
NULL)) {
ret = aspeed_adc_set_trim_data(indio_dev);
if (ret)
return ret;
}
if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
NULL)) {
if (data->model_data->bat_sense_sup) {
data->battery_sensing = 1;
if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
ASPEED_ADC_BAT_SENSING_DIV) {
data->battery_mode_gain.mult = 3;
data->battery_mode_gain.div = 1;
} else {
data->battery_mode_gain.mult = 3;
data->battery_mode_gain.div = 2;
}
} else
dev_warn(&pdev->dev,
"Failed to enable battery-sensing mode\n");
}
ret = clk_prepare_enable(data->clk_scaler->clk);
if (ret)
return ret;
ret = devm_add_action_or_reset(data->dev,
aspeed_adc_clk_disable_unprepare,
data->clk_scaler->clk);
if (ret)
return ret;
ret = aspeed_adc_set_sampling_rate(indio_dev,
ASPEED_ADC_DEF_SAMPLING_RATE);
if (ret)
return ret;
adc_engine_control_reg_val =
readl(data->base + ASPEED_REG_ENGINE_CONTROL);
adc_engine_control_reg_val |=
FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
ASPEED_ADC_ENGINE_ENABLE;
/* Enable engine in normal mode. */
writel(adc_engine_control_reg_val,
data->base + ASPEED_REG_ENGINE_CONTROL);
ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
data);
if (ret)
return ret;
if (data->model_data->wait_init_sequence) {
/* Wait for initial sequence complete. */
ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
adc_engine_control_reg_val,
adc_engine_control_reg_val &
ASPEED_ADC_CTRL_INIT_RDY,
ASPEED_ADC_INIT_POLLING_TIME,
ASPEED_ADC_INIT_TIMEOUT);
if (ret)
return ret;
}
aspeed_adc_compensation(indio_dev);
/* Start all channels in normal mode. */
adc_engine_control_reg_val =
readl(data->base + ASPEED_REG_ENGINE_CONTROL);
adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
writel(adc_engine_control_reg_val,
data->base + ASPEED_REG_ENGINE_CONTROL);
indio_dev->name = data->model_data->model_name;
indio_dev->info = &aspeed_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = data->battery_sensing ?
aspeed_adc_iio_bat_channels :
aspeed_adc_iio_channels;
indio_dev->num_channels = data->model_data->num_channels;
ret = devm_iio_device_register(data->dev, indio_dev);
return ret;
}
static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
.offset = 0x154,
.field = GENMASK(31, 28),
};
static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
.offset = 0x5d0,
.field = GENMASK(3, 0),
};
static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
.offset = 0x5d0,
.field = GENMASK(7, 4),
};
static const struct aspeed_adc_model_data ast2400_model_data = {
.model_name = "ast2400-adc",
.vref_fixed_mv = 2500,
.min_sampling_rate = 10000,
.max_sampling_rate = 500000,
.need_prescaler = true,
.scaler_bit_width = 10,
.num_channels = 16,
};
static const struct aspeed_adc_model_data ast2500_model_data = {
.model_name = "ast2500-adc",
.vref_fixed_mv = 1800,
.min_sampling_rate = 1,
.max_sampling_rate = 1000000,
.wait_init_sequence = true,
.need_prescaler = true,
.scaler_bit_width = 10,
.num_channels = 16,
.trim_locate = &ast2500_adc_trim,
};
static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
.model_name = "ast2600-adc0",
.min_sampling_rate = 10000,
.max_sampling_rate = 500000,
.wait_init_sequence = true,
.bat_sense_sup = true,
.scaler_bit_width = 16,
.num_channels = 8,
.trim_locate = &ast2600_adc0_trim,
};
static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
.model_name = "ast2600-adc1",
.min_sampling_rate = 10000,
.max_sampling_rate = 500000,
.wait_init_sequence = true,
.bat_sense_sup = true,
.scaler_bit_width = 16,
.num_channels = 8,
.trim_locate = &ast2600_adc1_trim,
};
static const struct of_device_id aspeed_adc_matches[] = {
{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
{},
};
MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
static struct platform_driver aspeed_adc_driver = {
.probe = aspeed_adc_probe,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = aspeed_adc_matches,
}
};
module_platform_driver(aspeed_adc_driver);
MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
MODULE_LICENSE("GPL");