blob: 123c37e653f3eda4ad120970aa4cd19b094557f8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2016-2017 Hisilicon Limited. */
#include "hclge_err.h"
static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "imp_itcm0_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "imp_itcm1_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "imp_itcm2_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "imp_itcm3_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "imp_dtcm0_mem0_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "imp_dtcm0_mem1_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "imp_dtcm1_mem0_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "imp_dtcm1_mem1_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_imp_itcm4_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "imp_itcm4_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "imp_itcm4_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "cmdq_nic_rx_depth_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "cmdq_nic_tx_depth_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "cmdq_nic_rx_tail_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "cmdq_nic_tx_tail_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "cmdq_nic_rx_head_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "cmdq_nic_tx_head_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "cmdq_nic_rx_addr_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "cmdq_nic_tx_addr_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_cmdq_rocee_mem_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "cmdq_rocee_rx_depth_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "cmdq_rocee_tx_depth_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "cmdq_rocee_rx_tail_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "cmdq_rocee_tx_tail_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "cmdq_rocee_rx_head_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "cmdq_rocee_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "cmdq_rocee_tx_head_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "cmdq_rocee_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "cmdq_rocee_rx_addr_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "cmdq_rocee_tx_addr_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "tqp_int_cfg_even_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "tqp_int_cfg_odd_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "tqp_int_ctrl_even_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "tqp_int_ctrl_odd_ecc_1bit_err" },
{ .int_msk = BIT(4), .msg = "tx_que_scan_int_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "rx_que_scan_int_ecc_1bit_err" },
{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_com_err_int[] = {
{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "igu_rx_buf0_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "igu_rx_buf1_ecc_1bit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_egu_tnl_err_int[] = {
{ .int_msk = BIT(0), .msg = "rx_buf_overflow" },
{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow" },
{ .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow" },
{ .int_msk = BIT(3), .msg = "tx_buf_overflow" },
{ .int_msk = BIT(4), .msg = "tx_buf_underrun" },
{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ncsi_err_int[] = {
{ .int_msk = BIT(0), .msg = "ncsi_tx_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int0[] = {
{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_1bit_err" },
{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_1bit_err" },
{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_1bit_err" },
{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_1bit_err" },
{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_1bit_err" },
{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_1bit_err" },
{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_1bit_err" },
{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_1bit_err" },
{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_1bit_err" },
{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_1bit_err" },
{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_1bit_err" },
{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_1bit_err" },
{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_1bit_err" },
{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_1bit_err" },
{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_1bit_err" },
{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_1bit_err" },
{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_1bit_err" },
{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_1bit_err" },
{ .int_msk = BIT(27),
.msg = "flow_director_ad_mem0_ecc_1bit_err" },
{ .int_msk = BIT(28),
.msg = "flow_director_ad_mem1_ecc_1bit_err" },
{ .int_msk = BIT(29),
.msg = "rx_vlan_tag_memory_ecc_1bit_err" },
{ .int_msk = BIT(30),
.msg = "Tx_UP_mapping_config_mem_ecc_1bit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int1[] = {
{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_erre" },
{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err" },
{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err" },
{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err" },
{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err" },
{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err" },
{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err" },
{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err" },
{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err" },
{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err" },
{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err" },
{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err" },
{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err" },
{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err" },
{ .int_msk = BIT(27),
.msg = "flow_director_ad_mem0_ecc_mbit_err" },
{ .int_msk = BIT(28),
.msg = "flow_director_ad_mem1_ecc_mbit_err" },
{ .int_msk = BIT(29),
.msg = "rx_vlan_tag_memory_ecc_mbit_err" },
{ .int_msk = BIT(30),
.msg = "Tx_UP_mapping_config_mem_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_pf_int[] = {
{ .int_msk = BIT(0), .msg = "Tx_vlan_tag_err" },
{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int2[] = {
{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_1bit_err" },
{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_1bit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int3[] = {
{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err" },
{ /* sentinel */ }
};
struct hclge_tm_sch_ecc_info {
const char *name;
};
static const struct hclge_tm_sch_ecc_info hclge_tm_sch_ecc_err[7][15] = {
{
{ .name = "QSET_QUEUE_CTRL:PRI_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:SPA_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:SPB_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRA_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRB_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:SPA_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:SPB_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRA_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRB_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:QS_LINKLIST TAB" },
{ .name = "QSET_QUEUE_CTRL:SPA_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:SPB_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRA_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRB_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:QS_DEFICITCNT TAB" },
},
{
{ .name = "ROCE_QUEUE_CTRL:QS_LEN TAB" },
{ .name = "ROCE_QUEUE_CTRL:QS_TPTR TAB" },
{ .name = "ROCE_QUEUE_CTRL:QS_HPTR TAB" },
{ .name = "ROCE_QUEUE_CTRL:QLINKLIST TAB" },
{ .name = "ROCE_QUEUE_CTRL:QCLEN TAB" },
},
{
{ .name = "NIC_QUEUE_CTRL:QS_LEN TAB" },
{ .name = "NIC_QUEUE_CTRL:QS_TPTR TAB" },
{ .name = "NIC_QUEUE_CTRL:QS_HPTR TAB" },
{ .name = "NIC_QUEUE_CTRL:QLINKLIST TAB" },
{ .name = "NIC_QUEUE_CTRL:QCLEN TAB" },
},
{
{ .name = "RAM_CFG_CTRL:CSHAP TAB" },
{ .name = "RAM_CFG_CTRL:PSHAP TAB" },
},
{
{ .name = "SHAPER_CTRL:PSHAP TAB" },
},
{
{ .name = "MSCH_CTRL" },
},
{
{ .name = "TOP_CTRL" },
},
};
static const struct hclge_hw_error hclge_tm_sch_err_int[] = {
{ .int_msk = BIT(0), .msg = "tm_sch_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(12),
.msg = "tm_sch_port_shap_offset_fifo_wr_full_err" },
{ .int_msk = BIT(13),
.msg = "tm_sch_port_shap_offset_fifo_rd_empty_err" },
{ .int_msk = BIT(14),
.msg = "tm_sch_pg_pshap_offset_fifo_wr_full_err" },
{ .int_msk = BIT(15),
.msg = "tm_sch_pg_pshap_offset_fifo_rd_empty_err" },
{ .int_msk = BIT(16),
.msg = "tm_sch_pg_cshap_offset_fifo_wr_full_err" },
{ .int_msk = BIT(17),
.msg = "tm_sch_pg_cshap_offset_fifo_rd_empty_err" },
{ .int_msk = BIT(18),
.msg = "tm_sch_pri_pshap_offset_fifo_wr_full_err" },
{ .int_msk = BIT(19),
.msg = "tm_sch_pri_pshap_offset_fifo_rd_empty_err" },
{ .int_msk = BIT(20),
.msg = "tm_sch_pri_cshap_offset_fifo_wr_full_err" },
{ .int_msk = BIT(21),
.msg = "tm_sch_pri_cshap_offset_fifo_rd_empty_err" },
{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_full_err" },
{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_empty_err" },
{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_full_err" },
{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_empty_err" },
{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_full_err" },
{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_empty_err" },
{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_full_err" },
{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_empty_err" },
{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_full_err" },
{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_empty_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_qcn_ecc_err_int[] = {
{ .int_msk = BIT(0), .msg = "qcn_byte_mem_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "qcn_time_mem_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "qcn_fb_mem_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "qcn_link_mem_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "qcn_rate_mem_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "qcn_tmplt_mem_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "qcn_shap_cfg_mem_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "qcn_gp0_barrel_mem_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(16), .msg = "qcn_gp1_barrel_mem_ecc_1bit_err" },
{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(18), .msg = "qcn_gp2_barrel_mem_ecc_1bit_err" },
{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(20), .msg = "qcn_gp3_barral_mem_ecc_1bit_err" },
{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err" },
{ /* sentinel */ }
};
static void hclge_log_error(struct device *dev,
const struct hclge_hw_error *err_list,
u32 err_sts)
{
const struct hclge_hw_error *err;
int i = 0;
while (err_list[i].msg) {
err = &err_list[i];
if (!(err->int_msk & err_sts)) {
i++;
continue;
}
dev_warn(dev, "%s [error status=0x%x] found\n",
err->msg, err_sts);
i++;
}
}
/* hclge_cmd_query_error: read the error information
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @cmd: command opcode
* @flag: flag for extended command structure
* @w_num: offset for setting the read interrupt type.
* @int_type: select which type of the interrupt for which the error
* info will be read(RAS-CE/RAS-NFE/RAS-FE etc).
*
* This function query the error info from hw register/s using command
*/
static int hclge_cmd_query_error(struct hclge_dev *hdev,
struct hclge_desc *desc, u32 cmd,
u16 flag, u8 w_num,
enum hclge_err_int_type int_type)
{
struct device *dev = &hdev->pdev->dev;
int num = 1;
int ret;
hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
num = 2;
}
if (w_num)
desc[0].data[w_num] = cpu_to_le32(int_type);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "query error cmd failed (%d)\n", ret);
return ret;
}
/* hclge_cmd_clear_error: clear the error status
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @desc_src: prefilled descriptor from the previous command for reusing
* @cmd: command opcode
* @flag: flag for extended command structure
*
* This function clear the error status in the hw register/s using command
*/
static int hclge_cmd_clear_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
struct hclge_desc *desc_src,
u32 cmd, u16 flag)
{
struct device *dev = &hdev->pdev->dev;
int num = 1;
int ret, i;
if (cmd) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
num = 2;
}
if (desc_src) {
for (i = 0; i < 6; i++) {
desc[0].data[i] = desc_src[0].data[i];
if (flag)
desc[1].data[i] = desc_src[1].data[i];
}
}
} else {
hclge_cmd_reuse_desc(&desc[0], false);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_reuse_desc(&desc[1], false);
num = 2;
}
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear error cmd failed (%d)\n", ret);
return ret;
}
static int hclge_enable_common_error(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
if (en) {
/* enable COMMON error interrupts */
desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN);
desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
} else {
/* disable COMMON error interrupts */
desc[0].data[0] = 0;
desc[0].data[2] = 0;
desc[0].data[3] = 0;
desc[0].data[4] = 0;
desc[0].data[5] = 0;
}
desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK);
desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable COMMON err interrupts\n",
ret);
return ret;
}
static int hclge_enable_ncsi_error(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
if (hdev->pdev->revision < 0x21)
return 0;
/* enable/disable NCSI error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
else
desc.data[0] = 0;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable NCSI error interrupts\n",
ret);
return ret;
}
static int hclge_enable_igu_egu_error(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* enable/disable error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
else
desc.data[0] = 0;
desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"failed(%d) to enable/disable IGU common interrupts\n",
ret);
return ret;
}
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
else
desc.data[0] = 0;
desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"failed(%d) to enable/disable IGU-EGU TNL interrupts\n",
ret);
return ret;
}
ret = hclge_enable_ncsi_error(hdev, en);
if (ret)
dev_err(dev, "fail(%d) to en/disable err int\n", ret);
return ret;
}
static int hclge_enable_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* enable/disable PPP error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
} else {
desc[0].data[0] = 0;
desc[0].data[1] = 0;
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
} else {
desc[0].data[0] = 0;
desc[0].data[1] = 0;
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable PPP error interrupts\n",
ret);
return ret;
}
static int hclge_enable_ppp_error(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
int ret;
ret = hclge_enable_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
en);
if (ret) {
dev_err(dev,
"failed(%d) to enable/disable PPP error intr 0,1\n",
ret);
return ret;
}
ret = hclge_enable_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
en);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable PPP error intr 2,3\n",
ret);
return ret;
}
int hclge_enable_tm_hw_error(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* enable TM SCH hw errors */
hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
else
desc.data[0] = 0;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev, "failed(%d) to configure TM SCH errors\n", ret);
return ret;
}
/* enable TM QCN hw errors */
ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG,
0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read TM QCN CFG status\n", ret);
return ret;
}
hclge_cmd_reuse_desc(&desc, false);
if (en)
desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
else
desc.data[1] = 0;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"failed(%d) to configure TM QCN mem errors\n", ret);
return ret;
}
static void hclge_process_common_error(struct hclge_dev *hdev,
enum hclge_err_int_type type)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
u32 err_sts;
int ret;
/* read err sts */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_COMMON_ECC_INT_CFG,
HCLGE_CMD_FLAG_NEXT, 0, 0);
if (ret) {
dev_err(dev,
"failed(=%d) to query COMMON error interrupt status\n",
ret);
return;
}
/* log err */
err_sts = (le32_to_cpu(desc[0].data[0])) & HCLGE_IMP_TCM_ECC_INT_MASK;
hclge_log_error(dev, &hclge_imp_tcm_ecc_int[0], err_sts);
err_sts = (le32_to_cpu(desc[0].data[1])) & HCLGE_CMDQ_ECC_INT_MASK;
hclge_log_error(dev, &hclge_cmdq_nic_mem_ecc_int[0], err_sts);
err_sts = (le32_to_cpu(desc[0].data[1]) >> HCLGE_CMDQ_ROC_ECC_INT_SHIFT)
& HCLGE_CMDQ_ECC_INT_MASK;
hclge_log_error(dev, &hclge_cmdq_rocee_mem_ecc_int[0], err_sts);
if ((le32_to_cpu(desc[0].data[3])) & BIT(0))
dev_warn(dev, "imp_rd_data_poison_err found\n");
err_sts = (le32_to_cpu(desc[0].data[3]) >> HCLGE_TQP_ECC_INT_SHIFT) &
HCLGE_TQP_ECC_INT_MASK;
hclge_log_error(dev, &hclge_tqp_int_ecc_int[0], err_sts);
err_sts = (le32_to_cpu(desc[0].data[5])) &
HCLGE_IMP_ITCM4_ECC_INT_MASK;
hclge_log_error(dev, &hclge_imp_itcm4_ecc_int[0], err_sts);
/* clear error interrupts */
desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_CLR_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_CLR_MASK |
HCLGE_CMDQ_ROCEE_ECC_CLR_MASK);
desc[1].data[3] = cpu_to_le32(HCLGE_TQP_IMP_ERR_CLR_MASK);
desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_CLR_MASK);
ret = hclge_cmd_clear_error(hdev, &desc[0], NULL, 0,
HCLGE_CMD_FLAG_NEXT);
if (ret)
dev_err(dev,
"failed(%d) to clear COMMON error interrupt status\n",
ret);
}
static void hclge_process_ncsi_error(struct hclge_dev *hdev,
enum hclge_err_int_type type)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc_rd;
struct hclge_desc desc_wr;
u32 err_sts;
int ret;
if (hdev->pdev->revision < 0x21)
return;
/* read NCSI error status */
ret = hclge_cmd_query_error(hdev, &desc_rd, HCLGE_NCSI_INT_QUERY,
0, 1, HCLGE_NCSI_ERR_INT_TYPE);
if (ret) {
dev_err(dev,
"failed(=%d) to query NCSI error interrupt status\n",
ret);
return;
}
/* log err */
err_sts = le32_to_cpu(desc_rd.data[0]);
hclge_log_error(dev, &hclge_ncsi_err_int[0], err_sts);
/* clear err int */
ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd,
HCLGE_NCSI_INT_CLR, 0);
if (ret)
dev_err(dev, "failed(=%d) to clear NCSI interrupt status\n",
ret);
}
static void hclge_process_igu_egu_error(struct hclge_dev *hdev,
enum hclge_err_int_type int_type)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc_rd;
struct hclge_desc desc_wr;
u32 err_sts;
int ret;
/* read IGU common err sts */
ret = hclge_cmd_query_error(hdev, &desc_rd,
HCLGE_IGU_COMMON_INT_QUERY,
0, 1, int_type);
if (ret) {
dev_err(dev, "failed(=%d) to query IGU common int status\n",
ret);
return;
}
/* log err */
err_sts = le32_to_cpu(desc_rd.data[0]) &
HCLGE_IGU_COM_INT_MASK;
hclge_log_error(dev, &hclge_igu_com_err_int[0], err_sts);
/* clear err int */
ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd,
HCLGE_IGU_COMMON_INT_CLR, 0);
if (ret) {
dev_err(dev, "failed(=%d) to clear IGU common int status\n",
ret);
return;
}
/* read IGU-EGU TNL err sts */
ret = hclge_cmd_query_error(hdev, &desc_rd,
HCLGE_IGU_EGU_TNL_INT_QUERY,
0, 1, int_type);
if (ret) {
dev_err(dev, "failed(=%d) to query IGU-EGU TNL int status\n",
ret);
return;
}
/* log err */
err_sts = le32_to_cpu(desc_rd.data[0]) &
HCLGE_IGU_EGU_TNL_INT_MASK;
hclge_log_error(dev, &hclge_igu_egu_tnl_err_int[0], err_sts);
/* clear err int */
ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd,
HCLGE_IGU_EGU_TNL_INT_CLR, 0);
if (ret) {
dev_err(dev, "failed(=%d) to clear IGU-EGU TNL int status\n",
ret);
return;
}
hclge_process_ncsi_error(hdev, HCLGE_ERR_INT_RAS_NFE);
}
static int hclge_log_and_clear_ppp_error(struct hclge_dev *hdev, u32 cmd,
enum hclge_err_int_type int_type)
{
enum hnae3_reset_type reset_level = HNAE3_NONE_RESET;
struct device *dev = &hdev->pdev->dev;
const struct hclge_hw_error *hw_err_lst1, *hw_err_lst2, *hw_err_lst3;
struct hclge_desc desc[2];
u32 err_sts;
int ret;
/* read PPP INT sts */
ret = hclge_cmd_query_error(hdev, &desc[0], cmd,
HCLGE_CMD_FLAG_NEXT, 5, int_type);
if (ret) {
dev_err(dev, "failed(=%d) to query PPP interrupt status\n",
ret);
return -EIO;
}
/* log error */
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
hw_err_lst1 = &hclge_ppp_mpf_int0[0];
hw_err_lst2 = &hclge_ppp_mpf_int1[0];
hw_err_lst3 = &hclge_ppp_pf_int[0];
} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
hw_err_lst1 = &hclge_ppp_mpf_int2[0];
hw_err_lst2 = &hclge_ppp_mpf_int3[0];
} else {
dev_err(dev, "invalid command(=%d)\n", cmd);
return -EINVAL;
}
err_sts = le32_to_cpu(desc[0].data[2]);
if (err_sts) {
hclge_log_error(dev, hw_err_lst1, err_sts);
reset_level = HNAE3_FUNC_RESET;
}
err_sts = le32_to_cpu(desc[0].data[3]);
if (err_sts) {
hclge_log_error(dev, hw_err_lst2, err_sts);
reset_level = HNAE3_FUNC_RESET;
}
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
err_sts = (le32_to_cpu(desc[0].data[4]) >> 8) & 0x3;
if (err_sts) {
hclge_log_error(dev, hw_err_lst3, err_sts);
reset_level = HNAE3_FUNC_RESET;
}
}
/* clear PPP INT */
ret = hclge_cmd_clear_error(hdev, &desc[0], NULL, 0,
HCLGE_CMD_FLAG_NEXT);
if (ret) {
dev_err(dev, "failed(=%d) to clear PPP interrupt status\n",
ret);
return -EIO;
}
return 0;
}
static void hclge_process_ppp_error(struct hclge_dev *hdev,
enum hclge_err_int_type int_type)
{
struct device *dev = &hdev->pdev->dev;
int ret;
/* read PPP INT0,1 sts */
ret = hclge_log_and_clear_ppp_error(hdev, HCLGE_PPP_CMD0_INT_CMD,
int_type);
if (ret < 0) {
dev_err(dev, "failed(=%d) to clear PPP interrupt 0,1 status\n",
ret);
return;
}
/* read err PPP INT2,3 sts */
ret = hclge_log_and_clear_ppp_error(hdev, HCLGE_PPP_CMD1_INT_CMD,
int_type);
if (ret < 0)
dev_err(dev, "failed(=%d) to clear PPP interrupt 2,3 status\n",
ret);
}
static void hclge_process_tm_sch_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
const struct hclge_tm_sch_ecc_info *tm_sch_ecc_info;
struct hclge_desc desc;
u32 ecc_info;
u8 module_no;
u8 ram_no;
int ret;
/* read TM scheduler errors */
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_MBIT_ECC_INFO_CMD, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH mbit ECC err info\n", ret);
return;
}
ecc_info = le32_to_cpu(desc.data[0]);
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_CMD, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH ECC err status\n", ret);
return;
}
/* log TM scheduler errors */
if (le32_to_cpu(desc.data[0])) {
hclge_log_error(dev, &hclge_tm_sch_err_int[0],
le32_to_cpu(desc.data[0]));
if (le32_to_cpu(desc.data[0]) & 0x2) {
module_no = (ecc_info >> 20) & 0xF;
ram_no = (ecc_info >> 16) & 0xF;
tm_sch_ecc_info =
&hclge_tm_sch_ecc_err[module_no][ram_no];
dev_warn(dev, "ecc err module:ram=%s\n",
tm_sch_ecc_info->name);
dev_warn(dev, "ecc memory address = 0x%x\n",
ecc_info & 0xFFFF);
}
}
/* clear TM scheduler errors */
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to clear TM SCH error status\n", ret);
return;
}
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_CE, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH CE status\n", ret);
return;
}
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to clear TM SCH CE status\n", ret);
return;
}
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_NFE, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH NFE status\n", ret);
return;
}
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to clear TM SCH NFE status\n", ret);
return;
}
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_FE, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH FE status\n", ret);
return;
}
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret)
dev_err(dev, "failed(%d) to clear TM SCH FE status\n", ret);
}
static void hclge_process_tm_qcn_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* read QCN errors */
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_QCN_MEM_INT_INFO_CMD, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read QCN ECC err status\n", ret);
return;
}
/* log QCN errors */
if (le32_to_cpu(desc.data[0]))
hclge_log_error(dev, &hclge_qcn_ecc_err_int[0],
le32_to_cpu(desc.data[0]));
/* clear QCN errors */
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret)
dev_err(dev, "failed(%d) to clear QCN error status\n", ret);
}
static void hclge_process_tm_error(struct hclge_dev *hdev,
enum hclge_err_int_type type)
{
hclge_process_tm_sch_error(hdev);
hclge_process_tm_qcn_error(hdev);
}
static const struct hclge_hw_blk hw_blk[] = {
{ .msk = BIT(0), .name = "IGU_EGU",
.enable_error = hclge_enable_igu_egu_error,
.process_error = hclge_process_igu_egu_error, },
{ .msk = BIT(5), .name = "COMMON",
.enable_error = hclge_enable_common_error,
.process_error = hclge_process_common_error, },
{ .msk = BIT(4), .name = "TM",
.enable_error = hclge_enable_tm_hw_error,
.process_error = hclge_process_tm_error, },
{ .msk = BIT(1), .name = "PPP",
.enable_error = hclge_enable_ppp_error,
.process_error = hclge_process_ppp_error, },
{ /* sentinel */ }
};
int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state)
{
struct device *dev = &hdev->pdev->dev;
int ret = 0;
int i = 0;
while (hw_blk[i].name) {
if (!hw_blk[i].enable_error) {
i++;
continue;
}
ret = hw_blk[i].enable_error(hdev, state);
if (ret) {
dev_err(dev, "fail(%d) to en/disable err int\n", ret);
return ret;
}
i++;
}
return ret;
}
pci_ers_result_t hclge_process_ras_hw_error(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct device *dev = &hdev->pdev->dev;
u32 sts, val;
int i = 0;
sts = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
/* Processing Non-fatal errors */
if (sts & HCLGE_RAS_REG_NFE_MASK) {
val = (sts >> HCLGE_RAS_REG_NFE_SHIFT) & 0xFF;
i = 0;
while (hw_blk[i].name) {
if (!(hw_blk[i].msk & val)) {
i++;
continue;
}
dev_warn(dev, "%s ras non-fatal error identified\n",
hw_blk[i].name);
if (hw_blk[i].process_error)
hw_blk[i].process_error(hdev,
HCLGE_ERR_INT_RAS_NFE);
i++;
}
}
return PCI_ERS_RESULT_NEED_RESET;
}