blob: ed9b89980184821bdc8f53e776a7668a827da5f2 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "atom-types.h"
#include "atombios.h"
#include "processpptables.h"
#include "cgs_common.h"
#include "smu/smu_8_0_d.h"
#include "smu8_fusion.h"
#include "smu/smu_8_0_sh_mask.h"
#include "smumgr.h"
#include "hwmgr.h"
#include "hardwaremanager.h"
#include "cz_ppsmc.h"
#include "smu8_hwmgr.h"
#include "power_state.h"
#include "pp_thermal.h"
#define ixSMUSVI_NB_CURRENTVID 0xD8230044
#define CURRENT_NB_VID_MASK 0xff000000
#define CURRENT_NB_VID__SHIFT 24
#define ixSMUSVI_GFX_CURRENTVID 0xD8230048
#define CURRENT_GFX_VID_MASK 0xff000000
#define CURRENT_GFX_VID__SHIFT 24
static const unsigned long smu8_magic = (unsigned long) PHM_Cz_Magic;
static struct smu8_power_state *cast_smu8_power_state(struct pp_hw_power_state *hw_ps)
{
if (smu8_magic != hw_ps->magic)
return NULL;
return (struct smu8_power_state *)hw_ps;
}
static const struct smu8_power_state *cast_const_smu8_power_state(
const struct pp_hw_power_state *hw_ps)
{
if (smu8_magic != hw_ps->magic)
return NULL;
return (struct smu8_power_state *)hw_ps;
}
static uint32_t smu8_get_eclk_level(struct pp_hwmgr *hwmgr,
uint32_t clock, uint32_t msg)
{
int i = 0;
struct phm_vce_clock_voltage_dependency_table *ptable =
hwmgr->dyn_state.vce_clock_voltage_dependency_table;
switch (msg) {
case PPSMC_MSG_SetEclkSoftMin:
case PPSMC_MSG_SetEclkHardMin:
for (i = 0; i < (int)ptable->count; i++) {
if (clock <= ptable->entries[i].ecclk)
break;
}
break;
case PPSMC_MSG_SetEclkSoftMax:
case PPSMC_MSG_SetEclkHardMax:
for (i = ptable->count - 1; i >= 0; i--) {
if (clock >= ptable->entries[i].ecclk)
break;
}
break;
default:
break;
}
return i;
}
static uint32_t smu8_get_sclk_level(struct pp_hwmgr *hwmgr,
uint32_t clock, uint32_t msg)
{
int i = 0;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
switch (msg) {
case PPSMC_MSG_SetSclkSoftMin:
case PPSMC_MSG_SetSclkHardMin:
for (i = 0; i < (int)table->count; i++) {
if (clock <= table->entries[i].clk)
break;
}
break;
case PPSMC_MSG_SetSclkSoftMax:
case PPSMC_MSG_SetSclkHardMax:
for (i = table->count - 1; i >= 0; i--) {
if (clock >= table->entries[i].clk)
break;
}
break;
default:
break;
}
return i;
}
static uint32_t smu8_get_uvd_level(struct pp_hwmgr *hwmgr,
uint32_t clock, uint32_t msg)
{
int i = 0;
struct phm_uvd_clock_voltage_dependency_table *ptable =
hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
switch (msg) {
case PPSMC_MSG_SetUvdSoftMin:
case PPSMC_MSG_SetUvdHardMin:
for (i = 0; i < (int)ptable->count; i++) {
if (clock <= ptable->entries[i].vclk)
break;
}
break;
case PPSMC_MSG_SetUvdSoftMax:
case PPSMC_MSG_SetUvdHardMax:
for (i = ptable->count - 1; i >= 0; i--) {
if (clock >= ptable->entries[i].vclk)
break;
}
break;
default:
break;
}
return i;
}
static uint32_t smu8_get_max_sclk_level(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
if (data->max_sclk_level == 0) {
smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_GetMaxSclkLevel,
&data->max_sclk_level);
data->max_sclk_level += 1;
}
return data->max_sclk_level;
}
static int smu8_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct amdgpu_device *adev = hwmgr->adev;
data->gfx_ramp_step = 256*25/100;
data->gfx_ramp_delay = 1; /* by default, we delay 1us */
data->mgcg_cgtt_local0 = 0x00000000;
data->mgcg_cgtt_local1 = 0x00000000;
data->clock_slow_down_freq = 25000;
data->skip_clock_slow_down = 1;
data->enable_nb_ps_policy = 1; /* disable until UNB is ready, Enabled */
data->voltage_drop_in_dce_power_gating = 0; /* disable until fully verified */
data->voting_rights_clients = 0x00C00033;
data->static_screen_threshold = 8;
data->ddi_power_gating_disabled = 0;
data->bapm_enabled = 1;
data->voltage_drop_threshold = 0;
data->gfx_power_gating_threshold = 500;
data->vce_slow_sclk_threshold = 20000;
data->dce_slow_sclk_threshold = 30000;
data->disable_driver_thermal_policy = 1;
data->disable_nb_ps3_in_battery = 0;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ABM);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_NonABMSupportInPPLib);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicM3Arbiter);
data->override_dynamic_mgpg = 1;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPatchPowerState);
data->thermal_auto_throttling_treshold = 0;
data->tdr_clock = 0;
data->disable_gfx_power_gating_in_uvd = 0;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEDPM);
data->cc6_settings.cpu_cc6_disable = false;
data->cc6_settings.cpu_pstate_disable = false;
data->cc6_settings.nb_pstate_switch_disable = false;
data->cc6_settings.cpu_pstate_separation_time = 0;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableVoltageIsland);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
return 0;
}
/* convert form 8bit vid to real voltage in mV*4 */
static uint32_t smu8_convert_8Bit_index_to_voltage(
struct pp_hwmgr *hwmgr, uint16_t voltage)
{
return 6200 - (voltage * 25);
}
static int smu8_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *table)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct smu8_sys_info *sys_info = &data->sys_info;
struct phm_clock_voltage_dependency_table *dep_table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
if (dep_table->count > 0) {
table->sclk = dep_table->entries[dep_table->count-1].clk;
table->vddc = smu8_convert_8Bit_index_to_voltage(hwmgr,
(uint16_t)dep_table->entries[dep_table->count-1].v);
}
table->mclk = sys_info->nbp_memory_clock[0];
return 0;
}
static int smu8_init_dynamic_state_adjustment_rule_settings(
struct pp_hwmgr *hwmgr,
ATOM_CLK_VOLT_CAPABILITY *disp_voltage_table)
{
struct phm_clock_voltage_dependency_table *table_clk_vlt;
table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 8),
GFP_KERNEL);
if (NULL == table_clk_vlt) {
pr_err("Can not allocate memory!\n");
return -ENOMEM;
}
table_clk_vlt->count = 8;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
table_clk_vlt->entries[1].v = 1;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
table_clk_vlt->entries[2].v = 2;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
table_clk_vlt->entries[3].v = 3;
table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
table_clk_vlt->entries[4].v = 4;
table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
table_clk_vlt->entries[5].v = 5;
table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
table_clk_vlt->entries[6].v = 6;
table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
table_clk_vlt->entries[7].v = 7;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
return 0;
}
static int smu8_get_system_info_data(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info = NULL;
uint32_t i;
int result = 0;
uint8_t frev, crev;
uint16_t size;
info = (ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *)smu_atom_get_data_table(hwmgr->adev,
GetIndexIntoMasterTable(DATA, IntegratedSystemInfo),
&size, &frev, &crev);
if (info == NULL) {
pr_err("Could not retrieve the Integrated System Info Table!\n");
return -EINVAL;
}
if (crev != 9) {
pr_err("Unsupported IGP table: %d %d\n", frev, crev);
return -EINVAL;
}
data->sys_info.bootup_uma_clock =
le32_to_cpu(info->ulBootUpUMAClock);
data->sys_info.bootup_engine_clock =
le32_to_cpu(info->ulBootUpEngineClock);
data->sys_info.dentist_vco_freq =
le32_to_cpu(info->ulDentistVCOFreq);
data->sys_info.system_config =
le32_to_cpu(info->ulSystemConfig);
data->sys_info.bootup_nb_voltage_index =
le16_to_cpu(info->usBootUpNBVoltage);
data->sys_info.htc_hyst_lmt =
(info->ucHtcHystLmt == 0) ? 5 : info->ucHtcHystLmt;
data->sys_info.htc_tmp_lmt =
(info->ucHtcTmpLmt == 0) ? 203 : info->ucHtcTmpLmt;
if (data->sys_info.htc_tmp_lmt <=
data->sys_info.htc_hyst_lmt) {
pr_err("The htcTmpLmt should be larger than htcHystLmt.\n");
return -EINVAL;
}
data->sys_info.nb_dpm_enable =
data->enable_nb_ps_policy &&
(le32_to_cpu(info->ulSystemConfig) >> 3 & 0x1);
for (i = 0; i < SMU8_NUM_NBPSTATES; i++) {
if (i < SMU8_NUM_NBPMEMORYCLOCK) {
data->sys_info.nbp_memory_clock[i] =
le32_to_cpu(info->ulNbpStateMemclkFreq[i]);
}
data->sys_info.nbp_n_clock[i] =
le32_to_cpu(info->ulNbpStateNClkFreq[i]);
}
for (i = 0; i < MAX_DISPLAY_CLOCK_LEVEL; i++) {
data->sys_info.display_clock[i] =
le32_to_cpu(info->sDispClkVoltageMapping[i].ulMaximumSupportedCLK);
}
/* Here use 4 levels, make sure not exceed */
for (i = 0; i < SMU8_NUM_NBPSTATES; i++) {
data->sys_info.nbp_voltage_index[i] =
le16_to_cpu(info->usNBPStateVoltage[i]);
}
if (!data->sys_info.nb_dpm_enable) {
for (i = 1; i < SMU8_NUM_NBPSTATES; i++) {
if (i < SMU8_NUM_NBPMEMORYCLOCK) {
data->sys_info.nbp_memory_clock[i] =
data->sys_info.nbp_memory_clock[0];
}
data->sys_info.nbp_n_clock[i] =
data->sys_info.nbp_n_clock[0];
data->sys_info.nbp_voltage_index[i] =
data->sys_info.nbp_voltage_index[0];
}
}
if (le32_to_cpu(info->ulGPUCapInfo) &
SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableDFSBypass);
}
data->sys_info.uma_channel_number = info->ucUMAChannelNumber;
smu8_construct_max_power_limits_table (hwmgr,
&hwmgr->dyn_state.max_clock_voltage_on_ac);
smu8_init_dynamic_state_adjustment_rule_settings(hwmgr,
&info->sDISPCLK_Voltage[0]);
return result;
}
static int smu8_construct_boot_state(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->boot_power_level.engineClock =
data->sys_info.bootup_engine_clock;
data->boot_power_level.vddcIndex =
(uint8_t)data->sys_info.bootup_nb_voltage_index;
data->boot_power_level.dsDividerIndex = 0;
data->boot_power_level.ssDividerIndex = 0;
data->boot_power_level.allowGnbSlow = 1;
data->boot_power_level.forceNBPstate = 0;
data->boot_power_level.hysteresis_up = 0;
data->boot_power_level.numSIMDToPowerDown = 0;
data->boot_power_level.display_wm = 0;
data->boot_power_level.vce_wm = 0;
return 0;
}
static int smu8_upload_pptable_to_smu(struct pp_hwmgr *hwmgr)
{
struct SMU8_Fusion_ClkTable *clock_table;
int ret;
uint32_t i;
void *table = NULL;
pp_atomctrl_clock_dividers_kong dividers;
struct phm_clock_voltage_dependency_table *vddc_table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
struct phm_clock_voltage_dependency_table *vdd_gfx_table =
hwmgr->dyn_state.vdd_gfx_dependency_on_sclk;
struct phm_acp_clock_voltage_dependency_table *acp_table =
hwmgr->dyn_state.acp_clock_voltage_dependency_table;
struct phm_uvd_clock_voltage_dependency_table *uvd_table =
hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
struct phm_vce_clock_voltage_dependency_table *vce_table =
hwmgr->dyn_state.vce_clock_voltage_dependency_table;
if (!hwmgr->need_pp_table_upload)
return 0;
ret = smum_download_powerplay_table(hwmgr, &table);
PP_ASSERT_WITH_CODE((0 == ret && NULL != table),
"Fail to get clock table from SMU!", return -EINVAL;);
clock_table = (struct SMU8_Fusion_ClkTable *)table;
/* patch clock table */
PP_ASSERT_WITH_CODE((vddc_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS),
"Dependency table entry exceeds max limit!", return -EINVAL;);
PP_ASSERT_WITH_CODE((vdd_gfx_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS),
"Dependency table entry exceeds max limit!", return -EINVAL;);
PP_ASSERT_WITH_CODE((acp_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS),
"Dependency table entry exceeds max limit!", return -EINVAL;);
PP_ASSERT_WITH_CODE((uvd_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS),
"Dependency table entry exceeds max limit!", return -EINVAL;);
PP_ASSERT_WITH_CODE((vce_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS),
"Dependency table entry exceeds max limit!", return -EINVAL;);
for (i = 0; i < SMU8_MAX_HARDWARE_POWERLEVELS; i++) {
/* vddc_sclk */
clock_table->SclkBreakdownTable.ClkLevel[i].GnbVid =
(i < vddc_table->count) ? (uint8_t)vddc_table->entries[i].v : 0;
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency =
(i < vddc_table->count) ? vddc_table->entries[i].clk : 0;
atomctrl_get_engine_pll_dividers_kong(hwmgr,
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency,
&dividers);
clock_table->SclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.pll_post_divider;
/* vddgfx_sclk */
clock_table->SclkBreakdownTable.ClkLevel[i].GfxVid =
(i < vdd_gfx_table->count) ? (uint8_t)vdd_gfx_table->entries[i].v : 0;
/* acp breakdown */
clock_table->AclkBreakdownTable.ClkLevel[i].GfxVid =
(i < acp_table->count) ? (uint8_t)acp_table->entries[i].v : 0;
clock_table->AclkBreakdownTable.ClkLevel[i].Frequency =
(i < acp_table->count) ? acp_table->entries[i].acpclk : 0;
atomctrl_get_engine_pll_dividers_kong(hwmgr,
clock_table->AclkBreakdownTable.ClkLevel[i].Frequency,
&dividers);
clock_table->AclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.pll_post_divider;
/* uvd breakdown */
clock_table->VclkBreakdownTable.ClkLevel[i].GfxVid =
(i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0;
clock_table->VclkBreakdownTable.ClkLevel[i].Frequency =
(i < uvd_table->count) ? uvd_table->entries[i].vclk : 0;
atomctrl_get_engine_pll_dividers_kong(hwmgr,
clock_table->VclkBreakdownTable.ClkLevel[i].Frequency,
&dividers);
clock_table->VclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.pll_post_divider;
clock_table->DclkBreakdownTable.ClkLevel[i].GfxVid =
(i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0;
clock_table->DclkBreakdownTable.ClkLevel[i].Frequency =
(i < uvd_table->count) ? uvd_table->entries[i].dclk : 0;
atomctrl_get_engine_pll_dividers_kong(hwmgr,
clock_table->DclkBreakdownTable.ClkLevel[i].Frequency,
&dividers);
clock_table->DclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.pll_post_divider;
/* vce breakdown */
clock_table->EclkBreakdownTable.ClkLevel[i].GfxVid =
(i < vce_table->count) ? (uint8_t)vce_table->entries[i].v : 0;
clock_table->EclkBreakdownTable.ClkLevel[i].Frequency =
(i < vce_table->count) ? vce_table->entries[i].ecclk : 0;
atomctrl_get_engine_pll_dividers_kong(hwmgr,
clock_table->EclkBreakdownTable.ClkLevel[i].Frequency,
&dividers);
clock_table->EclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.pll_post_divider;
}
ret = smum_upload_powerplay_table(hwmgr);
return ret;
}
static int smu8_init_sclk_limit(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
unsigned long clock = 0, level;
if (NULL == table || table->count <= 0)
return -EINVAL;
data->sclk_dpm.soft_min_clk = table->entries[0].clk;
data->sclk_dpm.hard_min_clk = table->entries[0].clk;
level = smu8_get_max_sclk_level(hwmgr) - 1;
if (level < table->count)
clock = table->entries[level].clk;
else
clock = table->entries[table->count - 1].clk;
data->sclk_dpm.soft_max_clk = clock;
data->sclk_dpm.hard_max_clk = clock;
return 0;
}
static int smu8_init_uvd_limit(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_uvd_clock_voltage_dependency_table *table =
hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
unsigned long clock = 0;
uint32_t level;
if (NULL == table || table->count <= 0)
return -EINVAL;
data->uvd_dpm.soft_min_clk = 0;
data->uvd_dpm.hard_min_clk = 0;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxUvdLevel, &level);
if (level < table->count)
clock = table->entries[level].vclk;
else
clock = table->entries[table->count - 1].vclk;
data->uvd_dpm.soft_max_clk = clock;
data->uvd_dpm.hard_max_clk = clock;
return 0;
}
static int smu8_init_vce_limit(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_vce_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vce_clock_voltage_dependency_table;
unsigned long clock = 0;
uint32_t level;
if (NULL == table || table->count <= 0)
return -EINVAL;
data->vce_dpm.soft_min_clk = 0;
data->vce_dpm.hard_min_clk = 0;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxEclkLevel, &level);
if (level < table->count)
clock = table->entries[level].ecclk;
else
clock = table->entries[table->count - 1].ecclk;
data->vce_dpm.soft_max_clk = clock;
data->vce_dpm.hard_max_clk = clock;
return 0;
}
static int smu8_init_acp_limit(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_acp_clock_voltage_dependency_table *table =
hwmgr->dyn_state.acp_clock_voltage_dependency_table;
unsigned long clock = 0;
uint32_t level;
if (NULL == table || table->count <= 0)
return -EINVAL;
data->acp_dpm.soft_min_clk = 0;
data->acp_dpm.hard_min_clk = 0;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxAclkLevel, &level);
if (level < table->count)
clock = table->entries[level].acpclk;
else
clock = table->entries[table->count - 1].acpclk;
data->acp_dpm.soft_max_clk = clock;
data->acp_dpm.hard_max_clk = clock;
return 0;
}
static void smu8_init_power_gate_state(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->uvd_power_gated = false;
data->vce_power_gated = false;
data->samu_power_gated = false;
#ifdef CONFIG_DRM_AMD_ACP
data->acp_power_gated = false;
#else
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ACPPowerOFF, NULL);
data->acp_power_gated = true;
#endif
}
static void smu8_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->low_sclk_interrupt_threshold = 0;
}
static int smu8_update_sclk_limit(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
unsigned long clock = 0;
unsigned long level;
unsigned long stable_pstate_sclk;
unsigned long percentage;
data->sclk_dpm.soft_min_clk = table->entries[0].clk;
level = smu8_get_max_sclk_level(hwmgr) - 1;
if (level < table->count)
data->sclk_dpm.soft_max_clk = table->entries[level].clk;
else
data->sclk_dpm.soft_max_clk = table->entries[table->count - 1].clk;
clock = hwmgr->display_config->min_core_set_clock;
if (clock == 0)
pr_debug("min_core_set_clock not set\n");
if (data->sclk_dpm.hard_min_clk != clock) {
data->sclk_dpm.hard_min_clk = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkHardMin,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.hard_min_clk,
PPSMC_MSG_SetSclkHardMin),
NULL);
}
clock = data->sclk_dpm.soft_min_clk;
/* update minimum clocks for Stable P-State feature */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState)) {
percentage = 75;
/*Sclk - calculate sclk value based on percentage and find FLOOR sclk from VddcDependencyOnSCLK table */
stable_pstate_sclk = (hwmgr->dyn_state.max_clock_voltage_on_ac.mclk *
percentage) / 100;
if (clock < stable_pstate_sclk)
clock = stable_pstate_sclk;
}
if (data->sclk_dpm.soft_min_clk != clock) {
data->sclk_dpm.soft_min_clk = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMin,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin),
NULL);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState) &&
data->sclk_dpm.soft_max_clk != clock) {
data->sclk_dpm.soft_max_clk = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMax,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax),
NULL);
}
return 0;
}
static int smu8_set_deep_sleep_sclk_threshold(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep)) {
uint32_t clks = hwmgr->display_config->min_core_set_clock_in_sr;
if (clks == 0)
clks = SMU8_MIN_DEEP_SLEEP_SCLK;
PP_DBG_LOG("Setting Deep Sleep Clock: %d\n", clks);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinDeepSleepSclk,
clks,
NULL);
}
return 0;
}
static int smu8_set_watermark_threshold(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data =
hwmgr->backend;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetWatermarkFrequency,
data->sclk_dpm.soft_max_clk,
NULL);
return 0;
}
static int smu8_nbdpm_pstate_enable_disable(struct pp_hwmgr *hwmgr, bool enable, bool lock)
{
struct smu8_hwmgr *hw_data = hwmgr->backend;
if (hw_data->is_nb_dpm_enabled) {
if (enable) {
PP_DBG_LOG("enable Low Memory PState.\n");
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_EnableLowMemoryPstate,
(lock ? 1 : 0),
NULL);
} else {
PP_DBG_LOG("disable Low Memory PState.\n");
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DisableLowMemoryPstate,
(lock ? 1 : 0),
NULL);
}
}
return 0;
}
static int smu8_disable_nb_dpm(struct pp_hwmgr *hwmgr)
{
int ret = 0;
struct smu8_hwmgr *data = hwmgr->backend;
unsigned long dpm_features = 0;
if (data->is_nb_dpm_enabled) {
smu8_nbdpm_pstate_enable_disable(hwmgr, true, true);
dpm_features |= NB_DPM_MASK;
ret = smum_send_msg_to_smc_with_parameter(
hwmgr,
PPSMC_MSG_DisableAllSmuFeatures,
dpm_features,
NULL);
if (ret == 0)
data->is_nb_dpm_enabled = false;
}
return ret;
}
static int smu8_enable_nb_dpm(struct pp_hwmgr *hwmgr)
{
int ret = 0;
struct smu8_hwmgr *data = hwmgr->backend;
unsigned long dpm_features = 0;
if (!data->is_nb_dpm_enabled) {
PP_DBG_LOG("enabling ALL SMU features.\n");
dpm_features |= NB_DPM_MASK;
ret = smum_send_msg_to_smc_with_parameter(
hwmgr,
PPSMC_MSG_EnableAllSmuFeatures,
dpm_features,
NULL);
if (ret == 0)
data->is_nb_dpm_enabled = true;
}
return ret;
}
static int smu8_update_low_mem_pstate(struct pp_hwmgr *hwmgr, const void *input)
{
bool disable_switch;
bool enable_low_mem_state;
struct smu8_hwmgr *hw_data = hwmgr->backend;
const struct phm_set_power_state_input *states = (struct phm_set_power_state_input *)input;
const struct smu8_power_state *pnew_state = cast_const_smu8_power_state(states->pnew_state);
if (hw_data->sys_info.nb_dpm_enable) {
disable_switch = hw_data->cc6_settings.nb_pstate_switch_disable ? true : false;
enable_low_mem_state = hw_data->cc6_settings.nb_pstate_switch_disable ? false : true;
if (pnew_state->action == FORCE_HIGH)
smu8_nbdpm_pstate_enable_disable(hwmgr, false, disable_switch);
else if (pnew_state->action == CANCEL_FORCE_HIGH)
smu8_nbdpm_pstate_enable_disable(hwmgr, true, disable_switch);
else
smu8_nbdpm_pstate_enable_disable(hwmgr, enable_low_mem_state, disable_switch);
}
return 0;
}
static int smu8_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
{
int ret = 0;
smu8_update_sclk_limit(hwmgr);
smu8_set_deep_sleep_sclk_threshold(hwmgr);
smu8_set_watermark_threshold(hwmgr);
ret = smu8_enable_nb_dpm(hwmgr);
if (ret)
return ret;
smu8_update_low_mem_pstate(hwmgr, input);
return 0;
}
static int smu8_setup_asic_task(struct pp_hwmgr *hwmgr)
{
int ret;
ret = smu8_upload_pptable_to_smu(hwmgr);
if (ret)
return ret;
ret = smu8_init_sclk_limit(hwmgr);
if (ret)
return ret;
ret = smu8_init_uvd_limit(hwmgr);
if (ret)
return ret;
ret = smu8_init_vce_limit(hwmgr);
if (ret)
return ret;
ret = smu8_init_acp_limit(hwmgr);
if (ret)
return ret;
smu8_init_power_gate_state(hwmgr);
smu8_init_sclk_threshold(hwmgr);
return 0;
}
static void smu8_power_up_display_clock_sys_pll(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *hw_data = hwmgr->backend;
hw_data->disp_clk_bypass_pending = false;
hw_data->disp_clk_bypass = false;
}
static void smu8_clear_nb_dpm_flag(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *hw_data = hwmgr->backend;
hw_data->is_nb_dpm_enabled = false;
}
static void smu8_reset_cc6_data(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *hw_data = hwmgr->backend;
hw_data->cc6_settings.cc6_setting_changed = false;
hw_data->cc6_settings.cpu_pstate_separation_time = 0;
hw_data->cc6_settings.cpu_cc6_disable = false;
hw_data->cc6_settings.cpu_pstate_disable = false;
}
static void smu8_program_voting_clients(struct pp_hwmgr *hwmgr)
{
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_0,
SMU8_VOTINGRIGHTSCLIENTS_DFLT0);
}
static void smu8_clear_voting_clients(struct pp_hwmgr *hwmgr)
{
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_0, 0);
}
static int smu8_start_dpm(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->dpm_flags |= DPMFlags_SCLK_Enabled;
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_EnableAllSmuFeatures,
SCLK_DPM_MASK,
NULL);
}
static int smu8_stop_dpm(struct pp_hwmgr *hwmgr)
{
int ret = 0;
struct smu8_hwmgr *data = hwmgr->backend;
unsigned long dpm_features = 0;
if (data->dpm_flags & DPMFlags_SCLK_Enabled) {
dpm_features |= SCLK_DPM_MASK;
data->dpm_flags &= ~DPMFlags_SCLK_Enabled;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DisableAllSmuFeatures,
dpm_features,
NULL);
}
return ret;
}
static int smu8_program_bootup_state(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->sclk_dpm.soft_min_clk = data->sys_info.bootup_engine_clock;
data->sclk_dpm.soft_max_clk = data->sys_info.bootup_engine_clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMin,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin),
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMax,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax),
NULL);
return 0;
}
static void smu8_reset_acp_boot_level(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->acp_boot_level = 0xff;
}
static int smu8_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
smu8_program_voting_clients(hwmgr);
if (smu8_start_dpm(hwmgr))
return -EINVAL;
smu8_program_bootup_state(hwmgr);
smu8_reset_acp_boot_level(hwmgr);
return 0;
}
static int smu8_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
smu8_disable_nb_dpm(hwmgr);
smu8_clear_voting_clients(hwmgr);
if (smu8_stop_dpm(hwmgr))
return -EINVAL;
return 0;
}
static int smu8_power_off_asic(struct pp_hwmgr *hwmgr)
{
smu8_disable_dpm_tasks(hwmgr);
smu8_power_up_display_clock_sys_pll(hwmgr);
smu8_clear_nb_dpm_flag(hwmgr);
smu8_reset_cc6_data(hwmgr);
return 0;
}
static int smu8_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *prequest_ps,
const struct pp_power_state *pcurrent_ps)
{
struct smu8_power_state *smu8_ps =
cast_smu8_power_state(&prequest_ps->hardware);
const struct smu8_power_state *smu8_current_ps =
cast_const_smu8_power_state(&pcurrent_ps->hardware);
struct smu8_hwmgr *data = hwmgr->backend;
struct PP_Clocks clocks = {0, 0, 0, 0};
bool force_high;
smu8_ps->need_dfs_bypass = true;
data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
clocks.memoryClock = hwmgr->display_config->min_mem_set_clock != 0 ?
hwmgr->display_config->min_mem_set_clock :
data->sys_info.nbp_memory_clock[1];
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
clocks.memoryClock = hwmgr->dyn_state.max_clock_voltage_on_ac.mclk;
force_high = (clocks.memoryClock > data->sys_info.nbp_memory_clock[SMU8_NUM_NBPMEMORYCLOCK - 1])
|| (hwmgr->display_config->num_display >= 3);
smu8_ps->action = smu8_current_ps->action;
if (hwmgr->request_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
smu8_nbdpm_pstate_enable_disable(hwmgr, false, false);
else if (hwmgr->request_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD)
smu8_nbdpm_pstate_enable_disable(hwmgr, false, true);
else if (!force_high && (smu8_ps->action == FORCE_HIGH))
smu8_ps->action = CANCEL_FORCE_HIGH;
else if (force_high && (smu8_ps->action != FORCE_HIGH))
smu8_ps->action = FORCE_HIGH;
else
smu8_ps->action = DO_NOTHING;
return 0;
}
static int smu8_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct smu8_hwmgr *data;
data = kzalloc(sizeof(struct smu8_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
result = smu8_initialize_dpm_defaults(hwmgr);
if (result != 0) {
pr_err("smu8_initialize_dpm_defaults failed\n");
return result;
}
result = smu8_get_system_info_data(hwmgr);
if (result != 0) {
pr_err("smu8_get_system_info_data failed\n");
return result;
}
smu8_construct_boot_state(hwmgr);
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = SMU8_MAX_HARDWARE_POWERLEVELS;
return result;
}
static int smu8_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
if (hwmgr != NULL) {
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
kfree(hwmgr->backend);
hwmgr->backend = NULL;
}
return 0;
}
static int smu8_phm_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMin,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMin),
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMax,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax),
NULL);
return 0;
}
static int smu8_phm_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
unsigned long clock = 0, level;
if (NULL == table || table->count <= 0)
return -EINVAL;
data->sclk_dpm.soft_min_clk = table->entries[0].clk;
data->sclk_dpm.hard_min_clk = table->entries[0].clk;
hwmgr->pstate_sclk = table->entries[0].clk;
hwmgr->pstate_mclk = 0;
level = smu8_get_max_sclk_level(hwmgr) - 1;
if (level < table->count)
clock = table->entries[level].clk;
else
clock = table->entries[table->count - 1].clk;
data->sclk_dpm.soft_max_clk = clock;
data->sclk_dpm.hard_max_clk = clock;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMin,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin),
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMax,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax),
NULL);
return 0;
}
static int smu8_phm_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMax,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMax),
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMin,
smu8_get_sclk_level(hwmgr,
data->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin),
NULL);
return 0;
}
static int smu8_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = smu8_phm_force_dpm_highest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
ret = smu8_phm_force_dpm_lowest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = smu8_phm_unforce_dpm_levels(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
static int smu8_dpm_powerdown_uvd(struct pp_hwmgr *hwmgr)
{
if (PP_CAP(PHM_PlatformCaps_UVDPowerGating))
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UVDPowerOFF, NULL);
return 0;
}
static int smu8_dpm_powerup_uvd(struct pp_hwmgr *hwmgr)
{
if (PP_CAP(PHM_PlatformCaps_UVDPowerGating)) {
return smum_send_msg_to_smc_with_parameter(
hwmgr,
PPSMC_MSG_UVDPowerON,
PP_CAP(PHM_PlatformCaps_UVDDynamicPowerGating) ? 1 : 0,
NULL);
}
return 0;
}
static int smu8_dpm_update_vce_dpm(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_vce_clock_voltage_dependency_table *ptable =
hwmgr->dyn_state.vce_clock_voltage_dependency_table;
/* Stable Pstate is enabled and we need to set the VCE DPM to highest level */
if (PP_CAP(PHM_PlatformCaps_StablePState) ||
hwmgr->en_umd_pstate) {
data->vce_dpm.hard_min_clk =
ptable->entries[ptable->count - 1].ecclk;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetEclkHardMin,
smu8_get_eclk_level(hwmgr,
data->vce_dpm.hard_min_clk,
PPSMC_MSG_SetEclkHardMin),
NULL);
} else {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetEclkHardMin,
0,
NULL);
/* disable ECLK DPM 0. Otherwise VCE could hang if
* switching SCLK from DPM 0 to 6/7 */
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetEclkSoftMin,
1,
NULL);
}
return 0;
}
static int smu8_dpm_powerdown_vce(struct pp_hwmgr *hwmgr)
{
if (PP_CAP(PHM_PlatformCaps_VCEPowerGating))
return smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_VCEPowerOFF,
NULL);
return 0;
}
static int smu8_dpm_powerup_vce(struct pp_hwmgr *hwmgr)
{
if (PP_CAP(PHM_PlatformCaps_VCEPowerGating))
return smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_VCEPowerON,
NULL);
return 0;
}
static uint32_t smu8_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct smu8_hwmgr *data = hwmgr->backend;
return data->sys_info.bootup_uma_clock;
}
static uint32_t smu8_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct smu8_power_state *smu8_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
smu8_ps = cast_smu8_power_state(&ps->hardware);
if (low)
return smu8_ps->levels[0].engineClock;
else
return smu8_ps->levels[smu8_ps->level-1].engineClock;
}
static int smu8_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct smu8_power_state *smu8_ps = cast_smu8_power_state(hw_ps);
smu8_ps->level = 1;
smu8_ps->nbps_flags = 0;
smu8_ps->bapm_flags = 0;
smu8_ps->levels[0] = data->boot_power_level;
return 0;
}
static int smu8_dpm_get_pp_table_entry_callback(
struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps,
unsigned int index,
const void *clock_info)
{
struct smu8_power_state *smu8_ps = cast_smu8_power_state(hw_ps);
const ATOM_PPLIB_CZ_CLOCK_INFO *smu8_clock_info = clock_info;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
uint8_t clock_info_index = smu8_clock_info->index;
if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1))
clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1);
smu8_ps->levels[index].engineClock = table->entries[clock_info_index].clk;
smu8_ps->levels[index].vddcIndex = (uint8_t)table->entries[clock_info_index].v;
smu8_ps->level = index + 1;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
smu8_ps->levels[index].dsDividerIndex = 5;
smu8_ps->levels[index].ssDividerIndex = 5;
}
return 0;
}
static int smu8_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
{
int result;
unsigned long ret = 0;
result = pp_tables_get_num_of_entries(hwmgr, &ret);
return result ? 0 : ret;
}
static int smu8_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry, struct pp_power_state *ps)
{
int result;
struct smu8_power_state *smu8_ps;
ps->hardware.magic = smu8_magic;
smu8_ps = cast_smu8_power_state(&(ps->hardware));
result = pp_tables_get_entry(hwmgr, entry, ps,
smu8_dpm_get_pp_table_entry_callback);
smu8_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
smu8_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;
return result;
}
static int smu8_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct smu8_power_state);
}
static void smu8_hw_print_display_cfg(
const struct cc6_settings *cc6_settings)
{
PP_DBG_LOG("New Display Configuration:\n");
PP_DBG_LOG(" cpu_cc6_disable: %d\n",
cc6_settings->cpu_cc6_disable);
PP_DBG_LOG(" cpu_pstate_disable: %d\n",
cc6_settings->cpu_pstate_disable);
PP_DBG_LOG(" nb_pstate_switch_disable: %d\n",
cc6_settings->nb_pstate_switch_disable);
PP_DBG_LOG(" cpu_pstate_separation_time: %d\n\n",
cc6_settings->cpu_pstate_separation_time);
}
static int smu8_set_cpu_power_state(struct pp_hwmgr *hwmgr)
{
struct smu8_hwmgr *hw_data = hwmgr->backend;
uint32_t data = 0;
if (hw_data->cc6_settings.cc6_setting_changed) {
hw_data->cc6_settings.cc6_setting_changed = false;
smu8_hw_print_display_cfg(&hw_data->cc6_settings);
data |= (hw_data->cc6_settings.cpu_pstate_separation_time
& PWRMGT_SEPARATION_TIME_MASK)
<< PWRMGT_SEPARATION_TIME_SHIFT;
data |= (hw_data->cc6_settings.cpu_cc6_disable ? 0x1 : 0x0)
<< PWRMGT_DISABLE_CPU_CSTATES_SHIFT;
data |= (hw_data->cc6_settings.cpu_pstate_disable ? 0x1 : 0x0)
<< PWRMGT_DISABLE_CPU_PSTATES_SHIFT;
PP_DBG_LOG("SetDisplaySizePowerParams data: 0x%X\n",
data);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetDisplaySizePowerParams,
data,
NULL);
}
return 0;
}
static int smu8_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
{
struct smu8_hwmgr *hw_data = hwmgr->backend;
if (separation_time !=
hw_data->cc6_settings.cpu_pstate_separation_time ||
cc6_disable != hw_data->cc6_settings.cpu_cc6_disable ||
pstate_disable != hw_data->cc6_settings.cpu_pstate_disable ||
pstate_switch_disable != hw_data->cc6_settings.nb_pstate_switch_disable) {
hw_data->cc6_settings.cc6_setting_changed = true;
hw_data->cc6_settings.cpu_pstate_separation_time =
separation_time;
hw_data->cc6_settings.cpu_cc6_disable =
cc6_disable;
hw_data->cc6_settings.cpu_pstate_disable =
pstate_disable;
hw_data->cc6_settings.nb_pstate_switch_disable =
pstate_switch_disable;
}
return 0;
}
static int smu8_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
uint32_t i;
const struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dep_on_dal_pwrl;
const struct phm_clock_and_voltage_limits *limits =
&hwmgr->dyn_state.max_clock_voltage_on_ac;
info->engine_max_clock = limits->sclk;
info->memory_max_clock = limits->mclk;
for (i = table->count - 1; i > 0; i--) {
if (limits->vddc >= table->entries[i].v) {
info->level = table->entries[i].clk;
return 0;
}
}
return -EINVAL;
}
static int smu8_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
switch (type) {
case PP_SCLK:
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMin,
mask,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSclkSoftMax,
mask,
NULL);
break;
default:
break;
}
return 0;
}
static int smu8_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_clock_voltage_dependency_table *sclk_table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
int i, now, size = 0;
switch (type) {
case PP_SCLK:
now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC,
ixTARGET_AND_CURRENT_PROFILE_INDEX),
TARGET_AND_CURRENT_PROFILE_INDEX,
CURR_SCLK_INDEX);
for (i = 0; i < sclk_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, sclk_table->entries[i].clk / 100,
(i == now) ? "*" : "");
break;
case PP_MCLK:
now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC,
ixTARGET_AND_CURRENT_PROFILE_INDEX),
TARGET_AND_CURRENT_PROFILE_INDEX,
CURR_MCLK_INDEX);
for (i = SMU8_NUM_NBPMEMORYCLOCK; i > 0; i--)
size += sprintf(buf + size, "%d: %uMhz %s\n",
SMU8_NUM_NBPMEMORYCLOCK-i, data->sys_info.nbp_memory_clock[i-1] / 100,
(SMU8_NUM_NBPMEMORYCLOCK-i == now) ? "*" : "");
break;
default:
break;
}
return size;
}
static int smu8_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
const struct smu8_power_state *ps;
struct smu8_hwmgr *data;
uint32_t level_index;
uint32_t i;
if (level == NULL || hwmgr == NULL || state == NULL)
return -EINVAL;
data = hwmgr->backend;
ps = cast_const_smu8_power_state(state);
level_index = index > ps->level - 1 ? ps->level - 1 : index;
level->coreClock = ps->levels[level_index].engineClock;
if (designation == PHM_PerformanceLevelDesignation_PowerContainment) {
for (i = 1; i < ps->level; i++) {
if (ps->levels[i].engineClock > data->dce_slow_sclk_threshold) {
level->coreClock = ps->levels[i].engineClock;
break;
}
}
}
if (level_index == 0)
level->memory_clock = data->sys_info.nbp_memory_clock[SMU8_NUM_NBPMEMORYCLOCK - 1];
else
level->memory_clock = data->sys_info.nbp_memory_clock[0];
level->vddc = (smu8_convert_8Bit_index_to_voltage(hwmgr, ps->levels[level_index].vddcIndex) + 2) / 4;
level->nonLocalMemoryFreq = 0;
level->nonLocalMemoryWidth = 0;
return 0;
}
static int smu8_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
{
const struct smu8_power_state *ps = cast_const_smu8_power_state(state);
clock_info->min_eng_clk = ps->levels[0].engineClock / (1 << (ps->levels[0].ssDividerIndex));
clock_info->max_eng_clk = ps->levels[ps->level - 1].engineClock / (1 << (ps->levels[ps->level - 1].ssDividerIndex));
return 0;
}
static int smu8_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
struct amd_pp_clocks *clocks)
{
struct smu8_hwmgr *data = hwmgr->backend;
int i;
struct phm_clock_voltage_dependency_table *table;
clocks->count = smu8_get_max_sclk_level(hwmgr);
switch (type) {
case amd_pp_disp_clock:
for (i = 0; i < clocks->count; i++)
clocks->clock[i] = data->sys_info.display_clock[i] * 10;
break;
case amd_pp_sys_clock:
table = hwmgr->dyn_state.vddc_dependency_on_sclk;
for (i = 0; i < clocks->count; i++)
clocks->clock[i] = table->entries[i].clk * 10;
break;
case amd_pp_mem_clock:
clocks->count = SMU8_NUM_NBPMEMORYCLOCK;
for (i = 0; i < clocks->count; i++)
clocks->clock[i] = data->sys_info.nbp_memory_clock[clocks->count - 1 - i] * 10;
break;
default:
return -1;
}
return 0;
}
static int smu8_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
{
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
unsigned long level;
const struct phm_clock_and_voltage_limits *limits =
&hwmgr->dyn_state.max_clock_voltage_on_ac;
if ((NULL == table) || (table->count <= 0) || (clocks == NULL))
return -EINVAL;
level = smu8_get_max_sclk_level(hwmgr) - 1;
if (level < table->count)
clocks->engine_max_clock = table->entries[level].clk;
else
clocks->engine_max_clock = table->entries[table->count - 1].clk;
clocks->memory_max_clock = limits->mclk;
return 0;
}
static int smu8_thermal_get_temperature(struct pp_hwmgr *hwmgr)
{
int actual_temp = 0;
uint32_t val = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixTHM_TCON_CUR_TMP);
uint32_t temp = PHM_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP);
if (PHM_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP_RANGE_SEL))
actual_temp = ((temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
else
actual_temp = (temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return actual_temp;
}
static int smu8_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
struct phm_vce_clock_voltage_dependency_table *vce_table =
hwmgr->dyn_state.vce_clock_voltage_dependency_table;
struct phm_uvd_clock_voltage_dependency_table *uvd_table =
hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
uint32_t sclk_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX),
TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX);
uint32_t uvd_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2),
TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_UVD_INDEX);
uint32_t vce_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2),
TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_VCE_INDEX);
uint32_t sclk, vclk, dclk, ecclk, tmp, activity_percent;
uint16_t vddnb, vddgfx;
int result;
/* size must be at least 4 bytes for all sensors */
if (*size < 4)
return -EINVAL;
*size = 4;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
if (sclk_index < NUM_SCLK_LEVELS) {
sclk = table->entries[sclk_index].clk;
*((uint32_t *)value) = sclk;
return 0;
}
return -EINVAL;
case AMDGPU_PP_SENSOR_VDDNB:
tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_NB_CURRENTVID) &
CURRENT_NB_VID_MASK) >> CURRENT_NB_VID__SHIFT;
vddnb = smu8_convert_8Bit_index_to_voltage(hwmgr, tmp) / 4;
*((uint32_t *)value) = vddnb;
return 0;
case AMDGPU_PP_SENSOR_VDDGFX:
tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_GFX_CURRENTVID) &
CURRENT_GFX_VID_MASK) >> CURRENT_GFX_VID__SHIFT;
vddgfx = smu8_convert_8Bit_index_to_voltage(hwmgr, (u16)tmp) / 4;
*((uint32_t *)value) = vddgfx;
return 0;
case AMDGPU_PP_SENSOR_UVD_VCLK:
if (!data->uvd_power_gated) {
if (uvd_index >= SMU8_MAX_HARDWARE_POWERLEVELS) {
return -EINVAL;
} else {
vclk = uvd_table->entries[uvd_index].vclk;
*((uint32_t *)value) = vclk;
return 0;
}
}
*((uint32_t *)value) = 0;
return 0;
case AMDGPU_PP_SENSOR_UVD_DCLK:
if (!data->uvd_power_gated) {
if (uvd_index >= SMU8_MAX_HARDWARE_POWERLEVELS) {
return -EINVAL;
} else {
dclk = uvd_table->entries[uvd_index].dclk;
*((uint32_t *)value) = dclk;
return 0;
}
}
*((uint32_t *)value) = 0;
return 0;
case AMDGPU_PP_SENSOR_VCE_ECCLK:
if (!data->vce_power_gated) {
if (vce_index >= SMU8_MAX_HARDWARE_POWERLEVELS) {
return -EINVAL;
} else {
ecclk = vce_table->entries[vce_index].ecclk;
*((uint32_t *)value) = ecclk;
return 0;
}
}
*((uint32_t *)value) = 0;
return 0;
case AMDGPU_PP_SENSOR_GPU_LOAD:
result = smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_GetAverageGraphicsActivity,
&activity_percent);
if (0 == result) {
activity_percent = activity_percent > 100 ? 100 : activity_percent;
} else {
activity_percent = 50;
}
*((uint32_t *)value) = activity_percent;
return 0;
case AMDGPU_PP_SENSOR_UVD_POWER:
*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
return 0;
case AMDGPU_PP_SENSOR_VCE_POWER:
*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
return 0;
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = smu8_thermal_get_temperature(hwmgr);
return 0;
default:
return -EINVAL;
}
}
static int smu8_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
uint32_t virtual_addr_low,
uint32_t virtual_addr_hi,
uint32_t mc_addr_low,
uint32_t mc_addr_hi,
uint32_t size)
{
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramAddrHiVirtual,
mc_addr_hi,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramAddrLoVirtual,
mc_addr_low,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramAddrHiPhysical,
virtual_addr_hi,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramAddrLoPhysical,
virtual_addr_low,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramBufferSize,
size,
NULL);
return 0;
}
static int smu8_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
struct PP_TemperatureRange *thermal_data)
{
struct smu8_hwmgr *data = hwmgr->backend;
memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
thermal_data->max = (data->thermal_auto_throttling_treshold +
data->sys_info.htc_hyst_lmt) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int smu8_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct smu8_hwmgr *data = hwmgr->backend;
uint32_t dpm_features = 0;
if (enable &&
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM)) {
data->dpm_flags |= DPMFlags_UVD_Enabled;
dpm_features |= UVD_DPM_MASK;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_EnableAllSmuFeatures,
dpm_features,
NULL);
} else {
dpm_features |= UVD_DPM_MASK;
data->dpm_flags &= ~DPMFlags_UVD_Enabled;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DisableAllSmuFeatures,
dpm_features,
NULL);
}
return 0;
}
static int smu8_dpm_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
struct smu8_hwmgr *data = hwmgr->backend;
struct phm_uvd_clock_voltage_dependency_table *ptable =
hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
if (!bgate) {
/* Stable Pstate is enabled and we need to set the UVD DPM to highest level */
if (PP_CAP(PHM_PlatformCaps_StablePState) ||
hwmgr->en_umd_pstate) {
data->uvd_dpm.hard_min_clk =
ptable->entries[ptable->count - 1].vclk;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetUvdHardMin,
smu8_get_uvd_level(hwmgr,
data->uvd_dpm.hard_min_clk,
PPSMC_MSG_SetUvdHardMin),
NULL);
smu8_enable_disable_uvd_dpm(hwmgr, true);
} else {
smu8_enable_disable_uvd_dpm(hwmgr, true);
}
} else {
smu8_enable_disable_uvd_dpm(hwmgr, false);
}
return 0;
}
static int smu8_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct smu8_hwmgr *data = hwmgr->backend;
uint32_t dpm_features = 0;
if (enable && phm_cap_enabled(
hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEDPM)) {
data->dpm_flags |= DPMFlags_VCE_Enabled;
dpm_features |= VCE_DPM_MASK;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_EnableAllSmuFeatures,
dpm_features,
NULL);
} else {
dpm_features |= VCE_DPM_MASK;
data->dpm_flags &= ~DPMFlags_VCE_Enabled;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DisableAllSmuFeatures,
dpm_features,
NULL);
}
return 0;
}
static void smu8_dpm_powergate_acp(struct pp_hwmgr *hwmgr, bool bgate)
{
struct smu8_hwmgr *data = hwmgr->backend;
if (data->acp_power_gated == bgate)
return;
if (bgate)
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ACPPowerOFF, NULL);
else
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ACPPowerON, NULL);
}
static void smu8_dpm_powergate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
{
struct smu8_hwmgr *data = hwmgr->backend;
data->uvd_power_gated = bgate;
if (bgate) {
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_GATE);
amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_GATE);
smu8_dpm_update_uvd_dpm(hwmgr, true);
smu8_dpm_powerdown_uvd(hwmgr);
} else {
smu8_dpm_powerup_uvd(hwmgr);
amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_UNGATE);
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_UNGATE);
smu8_dpm_update_uvd_dpm(hwmgr, false);
}
}
static void smu8_dpm_powergate_vce(struct pp_hwmgr *hwmgr, bool bgate)
{
struct smu8_hwmgr *data = hwmgr->backend;
if (bgate) {
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
smu8_enable_disable_vce_dpm(hwmgr, false);
smu8_dpm_powerdown_vce(hwmgr);
data->vce_power_gated = true;
} else {
smu8_dpm_powerup_vce(hwmgr);
data->vce_power_gated = false;
amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_UNGATE);
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_UNGATE);
smu8_dpm_update_vce_dpm(hwmgr);
smu8_enable_disable_vce_dpm(hwmgr, true);
}
}
static const struct pp_hwmgr_func smu8_hwmgr_funcs = {
.backend_init = smu8_hwmgr_backend_init,
.backend_fini = smu8_hwmgr_backend_fini,
.apply_state_adjust_rules = smu8_apply_state_adjust_rules,
.force_dpm_level = smu8_dpm_force_dpm_level,
.get_power_state_size = smu8_get_power_state_size,
.powerdown_uvd = smu8_dpm_powerdown_uvd,
.powergate_uvd = smu8_dpm_powergate_uvd,
.powergate_vce = smu8_dpm_powergate_vce,
.powergate_acp = smu8_dpm_powergate_acp,
.get_mclk = smu8_dpm_get_mclk,
.get_sclk = smu8_dpm_get_sclk,
.patch_boot_state = smu8_dpm_patch_boot_state,
.get_pp_table_entry = smu8_dpm_get_pp_table_entry,
.get_num_of_pp_table_entries = smu8_dpm_get_num_of_pp_table_entries,
.set_cpu_power_state = smu8_set_cpu_power_state,
.store_cc6_data = smu8_store_cc6_data,
.force_clock_level = smu8_force_clock_level,
.print_clock_levels = smu8_print_clock_levels,
.get_dal_power_level = smu8_get_dal_power_level,
.get_performance_level = smu8_get_performance_level,
.get_current_shallow_sleep_clocks = smu8_get_current_shallow_sleep_clocks,
.get_clock_by_type = smu8_get_clock_by_type,
.get_max_high_clocks = smu8_get_max_high_clocks,
.read_sensor = smu8_read_sensor,
.power_off_asic = smu8_power_off_asic,
.asic_setup = smu8_setup_asic_task,
.dynamic_state_management_enable = smu8_enable_dpm_tasks,
.power_state_set = smu8_set_power_state_tasks,
.dynamic_state_management_disable = smu8_disable_dpm_tasks,
.notify_cac_buffer_info = smu8_notify_cac_buffer_info,
.update_nbdpm_pstate = smu8_nbdpm_pstate_enable_disable,
.get_thermal_temperature_range = smu8_get_thermal_temperature_range,
};
int smu8_init_function_pointers(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &smu8_hwmgr_funcs;
hwmgr->pptable_func = &pptable_funcs;
return 0;
}