blob: c335808211ee54b929441028e738797d457ead86 [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: iwctl.c
*
* Purpose: wireless ext & ioctl functions
*
* Author: Lyndon Chen
*
* Date: July 5, 2006
*
* Functions:
*
* Revision History:
*
*/
#include "device.h"
#include "iwctl.h"
#include "mac.h"
#include "card.h"
#include "hostap.h"
#include "power.h"
#include "rf.h"
#include "iowpa.h"
#include "wpactl.h"
#include "control.h"
#include "rndis.h"
static const long frequency_list[] = {
2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484,
4915, 4920, 4925, 4935, 4940, 4945, 4960, 4980,
5035, 5040, 5045, 5055, 5060, 5080, 5170, 5180, 5190, 5200, 5210, 5220, 5230, 5240,
5260, 5280, 5300, 5320, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680,
5700, 5745, 5765, 5785, 5805, 5825
};
static int msglevel = MSG_LEVEL_INFO;
struct iw_statistics *iwctl_get_wireless_stats(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
long ldBm;
pDevice->wstats.status = pDevice->eOPMode;
if (pDevice->scStatistic.LinkQuality > 100)
pDevice->scStatistic.LinkQuality = 100;
pDevice->wstats.qual.qual =(u8)pDevice->scStatistic.LinkQuality;
RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm);
pDevice->wstats.qual.level = ldBm;
pDevice->wstats.qual.noise = 0;
pDevice->wstats.qual.updated = 1;
pDevice->wstats.discard.nwid = 0;
pDevice->wstats.discard.code = 0;
pDevice->wstats.discard.fragment = 0;
pDevice->wstats.discard.retries = pDevice->scStatistic.dwTsrErr;
pDevice->wstats.discard.misc = 0;
pDevice->wstats.miss.beacon = 0;
return &pDevice->wstats;
}
/*
* Wireless Handler: get protocol name
*/
int iwctl_giwname(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
strcpy(wrqu->name, "802.11-a/b/g");
return 0;
}
/*
* Wireless Handler: set scan
*/
int iwctl_siwscan(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_point *wrq = &wrqu->data;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_scan_req *req = (struct iw_scan_req *)extra;
u8 abyScanSSID[WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1];
PWLAN_IE_SSID pItemSSID = NULL;
if (!(pDevice->flags & DEVICE_FLAGS_OPENED))
return -EINVAL;
PRINT_K(" SIOCSIWSCAN\n");
if (pMgmt == NULL)
return -EFAULT;
if (pMgmt->eScanState == WMAC_IS_SCANNING) {
// In scanning..
PRINT_K("SIOCSIWSCAN(overlap??)-->In scanning...\n");
return -EAGAIN;
}
if (pDevice->byReAssocCount > 0) { // reject scan when re-associating!
// send scan event to wpa_Supplicant
union iwreq_data wrqu;
PRINT_K("wireless_send_event--->SIOCGIWSCAN(scan done)\n");
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(pDevice->dev, SIOCGIWSCAN, &wrqu, NULL);
return 0;
}
spin_lock_irq(&pDevice->lock);
BSSvClearBSSList((void *)pDevice, pDevice->bLinkPass);
// mike add: active scan OR passive scan OR desire_ssid scan
if (wrq->length == sizeof(struct iw_scan_req)) {
if (wrq->flags & IW_SCAN_THIS_ESSID) { // desire_ssid scan
memset(abyScanSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
pItemSSID = (PWLAN_IE_SSID)abyScanSSID;
pItemSSID->byElementID = WLAN_EID_SSID;
memcpy(pItemSSID->abySSID, req->essid, (int)req->essid_len);
if (pItemSSID->abySSID[req->essid_len] == '\0') {
if (req->essid_len > 0)
pItemSSID->len = req->essid_len;
} else {
pItemSSID->len = req->essid_len;
}
pMgmt->eScanType = WMAC_SCAN_PASSIVE;
PRINT_K("SIOCSIWSCAN:[desired_ssid=%s,len=%d]\n", ((PWLAN_IE_SSID)abyScanSSID)->abySSID,
((PWLAN_IE_SSID)abyScanSSID)->len);
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, abyScanSSID);
spin_unlock_irq(&pDevice->lock);
return 0;
} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { // passive scan
pMgmt->eScanType = WMAC_SCAN_PASSIVE;
}
} else { // active scan
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
}
pMgmt->eScanType = WMAC_SCAN_PASSIVE;
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL);
spin_unlock_irq(&pDevice->lock);
return 0;
}
/*
* Wireless Handler : get scan results
*/
int iwctl_giwscan(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct iw_point *wrq = &wrqu->data;
int ii;
int jj;
int kk;
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PKnownBSS pBSS;
PWLAN_IE_SSID pItemSSID;
PWLAN_IE_SUPP_RATES pSuppRates;
PWLAN_IE_SUPP_RATES pExtSuppRates;
char *current_ev = extra;
char *end_buf = extra + IW_SCAN_MAX_DATA;
char *current_val = NULL;
struct iw_event iwe;
long ldBm;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWSCAN\n");
if (pMgmt == NULL)
return -EFAULT;
if (pMgmt->eScanState == WMAC_IS_SCANNING) {
// In scanning..
return -EAGAIN;
}
pBSS = &(pMgmt->sBSSList[0]);
for (ii = 0, jj = 0; jj < MAX_BSS_NUM ; jj++) {
if (current_ev >= end_buf)
break;
pBSS = &(pMgmt->sBSSList[jj]);
if (pBSS->bActive) {
// ADD mac address
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, pBSS->abyBSSID, WLAN_BSSID_LEN);
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_ADDR_LEN);
// ADD ssid
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
pItemSSID = (PWLAN_IE_SSID)pBSS->abySSID;
iwe.u.data.length = pItemSSID->len;
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pItemSSID->abySSID);
// ADD mode
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (WLAN_GET_CAP_INFO_ESS(pBSS->wCapInfo))
iwe.u.mode = IW_MODE_INFRA;
else
iwe.u.mode = IW_MODE_ADHOC;
iwe.len = IW_EV_UINT_LEN;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_UINT_LEN);
// ADD frequency
pSuppRates = (PWLAN_IE_SUPP_RATES)pBSS->abySuppRates;
pExtSuppRates = (PWLAN_IE_SUPP_RATES)pBSS->abyExtSuppRates;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = pBSS->uChannel;
iwe.u.freq.e = 0;
iwe.u.freq.i = 0;
current_ev = iwe_stream_add_event(info, current_ev,end_buf, &iwe, IW_EV_FREQ_LEN);
{
int f = (int)pBSS->uChannel - 1;
if (f < 0)
f = 0;
iwe.u.freq.m = frequency_list[f] * 100000;
iwe.u.freq.e = 1;
}
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN);
// ADD quality
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
RFvRSSITodBm(pDevice, (u8)(pBSS->uRSSI), &ldBm);
iwe.u.qual.level = ldBm;
iwe.u.qual.noise = 0;
if (-ldBm < 50)
iwe.u.qual.qual = 100;
else if (-ldBm > 90)
iwe.u.qual.qual = 0;
else
iwe.u.qual.qual = (40 - (-ldBm - 50)) * 100 / 40;
iwe.u.qual.updated = 7;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_QUAL_LEN);
// ADD encryption
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
iwe.u.data.length = 0;
if (WLAN_GET_CAP_INFO_PRIVACY(pBSS->wCapInfo))
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pItemSSID->abySSID);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
current_val = current_ev + IW_EV_LCP_LEN;
for (kk = 0; kk < 12; kk++) {
if (pSuppRates->abyRates[kk] == 0)
break;
// Bit rate given in 500 kb/s units (+ 0x80)
iwe.u.bitrate.value = ((pSuppRates->abyRates[kk] & 0x7f) * 500000);
current_val = iwe_stream_add_value(info, current_ev, current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
}
for (kk = 0; kk < 8; kk++) {
if (pExtSuppRates->abyRates[kk] == 0)
break;
// Bit rate given in 500 kb/s units (+ 0x80)
iwe.u.bitrate.value = ((pExtSuppRates->abyRates[kk] & 0x7f) * 500000);
current_val = iwe_stream_add_value(info, current_ev, current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
}
if ((current_val - current_ev) > IW_EV_LCP_LEN)
current_ev = current_val;
if ((pBSS->wWPALen > 0) && (pBSS->wWPALen <= MAX_WPA_IE_LEN)) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = pBSS->wWPALen;
current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pBSS->byWPAIE);
}
if ((pBSS->wRSNLen > 0) && (pBSS->wRSNLen <= MAX_WPA_IE_LEN)) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = pBSS->wRSNLen;
current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pBSS->byRSNIE);
}
}
} // for
wrq->length = current_ev - extra;
return 0;
}
/*
* Wireless Handler: set frequence or channel
*/
int iwctl_siwfreq(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_freq *wrq = &wrqu->freq;
int rc = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWFREQ\n");
// If setting by frequency, convert to a channel
if ((wrq->e == 1) && (wrq->m >= (int)2.412e8) &&
(wrq->m <= (int)2.487e8)) {
int f = wrq->m / 100000;
int c = 0;
while ((c < 14) && (f != frequency_list[c]))
c++;
wrq->e = 0;
wrq->m = c + 1;
}
// Setting by channel number
if ((wrq->m > 14) || (wrq->e > 0)) {
rc = -EOPNOTSUPP;
} else {
int channel = wrq->m;
if ((channel < 1) || (channel > 14)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "%s: New channel value of %d is invalid!\n", dev->name, wrq->m);
rc = -EINVAL;
} else {
// Yes ! We can set it !!!
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Set to channel = %d\n", channel);
pDevice->uChannel = channel;
}
}
return rc;
}
/*
* Wireless Handler: get frequence or channel
*/
int iwctl_giwfreq(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_freq *wrq = &wrqu->freq;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWFREQ\n");
if (pMgmt == NULL)
return -EFAULT;
#ifdef WEXT_USECHANNELS
wrq->m = (int)pMgmt->uCurrChannel;
wrq->e = 0;
#else
{
int f = (int)pMgmt->uCurrChannel - 1;
if (f < 0)
f = 0;
wrq->m = frequency_list[f] * 100000;
wrq->e = 1;
}
#endif
return 0;
}
/*
* Wireless Handler: set operation mode
*/
int iwctl_siwmode(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
__u32 *wmode = &wrqu->mode;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int rc = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWMODE\n");
if (pMgmt == NULL)
return -EFAULT;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP && pDevice->bEnableHostapd) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Can't set operation mode, hostapd is running\n");
return rc;
}
switch (*wmode) {
case IW_MODE_ADHOC:
if (pMgmt->eConfigMode != WMAC_CONFIG_IBSS_STA) {
pMgmt->eConfigMode = WMAC_CONFIG_IBSS_STA;
if (pDevice->flags & DEVICE_FLAGS_OPENED)
pDevice->bCommit = true;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set mode to ad-hoc \n");
break;
case IW_MODE_AUTO:
case IW_MODE_INFRA:
if (pMgmt->eConfigMode != WMAC_CONFIG_ESS_STA) {
pMgmt->eConfigMode = WMAC_CONFIG_ESS_STA;
if (pDevice->flags & DEVICE_FLAGS_OPENED)
pDevice->bCommit = true;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set mode to infrastructure \n");
break;
case IW_MODE_MASTER:
pMgmt->eConfigMode = WMAC_CONFIG_ESS_STA;
rc = -EOPNOTSUPP;
break;
if (pMgmt->eConfigMode != WMAC_CONFIG_AP) {
pMgmt->eConfigMode = WMAC_CONFIG_AP;
if (pDevice->flags & DEVICE_FLAGS_OPENED)
pDevice->bCommit = true;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set mode to Access Point \n");
break;
case IW_MODE_REPEAT:
pMgmt->eConfigMode = WMAC_CONFIG_ESS_STA;
rc = -EOPNOTSUPP;
break;
default:
rc = -EINVAL;
}
if (pDevice->bCommit) {
if (pMgmt->eConfigMode == WMAC_CONFIG_AP) {
netif_stop_queue(pDevice->dev);
spin_lock_irq(&pDevice->lock);
bScheduleCommand((void *) pDevice,
WLAN_CMD_RUN_AP, NULL);
spin_unlock_irq(&pDevice->lock);
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Commit the settings\n");
spin_lock_irq(&pDevice->lock);
if (pDevice->bLinkPass &&
memcmp(pMgmt->abyCurrSSID,
pMgmt->abyDesireSSID,
WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN)) {
bScheduleCommand((void *) pDevice,
WLAN_CMD_DISASSOCIATE, NULL);
} else {
pDevice->bLinkPass = false;
pMgmt->eCurrState = WMAC_STATE_IDLE;
memset(pMgmt->abyCurrBSSID, 0, 6);
}
ControlvMaskByte(pDevice,
MESSAGE_REQUEST_MACREG, MAC_REG_PAPEDELAY,
LEDSTS_STS, LEDSTS_SLOW);
netif_stop_queue(pDevice->dev);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
if (!pDevice->bWPASuppWextEnabled)
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
NULL);
spin_unlock_irq(&pDevice->lock);
}
pDevice->bCommit = false;
}
return rc;
}
/*
* Wireless Handler: get operation mode
*/
int iwctl_giwmode(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
__u32 *wmode = &wrqu->mode;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWMODE\n");
if (pMgmt == NULL)
return -EFAULT;
// If not managed, assume it's ad-hoc
switch (pMgmt->eConfigMode) {
case WMAC_CONFIG_ESS_STA:
*wmode = IW_MODE_INFRA;
break;
case WMAC_CONFIG_IBSS_STA:
*wmode = IW_MODE_ADHOC;
break;
case WMAC_CONFIG_AUTO:
*wmode = IW_MODE_INFRA;
break;
case WMAC_CONFIG_AP:
*wmode = IW_MODE_MASTER;
break;
default:
*wmode = IW_MODE_ADHOC;
}
return 0;
}
/*
* Wireless Handler: get capability range
*/
int iwctl_giwrange(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct iw_point *wrq = &wrqu->data;
struct iw_range *range = (struct iw_range *)extra;
int i;
int k;
u8 abySupportedRates[13] = {
0x02, 0x04, 0x0B, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30, 0x48,
0x60, 0x6C, 0x90
};
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRANGE\n");
if (wrq->pointer) {
wrq->length = sizeof(struct iw_range);
memset(range, 0, sizeof(struct iw_range));
range->min_nwid = 0x0000;
range->max_nwid = 0x0000;
range->num_channels = 14;
// Should be based on cap_rid.country to give only
// what the current card support
k = 0;
for (i = 0; i < 14; i++) {
range->freq[k].i = i + 1; // List index
range->freq[k].m = frequency_list[i] * 100000;
range->freq[k++].e = 1; // Values in table in MHz -> * 10^5 * 10
}
range->num_frequency = k;
// Hum... Should put the right values there
range->max_qual.qual = 100;
range->max_qual.level = 0;
range->max_qual.noise = 0;
range->sensitivity = 255;
for (i = 0; i < 13; i++) {
range->bitrate[i] = abySupportedRates[i] * 500000;
if (range->bitrate[i] == 0)
break;
}
range->num_bitrates = i;
// Set an indication of the max TCP throughput
// in bit/s that we can expect using this interface.
// May be use for QoS stuff... Jean II
if (i > 2)
range->throughput = 5 * 1000 * 1000;
else
range->throughput = 1.5 * 1000 * 1000;
range->min_rts = 0;
range->max_rts = 2312;
range->min_frag = 256;
range->max_frag = 2312;
// the encoding capabilities
range->num_encoding_sizes = 3;
// 64(40) bits WEP
range->encoding_size[0] = 5;
// 128(104) bits WEP
range->encoding_size[1] = 13;
// 256 bits for WPA-PSK
range->encoding_size[2] = 32;
// 4 keys are allowed
range->max_encoding_tokens = 4;
range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
range->min_pmp = 0;
range->max_pmp = 1000000; // 1 secs
range->min_pmt = 0;
range->max_pmt = 1000000; // 1 secs
range->pmp_flags = IW_POWER_PERIOD;
range->pmt_flags = IW_POWER_TIMEOUT;
range->pm_capa = IW_POWER_PERIOD | IW_POWER_TIMEOUT | IW_POWER_ALL_R;
// Transmit Power - values are in mW
range->txpower[0] = 100;
range->num_txpower = 1;
range->txpower_capa = IW_TXPOW_MWATT;
range->we_version_source = WIRELESS_EXT;
range->we_version_compiled = WIRELESS_EXT;
range->retry_capa = IW_RETRY_LIMIT | IW_RETRY_LIFETIME;
range->retry_flags = IW_RETRY_LIMIT;
range->r_time_flags = IW_RETRY_LIFETIME;
range->min_retry = 1;
range->max_retry = 65535;
range->min_r_time = 1024;
range->max_r_time = 65535 * 1024;
// Experimental measurements - boundary 11/5.5 Mb/s
// Note : with or without the (local->rssi), results
// are somewhat different. - Jean II
range->avg_qual.qual = 6;
range->avg_qual.level = 176; // -80 dBm
range->avg_qual.noise = 0;
}
return 0;
}
/*
* Wireless Handler : set ap mac address
*/
int iwctl_siwap(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct sockaddr *wrq = &wrqu->ap_addr;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int rc = 0;
u8 ZeroBSSID[WLAN_BSSID_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
PRINT_K(" SIOCSIWAP\n");
if (pMgmt == NULL)
return -EFAULT;
if (wrq->sa_family != ARPHRD_ETHER) {
rc = -EINVAL;
} else {
memcpy(pMgmt->abyDesireBSSID, wrq->sa_data, 6);
// mike: add
if ((is_broadcast_ether_addr(pMgmt->abyDesireBSSID)) ||
(memcmp(pMgmt->abyDesireBSSID, ZeroBSSID, 6) == 0)) {
PRINT_K("SIOCSIWAP:invalid desired BSSID return!\n");
return rc;
}
// mike add: if desired AP is hidden ssid(there are
// two same BSSID in list), then ignore,because you
// don't known which one to be connect with??
{
unsigned ii;
unsigned uSameBssidNum = 0;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (pMgmt->sBSSList[ii].bActive &&
!compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
pMgmt->abyDesireBSSID)) {
uSameBssidNum++;
}
}
if (uSameBssidNum >= 2) { //hit: desired AP is in hidden ssid mode!!!
PRINT_K("SIOCSIWAP:ignore for desired AP in hidden mode\n");
return rc;
}
}
if (pDevice->flags & DEVICE_FLAGS_OPENED)
pDevice->bCommit = true;
}
return rc;
}
/*
* Wireless Handler: get ap mac address
*/
int iwctl_giwap(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct sockaddr *wrq = &wrqu->ap_addr;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWAP\n");
if (pMgmt == NULL)
return -EFAULT;
memcpy(wrq->sa_data, pMgmt->abyCurrBSSID, 6);
if ((pDevice->bLinkPass == false) && (pMgmt->eCurrMode != WMAC_MODE_ESS_AP))
memset(wrq->sa_data, 0, 6);
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)
memcpy(wrq->sa_data, pMgmt->abyCurrBSSID, 6);
wrq->sa_family = ARPHRD_ETHER;
return 0;
}
/*
* Wireless Handler: get ap list
*/
int iwctl_giwaplist(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct iw_point *wrq = &wrqu->data;
struct sockaddr *sock;
struct iw_quality *qual;
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PKnownBSS pBSS = &pMgmt->sBSSList[0];
int ii;
int jj;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWAPLIST\n");
/* Only super-user can see AP list */
if (pBSS == NULL)
return -ENODEV;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!wrq->pointer)
return -EINVAL;
sock = kzalloc(sizeof(struct sockaddr) * IW_MAX_AP, GFP_KERNEL);
if (sock == NULL)
return -ENOMEM;
qual = kzalloc(sizeof(struct iw_quality) * IW_MAX_AP, GFP_KERNEL);
if (qual == NULL) {
kfree(sock);
return -ENOMEM;
}
for (ii = 0, jj = 0; ii < MAX_BSS_NUM; ii++) {
if (!pBSS[ii].bActive)
continue;
if (jj >= IW_MAX_AP)
break;
memcpy(sock[jj].sa_data, pBSS[ii].abyBSSID, 6);
sock[jj].sa_family = ARPHRD_ETHER;
qual[jj].level = pBSS[ii].uRSSI;
qual[jj].qual = qual[jj].noise = 0;
qual[jj].updated = 2;
jj++;
}
wrq->flags = 1; /* Should be defined */
wrq->length = jj;
memcpy(extra, sock, sizeof(struct sockaddr) * jj);
memcpy(extra + sizeof(struct sockaddr) * jj, qual,
sizeof(struct iw_quality) * jj);
kfree(sock);
kfree(qual);
return 0;
}
/*
* Wireless Handler: set essid
*/
int iwctl_siwessid(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_point *wrq = &wrqu->essid;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PWLAN_IE_SSID pItemSSID;
if (pMgmt == NULL)
return -EFAULT;
if (!(pDevice->flags & DEVICE_FLAGS_OPENED))
return -EINVAL;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWESSID :\n");
pDevice->fWPA_Authened = false;
// Check if we asked for `any'
if (wrq->flags == 0) {
// Just send an empty SSID list
memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
memset(pMgmt->abyDesireBSSID, 0xFF,6);
PRINT_K("set essid to 'any' \n");
// Unknown desired AP, so here need not associate??
return 0;
} else {
// Set the SSID
memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
pItemSSID->byElementID = WLAN_EID_SSID;
memcpy(pItemSSID->abySSID, extra, wrq->length);
if (pItemSSID->abySSID[wrq->length] == '\0') {
if (wrq->length>0)
pItemSSID->len = wrq->length;
} else {
pItemSSID->len = wrq->length;
}
PRINT_K("set essid to %s \n", pItemSSID->abySSID);
// mike: need clear desiredBSSID
if (pItemSSID->len==0) {
memset(pMgmt->abyDesireBSSID, 0xFF, 6);
return 0;
}
// Wext wil order another command of siwap to link
// with desired AP, so here need not associate??
if (pDevice->bWPASuppWextEnabled == true) {
/*******search if in hidden ssid mode ****/
PKnownBSS pCurr = NULL;
u8 abyTmpDesireSSID[WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1];
unsigned ii;
unsigned uSameBssidNum = 0;
memcpy(abyTmpDesireSSID, pMgmt->abyDesireSSID, sizeof(abyTmpDesireSSID));
pCurr = BSSpSearchBSSList(pDevice, NULL,
abyTmpDesireSSID,
pDevice->eConfigPHYMode);
if (pCurr == NULL) {
PRINT_K("SIOCSIWESSID:hidden ssid site survey before associate.......\n");
vResetCommandTimer((void *)pDevice);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *)pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *)pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
} else { // mike: to find out if that desired SSID is a
// hidden-ssid AP, by means of judging if there
// are two same BSSID exist in list ?
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (pMgmt->sBSSList[ii].bActive &&
!compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
pCurr->abyBSSID)) {
uSameBssidNum++;
}
}
if (uSameBssidNum >= 2) { // hit: desired AP is in hidden ssid mode!!!
PRINT_K("SIOCSIWESSID:hidden ssid directly associate.......\n");
vResetCommandTimer((void *)pDevice);
pMgmt->eScanType = WMAC_SCAN_PASSIVE; // this scan type, you'll submit scan result!
bScheduleCommand((void *)pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *)pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
}
}
return 0;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set essid = %s \n", pItemSSID->abySSID);
}
if (pDevice->flags & DEVICE_FLAGS_OPENED)
pDevice->bCommit = true;
return 0;
}
/*
* Wireless Handler: get essid
*/
int iwctl_giwessid(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_point *wrq = &wrqu->essid;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PWLAN_IE_SSID pItemSSID;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWESSID\n");
if (pMgmt == NULL)
return -EFAULT;
// Note: if wrq->u.data.flags != 0, we should get the relevant
// SSID from the SSID list...
// Get the current SSID
pItemSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
memcpy(extra, pItemSSID->abySSID, pItemSSID->len);
extra[pItemSSID->len] = '\0';
wrq->length = pItemSSID->len;
wrq->flags = 1; // active
return 0;
}
/*
* Wireless Handler: set data rate
*/
int iwctl_siwrate(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->bitrate;
int rc = 0;
u8 brate = 0;
int i;
u8 abySupportedRates[13] = {
0x02, 0x04, 0x0B, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30, 0x48,
0x60, 0x6C, 0x90
};
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWRATE \n");
if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) {
rc = -EINVAL;
return rc;
}
// First: get a valid bit rate value
// Which type of value
if ((wrq->value < 13) && (wrq->value >= 0)) {
// Setting by rate index
// Find value in the magic rate table
brate = wrq->value;
} else {
// Setting by frequency value
u8 normvalue = (u8)(wrq->value/500000);
// Check if rate is valid
for (i = 0; i < 13; i++) {
if (normvalue == abySupportedRates[i]) {
brate = i;
break;
}
}
}
// -1 designed the max rate (mostly auto mode)
if (wrq->value == -1) {
// Get the highest available rate
for (i = 0; i < 13; i++) {
if (abySupportedRates[i] == 0)
break;
}
if (i != 0)
brate = i - 1;
}
// Check that it is valid
// brate is index of abySupportedRates[]
if (brate > 13 ) {
rc = -EINVAL;
return rc;
}
// Now, check if we want a fixed or auto value
if (wrq->fixed != 0) {
// Fixed mode
// One rate, fixed
pDevice->bFixRate = true;
if ((pDevice->byBBType == BB_TYPE_11B) && (brate > 3)) {
pDevice->uConnectionRate = 3;
} else {
pDevice->uConnectionRate = brate;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fixed to Rate %d \n", pDevice->uConnectionRate);
}
} else {
pDevice->bFixRate = false;
pDevice->uConnectionRate = 13;
}
return rc;
}
/*
* Wireless Handler: get data rate
*/
int iwctl_giwrate(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->bitrate;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRATE\n");
if (pMgmt == NULL)
return -EFAULT;
{
u8 abySupportedRates[13] = {
0x02, 0x04, 0x0B, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30,
0x48, 0x60, 0x6C, 0x90
};
int brate = 0;
if (pDevice->uConnectionRate < 13) {
brate = abySupportedRates[pDevice->uConnectionRate];
} else {
if (pDevice->byBBType == BB_TYPE_11B)
brate = 0x16;
if (pDevice->byBBType == BB_TYPE_11G)
brate = 0x6C;
if (pDevice->byBBType == BB_TYPE_11A)
brate = 0x6C;
}
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (pDevice->byBBType == BB_TYPE_11B)
brate = 0x16;
if (pDevice->byBBType == BB_TYPE_11G)
brate = 0x6C;
if (pDevice->byBBType == BB_TYPE_11A)
brate = 0x6C;
}
if (pDevice->uConnectionRate == 13)
brate = abySupportedRates[pDevice->wCurrentRate];
wrq->value = brate * 500000;
// If more than one rate, set auto
if (pDevice->bFixRate == true)
wrq->fixed = true;
}
return 0;
}
/*
* Wireless Handler: set rts threshold
*/
int iwctl_siwrts(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->rts;
if ((wrq->value < 0 || wrq->value > 2312) && !wrq->disabled)
return -EINVAL;
else if (wrq->disabled)
pDevice->wRTSThreshold = 2312;
else
pDevice->wRTSThreshold = wrq->value;
return 0;
}
/*
* Wireless Handler: get rts
*/
int iwctl_giwrts(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->rts;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRTS\n");
wrq->value = pDevice->wRTSThreshold;
wrq->disabled = (wrq->value >= 2312);
wrq->fixed = 1;
return 0;
}
/*
* Wireless Handler: set fragment threshold
*/
int iwctl_siwfrag(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->frag;
int rc = 0;
int fthr = wrq->value;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWFRAG\n");
if (wrq->disabled)
fthr = 2312;
if ((fthr < 256) || (fthr > 2312)) {
rc = -EINVAL;
} else {
fthr &= ~0x1; // Get an even value
pDevice->wFragmentationThreshold = (u16)fthr;
}
return rc;
}
/*
* Wireless Handler: get fragment threshold
*/
int iwctl_giwfrag(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->frag;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWFRAG\n");
wrq->value = pDevice->wFragmentationThreshold;
wrq->disabled = (wrq->value >= 2312);
wrq->fixed = 1;
return 0;
}
/*
* Wireless Handler: set retry threshold
*/
int iwctl_siwretry(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->retry;
int rc = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWRETRY\n");
if (wrq->disabled) {
rc = -EINVAL;
return rc;
}
if (wrq->flags & IW_RETRY_LIMIT) {
if (wrq->flags & IW_RETRY_MAX) {
pDevice->byLongRetryLimit = wrq->value;
} else if (wrq->flags & IW_RETRY_MIN) {
pDevice->byShortRetryLimit = wrq->value;
} else {
// No modifier : set both
pDevice->byShortRetryLimit = wrq->value;
pDevice->byLongRetryLimit = wrq->value;
}
}
if (wrq->flags & IW_RETRY_LIFETIME)
pDevice->wMaxTransmitMSDULifetime = wrq->value;
return rc;
}
/*
* Wireless Handler: get retry threshold
*/
int iwctl_giwretry(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->retry;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRETRY\n");
wrq->disabled = 0; // Can't be disabled
// Note: by default, display the min retry number
if ((wrq->flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
wrq->flags = IW_RETRY_LIFETIME;
wrq->value = (int)pDevice->wMaxTransmitMSDULifetime; // ms
} else if ((wrq->flags & IW_RETRY_MAX)) {
wrq->flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
wrq->value = (int)pDevice->byLongRetryLimit;
} else {
wrq->flags = IW_RETRY_LIMIT;
wrq->value = (int)pDevice->byShortRetryLimit;
if ((int)pDevice->byShortRetryLimit != (int)pDevice->byLongRetryLimit)
wrq->flags |= IW_RETRY_MIN;
}
return 0;
}
/*
* Wireless Handler: set encode mode
*/
int iwctl_siwencode(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_point *wrq = &wrqu->encoding;
u32 dwKeyIndex = (u32)(wrq->flags & IW_ENCODE_INDEX);
int ii;
int uu;
int rc = 0;
int index = (wrq->flags & IW_ENCODE_INDEX);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWENCODE\n");
if (pMgmt == NULL)
return -EFAULT;
// Check the size of the key
if (wrq->length > WLAN_WEP232_KEYLEN) {
rc = -EINVAL;
return rc;
}
if (dwKeyIndex > WLAN_WEP_NKEYS) {
rc = -EINVAL;
return rc;
}
if (dwKeyIndex > 0)
dwKeyIndex--;
// Send the key to the card
if (wrq->length > 0) {
if (wrq->length == WLAN_WEP232_KEYLEN) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set 232 bit wep key\n");
} else if (wrq->length == WLAN_WEP104_KEYLEN) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set 104 bit wep key\n");
} else if (wrq->length == WLAN_WEP40_KEYLEN) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set 40 bit wep key, index= %d\n", (int)dwKeyIndex);
}
memset(pDevice->abyKey, 0, WLAN_WEP232_KEYLEN);
memcpy(pDevice->abyKey, extra, wrq->length);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"abyKey: ");
for (ii = 0; ii < wrq->length; ii++)
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "%02x ", pDevice->abyKey[ii]);
if (pDevice->flags & DEVICE_FLAGS_OPENED) {
spin_lock_irq(&pDevice->lock);
KeybSetDefaultKey(pDevice,
&(pDevice->sKey),
dwKeyIndex | (1 << 31),
wrq->length, NULL,
pDevice->abyKey,
KEY_CTL_WEP);
spin_unlock_irq(&pDevice->lock);
}
pDevice->byKeyIndex = (u8)dwKeyIndex;
pDevice->uKeyLength = wrq->length;
pDevice->bTransmitKey = true;
pDevice->bEncryptionEnable = true;
pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;
// Do we want to just set the transmit key index?
if (index < 4) {
pDevice->byKeyIndex = index;
} else if (!(wrq->flags & IW_ENCODE_MODE)) {
rc = -EINVAL;
return rc;
}
}
// Read the flags
if (wrq->flags & IW_ENCODE_DISABLED) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Disable WEP function\n");
pMgmt->bShareKeyAlgorithm = false;
pDevice->bEncryptionEnable = false;
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
if (pDevice->flags & DEVICE_FLAGS_OPENED) {
spin_lock_irq(&pDevice->lock);
for (uu = 0; uu < MAX_KEY_TABLE; uu++)
MACvDisableKeyEntry(pDevice, uu);
spin_unlock_irq(&pDevice->lock);
}
}
if (wrq->flags & IW_ENCODE_RESTRICTED) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Enable WEP & ShareKey System\n");
pMgmt->bShareKeyAlgorithm = true;
}
if (wrq->flags & IW_ENCODE_OPEN) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Enable WEP & Open System\n");
pMgmt->bShareKeyAlgorithm = false;
}
memset(pMgmt->abyDesireBSSID, 0xFF, 6);
return rc;
}
int iwctl_giwencode(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_point *wrq = &wrqu->encoding;
char abyKey[WLAN_WEP232_KEYLEN];
unsigned index = (unsigned)(wrq->flags & IW_ENCODE_INDEX);
PSKeyItem pKey = NULL;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWENCODE\n");
if (pMgmt == NULL)
return -EFAULT;
if (index > WLAN_WEP_NKEYS)
return -EINVAL;
if (index < 1) { // get default key
if (pDevice->byKeyIndex < WLAN_WEP_NKEYS)
index = pDevice->byKeyIndex;
else
index = 0;
} else {
index--;
}
memset(abyKey, 0, WLAN_WEP232_KEYLEN);
// Check encryption mode
wrq->flags = IW_ENCODE_NOKEY;
// Is WEP enabled ???
if (pDevice->bEncryptionEnable)
wrq->flags |= IW_ENCODE_ENABLED;
else
wrq->flags |= IW_ENCODE_DISABLED;
if (pMgmt->bShareKeyAlgorithm)
wrq->flags |= IW_ENCODE_RESTRICTED;
else
wrq->flags |= IW_ENCODE_OPEN;
wrq->length = 0;
if ((index == 0) && (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled ||
pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled)) { // get wpa pairwise key
if (KeybGetKey(&(pDevice->sKey), pMgmt->abyCurrBSSID, 0xffffffff, &pKey)) {
wrq->length = pKey->uKeyLength;
memcpy(abyKey, pKey->abyKey, pKey->uKeyLength);
memcpy(extra, abyKey, WLAN_WEP232_KEYLEN);
}
} else if (KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, (u8)index, &pKey)) {
wrq->length = pKey->uKeyLength;
memcpy(abyKey, pKey->abyKey, pKey->uKeyLength);
memcpy(extra, abyKey, WLAN_WEP232_KEYLEN);
}
wrq->flags |= index + 1;
return 0;
}
/*
* Wireless Handler: set power mode
*/
int iwctl_siwpower(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_param *wrq = &wrqu->power;
int rc = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER\n");
if (pMgmt == NULL)
return -EFAULT;
if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) {
rc = -EINVAL;
return rc;
}
if (wrq->disabled) {
pDevice->ePSMode = WMAC_POWER_CAM;
PSvDisablePowerSaving(pDevice);
return rc;
}
if ((wrq->flags & IW_POWER_TYPE) == IW_POWER_TIMEOUT) {
pDevice->ePSMode = WMAC_POWER_FAST;
PSvEnablePowerSaving((void *)pDevice, pMgmt->wListenInterval);
} else if ((wrq->flags & IW_POWER_TYPE) == IW_POWER_PERIOD) {
pDevice->ePSMode = WMAC_POWER_FAST;
PSvEnablePowerSaving((void *)pDevice, pMgmt->wListenInterval);
}
switch (wrq->flags & IW_POWER_MODE) {
case IW_POWER_UNICAST_R:
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER: IW_POWER_UNICAST_R \n");
rc = -EINVAL;
break;
case IW_POWER_ALL_R:
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER: IW_POWER_ALL_R \n");
rc = -EINVAL;
case IW_POWER_ON:
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER: IW_POWER_ON \n");
break;
default:
rc = -EINVAL;
}
return rc;
}
/*
* Wireless Handler: get power mode
*/
int iwctl_giwpower(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_param *wrq = &wrqu->power;
int mode = pDevice->ePSMode;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWPOWER\n");
if (pMgmt == NULL)
return -EFAULT;
if ((wrq->disabled = (mode == WMAC_POWER_CAM)))
return 0;
if ((wrq->flags & IW_POWER_TYPE) == IW_POWER_TIMEOUT) {
wrq->value = (int)((pMgmt->wListenInterval *
pMgmt->wCurrBeaconPeriod) / 100);
wrq->flags = IW_POWER_TIMEOUT;
} else {
wrq->value = (int)((pMgmt->wListenInterval *
pMgmt->wCurrBeaconPeriod) / 100);
wrq->flags = IW_POWER_PERIOD;
}
wrq->flags |= IW_POWER_ALL_R;
return 0;
}
/*
* Wireless Handler: get Sensitivity
*/
int iwctl_giwsens(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iw_param *wrq = &wrqu->sens;
long ldBm;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWSENS\n");
if (pDevice->bLinkPass == true) {
RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm);
wrq->value = ldBm;
} else {
wrq->value = 0;
}
wrq->disabled = (wrq->value == 0);
wrq->fixed = 1;
return 0;
}
int iwctl_siwauth(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_param *wrq = &wrqu->param;
int ret = 0;
static int wpa_version = 0; // must be static to save the last value, einsn liu
static int pairwise = 0;
if (pMgmt == NULL)
return -EFAULT;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWAUTH\n");
switch (wrq->flags & IW_AUTH_INDEX) {
case IW_AUTH_WPA_VERSION:
wpa_version = wrq->value;
if (wrq->value == IW_AUTH_WPA_VERSION_DISABLED) {
PRINT_K("iwctl_siwauth:set WPADEV to disable at 1??????\n");
} else if (wrq->value == IW_AUTH_WPA_VERSION_WPA) {
PRINT_K("iwctl_siwauth:set WPADEV to WPA1******\n");
} else {
PRINT_K("iwctl_siwauth:set WPADEV to WPA2******\n");
}
break;
case IW_AUTH_CIPHER_PAIRWISE:
pairwise = wrq->value;
PRINT_K("iwctl_siwauth:set pairwise=%d\n", pairwise);
if (pairwise == IW_AUTH_CIPHER_CCMP){
pDevice->eEncryptionStatus = Ndis802_11Encryption3Enabled;
} else if (pairwise == IW_AUTH_CIPHER_TKIP) {
pDevice->eEncryptionStatus = Ndis802_11Encryption2Enabled;
} else if (pairwise == IW_AUTH_CIPHER_WEP40 ||
pairwise == IW_AUTH_CIPHER_WEP104) {
pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;
} else if (pairwise == IW_AUTH_CIPHER_NONE) {
// do nothing, einsn liu
} else {
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
}
break;
case IW_AUTH_CIPHER_GROUP:
PRINT_K("iwctl_siwauth:set GROUP=%d\n", wrq->value);
if (wpa_version == IW_AUTH_WPA_VERSION_DISABLED)
break;
if (pairwise == IW_AUTH_CIPHER_NONE) {
if (wrq->value == IW_AUTH_CIPHER_CCMP)
pDevice->eEncryptionStatus = Ndis802_11Encryption3Enabled;
else
pDevice->eEncryptionStatus = Ndis802_11Encryption2Enabled;
}
break;
case IW_AUTH_KEY_MGMT:
PRINT_K("iwctl_siwauth(wpa_version=%d):set KEY_MGMT=%d\n", wpa_version,wrq->value);
if (wpa_version == IW_AUTH_WPA_VERSION_WPA2){
if (wrq->value == IW_AUTH_KEY_MGMT_PSK)
pMgmt->eAuthenMode = WMAC_AUTH_WPA2PSK;
else pMgmt->eAuthenMode = WMAC_AUTH_WPA2;
} else if (wpa_version == IW_AUTH_WPA_VERSION_WPA) {
if (wrq->value == 0){
pMgmt->eAuthenMode = WMAC_AUTH_WPANONE;
} else if (wrq->value == IW_AUTH_KEY_MGMT_PSK)
pMgmt->eAuthenMode = WMAC_AUTH_WPAPSK;
} else {
pMgmt->eAuthenMode = WMAC_AUTH_WPA;
}
break;
case IW_AUTH_TKIP_COUNTERMEASURES:
break; /* FIXME */
case IW_AUTH_DROP_UNENCRYPTED:
break;
case IW_AUTH_80211_AUTH_ALG:
PRINT_K("iwctl_siwauth:set AUTH_ALG=%d\n", wrq->value);
if (wrq->value == IW_AUTH_ALG_OPEN_SYSTEM)
pMgmt->bShareKeyAlgorithm = false;
else if (wrq->value == IW_AUTH_ALG_SHARED_KEY)
pMgmt->bShareKeyAlgorithm = true;
break;
case IW_AUTH_WPA_ENABLED:
break;
case IW_AUTH_RX_UNENCRYPTED_EAPOL:
break;
case IW_AUTH_ROAMING_CONTROL:
ret = -EOPNOTSUPP;
break;
case IW_AUTH_PRIVACY_INVOKED:
pDevice->bEncryptionEnable = !!wrq->value;
if (pDevice->bEncryptionEnable == false) {
wpa_version = 0;
pairwise = 0;
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
pMgmt->bShareKeyAlgorithm = false;
pMgmt->eAuthenMode = WMAC_AUTH_OPEN;
PRINT_K("iwctl_siwauth:set WPADEV to disaable at 2?????\n");
}
break;
default:
PRINT_K("iwctl_siwauth: not supported %x\n", wrq->flags);
ret = -EOPNOTSUPP;
break;
}
return ret;
}
int iwctl_giwauth(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
return -EOPNOTSUPP;
}
int iwctl_siwgenie(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_point *wrq = &wrqu->data;
int ret = 0;
if (pMgmt == NULL)
return -EFAULT;
if (wrq->length){
if ((wrq->length < 2) || (extra[1] + 2 != wrq->length)) {
ret = -EINVAL;
goto out;
}
if (wrq->length > MAX_WPA_IE_LEN){
ret = -ENOMEM;
goto out;
}
memset(pMgmt->abyWPAIE, 0, MAX_WPA_IE_LEN);
if (copy_from_user(pMgmt->abyWPAIE, extra, wrq->length)){
ret = -EFAULT;
goto out;
}
pMgmt->wWPAIELen = wrq->length;
} else {
memset(pMgmt->abyWPAIE, 0, MAX_WPA_IE_LEN);
pMgmt->wWPAIELen = 0;
}
out: // not completely ...not necessary in wpa_supplicant 0.5.8
return ret;
}
int iwctl_giwgenie(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_point *wrq = &wrqu->data;
int ret = 0;
int space = wrq->length;
if (pMgmt == NULL)
return -EFAULT;
wrq->length = 0;
if (pMgmt->wWPAIELen > 0) {
wrq->length = pMgmt->wWPAIELen;
if (pMgmt->wWPAIELen <= space) {
if (copy_to_user(extra, pMgmt->abyWPAIE, pMgmt->wWPAIELen)) {
ret = -EFAULT;
}
} else {
ret = -E2BIG;
}
}
return ret;
}
int iwctl_siwencodeext(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_point *wrq = &wrqu->encoding;
struct iw_encode_ext *ext = (struct iw_encode_ext*)extra;
struct viawget_wpa_param *param=NULL;
// original member
wpa_alg alg_name;
u8 addr[6];
int key_idx;
int set_tx = 0;
u8 seq[IW_ENCODE_SEQ_MAX_SIZE];
u8 key[64];
size_t seq_len = 0;
size_t key_len = 0;
u8 *buf;
u8 key_array[64];
int ret = 0;
PRINT_K("SIOCSIWENCODEEXT......\n");
if (pMgmt == NULL)
return -EFAULT;
buf = kzalloc(sizeof(struct viawget_wpa_param), GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
param = (struct viawget_wpa_param *)buf;
// recover alg_name
switch (ext->alg) {
case IW_ENCODE_ALG_NONE:
alg_name = WPA_ALG_NONE;
break;
case IW_ENCODE_ALG_WEP:
alg_name = WPA_ALG_WEP;
break;
case IW_ENCODE_ALG_TKIP:
alg_name = WPA_ALG_TKIP;
break;
case IW_ENCODE_ALG_CCMP:
alg_name = WPA_ALG_CCMP;
break;
default:
PRINT_K("Unknown alg = %d\n",ext->alg);
ret= -ENOMEM;
goto error;
}
// recover addr
memcpy(addr, ext->addr.sa_data, ETH_ALEN);
// recover key_idx
key_idx = (wrq->flags&IW_ENCODE_INDEX) - 1;
// recover set_tx
if (ext->ext_flags & IW_ENCODE_EXT_SET_TX_KEY)
set_tx = 1;
// recover seq,seq_len
if (ext->ext_flags & IW_ENCODE_EXT_RX_SEQ_VALID) {
seq_len=IW_ENCODE_SEQ_MAX_SIZE;
memcpy(seq, ext->rx_seq, seq_len);
}
// recover key,key_len
if (ext->key_len) {
key_len = ext->key_len;
memcpy(key, &ext->key[0], key_len);
}
memset(key_array, 0, 64);
if (key_len > 0) {
memcpy(key_array, key, key_len);
if (key_len == 32) {
// notice ! the oder
memcpy(&key_array[16], &key[24], 8);
memcpy(&key_array[24], &key[16], 8);
}
}
/**************Translate iw_encode_ext to viawget_wpa_param****************/
memcpy(param->addr, addr, ETH_ALEN);
param->u.wpa_key.alg_name = (int)alg_name;
param->u.wpa_key.set_tx = set_tx;
param->u.wpa_key.key_index = key_idx;
param->u.wpa_key.key_len = key_len;
param->u.wpa_key.key = (u8 *)key_array;
param->u.wpa_key.seq = (u8 *)seq;
param->u.wpa_key.seq_len = seq_len;
/****set if current action is Network Manager count?? */
/****this method is so foolish,but there is no other way??? */
if (param->u.wpa_key.alg_name == WPA_ALG_NONE) {
if (param->u.wpa_key.key_index ==0) {
pDevice->bwextstep0 = true;
}
if ((pDevice->bwextstep0 == true) && (param->u.wpa_key.key_index == 1)) {
pDevice->bwextstep0 = false;
pDevice->bwextstep1 = true;
}
if ((pDevice->bwextstep1 == true) && (param->u.wpa_key.key_index == 2)) {
pDevice->bwextstep1 = false;
pDevice->bwextstep2 = true;
}
if ((pDevice->bwextstep2 == true) && (param->u.wpa_key.key_index == 3)) {
pDevice->bwextstep2 = false;
pDevice->bwextstep3 = true;
}
}
if (pDevice->bwextstep3 == true) {
PRINT_K("SIOCSIWENCODEEXT:Enable WPA WEXT SUPPORT!!!!!\n");
pDevice->bwextstep0 = false;
pDevice->bwextstep1 = false;
pDevice->bwextstep2 = false;
pDevice->bwextstep3 = false;
pDevice->bWPASuppWextEnabled = true;
memset(pMgmt->abyDesireBSSID, 0xFF, 6);
KeyvInitTable(pDevice, &pDevice->sKey);
}
/*******/
spin_lock_irq(&pDevice->lock);
ret = wpa_set_keys(pDevice, param);
spin_unlock_irq(&pDevice->lock);
error:
kfree(buf);
return ret;
}
int iwctl_giwencodeext(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
return -EOPNOTSUPP;
}
int iwctl_siwmlme(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct iw_mlme *mlme = (struct iw_mlme *)extra;
int ret = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWMLME\n");
if (pMgmt == NULL)
return -EFAULT;
if (memcmp(pMgmt->abyCurrBSSID, mlme->addr.sa_data, ETH_ALEN)) {
ret = -EINVAL;
return ret;
}
switch (mlme->cmd){
case IW_MLME_DEAUTH:
case IW_MLME_DISASSOC:
if (pDevice->bLinkPass == true) {
PRINT_K("iwctl_siwmlme--->send DISASSOCIATE\n");
bScheduleCommand((void *)pDevice, WLAN_CMD_DISASSOCIATE,
NULL);
}
break;
default:
ret = -EOPNOTSUPP;
}
return ret;
}
static int iwctl_config_commit(struct net_device *dev,
struct iw_request_info *info, union iwreq_data *wrqu, char *extra)
{
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "SIOCSIWCOMMIT\n");
return 0;
}
static const iw_handler iwctl_handler[] = {
IW_HANDLER(SIOCSIWCOMMIT, iwctl_config_commit),
IW_HANDLER(SIOCGIWNAME, iwctl_giwname),
IW_HANDLER(SIOCSIWFREQ, iwctl_siwfreq),
IW_HANDLER(SIOCGIWFREQ, iwctl_giwfreq),
IW_HANDLER(SIOCSIWMODE, iwctl_siwmode),
IW_HANDLER(SIOCGIWMODE, iwctl_giwmode),
IW_HANDLER(SIOCGIWSENS, iwctl_giwsens),
IW_HANDLER(SIOCGIWRANGE, iwctl_giwrange),
IW_HANDLER(SIOCSIWAP, iwctl_siwap),
IW_HANDLER(SIOCGIWAP, iwctl_giwap),
IW_HANDLER(SIOCSIWMLME, iwctl_siwmlme),
IW_HANDLER(SIOCGIWAPLIST, iwctl_giwaplist),
IW_HANDLER(SIOCSIWSCAN, iwctl_siwscan),
IW_HANDLER(SIOCGIWSCAN, iwctl_giwscan),
IW_HANDLER(SIOCSIWESSID, iwctl_siwessid),
IW_HANDLER(SIOCGIWESSID, iwctl_giwessid),
IW_HANDLER(SIOCSIWRATE, iwctl_siwrate),
IW_HANDLER(SIOCGIWRATE, iwctl_giwrate),
IW_HANDLER(SIOCSIWRTS, iwctl_siwrts),
IW_HANDLER(SIOCGIWRTS, iwctl_giwrts),
IW_HANDLER(SIOCSIWFRAG, iwctl_siwfrag),
IW_HANDLER(SIOCGIWFRAG, iwctl_giwfrag),
IW_HANDLER(SIOCSIWRETRY, iwctl_siwretry),
IW_HANDLER(SIOCGIWRETRY, iwctl_giwretry),
IW_HANDLER(SIOCSIWENCODE, iwctl_siwencode),
IW_HANDLER(SIOCGIWENCODE, iwctl_giwencode),
IW_HANDLER(SIOCSIWPOWER, iwctl_siwpower),
IW_HANDLER(SIOCGIWPOWER, iwctl_giwpower),
IW_HANDLER(SIOCSIWGENIE, iwctl_siwgenie),
IW_HANDLER(SIOCGIWGENIE, iwctl_giwgenie),
IW_HANDLER(SIOCSIWMLME, iwctl_siwmlme),
IW_HANDLER(SIOCSIWAUTH, iwctl_siwauth),
IW_HANDLER(SIOCGIWAUTH, iwctl_giwauth),
IW_HANDLER(SIOCSIWENCODEEXT, iwctl_siwencodeext),
IW_HANDLER(SIOCGIWENCODEEXT, iwctl_giwencodeext)
};
static const iw_handler iwctl_private_handler[] = {
NULL, // SIOCIWFIRSTPRIV
};
const struct iw_handler_def iwctl_handler_def = {
.get_wireless_stats = &iwctl_get_wireless_stats,
.num_standard = ARRAY_SIZE(iwctl_handler),
.num_private = 0,
.num_private_args = 0,
.standard = iwctl_handler,
.private = NULL,
.private_args = NULL,
};