| /* |
| * Copyright 2017 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| #include "linux/delay.h" |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| |
| #include "smumgr.h" |
| #include "pp_debug.h" |
| #include "ci_smumgr.h" |
| #include "ppsmc.h" |
| #include "smu7_hwmgr.h" |
| #include "hardwaremanager.h" |
| #include "ppatomctrl.h" |
| #include "cgs_common.h" |
| #include "atombios.h" |
| #include "pppcielanes.h" |
| #include "smu7_smumgr.h" |
| |
| #include "smu/smu_7_0_1_d.h" |
| #include "smu/smu_7_0_1_sh_mask.h" |
| |
| #include "dce/dce_8_0_d.h" |
| #include "dce/dce_8_0_sh_mask.h" |
| |
| #include "bif/bif_4_1_d.h" |
| #include "bif/bif_4_1_sh_mask.h" |
| |
| #include "gca/gfx_7_2_d.h" |
| #include "gca/gfx_7_2_sh_mask.h" |
| |
| #include "gmc/gmc_7_1_d.h" |
| #include "gmc/gmc_7_1_sh_mask.h" |
| |
| #include "processpptables.h" |
| |
| #define MC_CG_ARB_FREQ_F0 0x0a |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define MC_CG_ARB_FREQ_F2 0x0c |
| #define MC_CG_ARB_FREQ_F3 0x0d |
| |
| #define SMC_RAM_END 0x40000 |
| |
| #define CISLAND_MINIMUM_ENGINE_CLOCK 800 |
| #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5 |
| |
| static const struct ci_pt_defaults defaults_hawaii_xt = { |
| 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000, |
| { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, |
| { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } |
| }; |
| |
| static const struct ci_pt_defaults defaults_hawaii_pro = { |
| 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062, |
| { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, |
| { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } |
| }; |
| |
| static const struct ci_pt_defaults defaults_bonaire_xt = { |
| 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
| { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, |
| { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } |
| }; |
| |
| |
| static const struct ci_pt_defaults defaults_saturn_xt = { |
| 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000, |
| { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D }, |
| { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 } |
| }; |
| |
| |
| static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr, |
| uint32_t smc_addr, uint32_t limit) |
| { |
| if ((0 != (3 & smc_addr)) |
| || ((smc_addr + 3) >= limit)) { |
| pr_err("smc_addr invalid \n"); |
| return -EINVAL; |
| } |
| |
| cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr); |
| PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); |
| return 0; |
| } |
| |
| static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address, |
| const uint8_t *src, uint32_t byte_count, uint32_t limit) |
| { |
| int result; |
| uint32_t data = 0; |
| uint32_t original_data; |
| uint32_t addr = 0; |
| uint32_t extra_shift; |
| |
| if ((3 & smc_start_address) |
| || ((smc_start_address + byte_count) >= limit)) { |
| pr_err("smc_start_address invalid \n"); |
| return -EINVAL; |
| } |
| |
| addr = smc_start_address; |
| |
| while (byte_count >= 4) { |
| /* Bytes are written into the SMC address space with the MSB first. */ |
| data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; |
| |
| result = ci_set_smc_sram_address(hwmgr, addr, limit); |
| |
| if (0 != result) |
| return result; |
| |
| cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); |
| |
| src += 4; |
| byte_count -= 4; |
| addr += 4; |
| } |
| |
| if (0 != byte_count) { |
| |
| data = 0; |
| |
| result = ci_set_smc_sram_address(hwmgr, addr, limit); |
| |
| if (0 != result) |
| return result; |
| |
| |
| original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0); |
| |
| extra_shift = 8 * (4 - byte_count); |
| |
| while (byte_count > 0) { |
| /* Bytes are written into the SMC addres space with the MSB first. */ |
| data = (0x100 * data) + *src++; |
| byte_count--; |
| } |
| |
| data <<= extra_shift; |
| |
| data |= (original_data & ~((~0UL) << extra_shift)); |
| |
| result = ci_set_smc_sram_address(hwmgr, addr, limit); |
| |
| if (0 != result) |
| return result; |
| |
| cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); |
| } |
| |
| return 0; |
| } |
| |
| |
| static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr) |
| { |
| static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 }; |
| |
| ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1); |
| |
| return 0; |
| } |
| |
| static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr) |
| { |
| return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable)) |
| && (0x20100 <= cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixSMC_PC_C))); |
| } |
| |
| static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr, |
| uint32_t *value, uint32_t limit) |
| { |
| int result; |
| |
| result = ci_set_smc_sram_address(hwmgr, smc_addr, limit); |
| |
| if (result) |
| return result; |
| |
| *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0); |
| return 0; |
| } |
| |
| static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg) |
| { |
| int ret; |
| |
| cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0); |
| cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg); |
| |
| PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0); |
| |
| ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP); |
| |
| if (ret != 1) |
| pr_info("\n failed to send message %x ret is %d\n", msg, ret); |
| |
| return 0; |
| } |
| |
| static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr, |
| uint16_t msg, uint32_t parameter) |
| { |
| cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter); |
| return ci_send_msg_to_smc(hwmgr, msg); |
| } |
| |
| static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| struct amdgpu_device *adev = hwmgr->adev; |
| uint32_t dev_id; |
| |
| dev_id = adev->pdev->device; |
| |
| switch (dev_id) { |
| case 0x67BA: |
| case 0x67B1: |
| smu_data->power_tune_defaults = &defaults_hawaii_pro; |
| break; |
| case 0x67B8: |
| case 0x66B0: |
| smu_data->power_tune_defaults = &defaults_hawaii_xt; |
| break; |
| case 0x6640: |
| case 0x6641: |
| case 0x6646: |
| case 0x6647: |
| smu_data->power_tune_defaults = &defaults_saturn_xt; |
| break; |
| case 0x6649: |
| case 0x6650: |
| case 0x6651: |
| case 0x6658: |
| case 0x665C: |
| case 0x665D: |
| case 0x67A0: |
| case 0x67A1: |
| case 0x67A2: |
| case 0x67A8: |
| case 0x67A9: |
| case 0x67AA: |
| case 0x67B9: |
| case 0x67BE: |
| default: |
| smu_data->power_tune_defaults = &defaults_bonaire_xt; |
| break; |
| } |
| } |
| |
| static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, |
| uint32_t clock, uint32_t *vol) |
| { |
| uint32_t i = 0; |
| |
| if (allowed_clock_voltage_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
| if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
| *vol = allowed_clock_voltage_table->entries[i].v; |
| return 0; |
| } |
| } |
| |
| *vol = allowed_clock_voltage_table->entries[i - 1].v; |
| return 0; |
| } |
| |
| static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| uint32_t ref_clock; |
| uint32_t ref_divider; |
| uint32_t fbdiv; |
| int result; |
| |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ |
| ref_clock = atomctrl_get_reference_clock(hwmgr); |
| ref_divider = 1 + dividers.uc_pll_ref_div; |
| |
| /* low 14 bits is fraction and high 12 bits is divider */ |
| fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| |
| /* SPLL_FUNC_CNTL setup */ |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_REF_DIV, dividers.uc_pll_ref_div); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_PDIV_A, dividers.uc_pll_post_div); |
| |
| /* SPLL_FUNC_CNTL_3 setup*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
| SPLL_FB_DIV, fbdiv); |
| |
| /* set to use fractional accumulation*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
| SPLL_DITHEN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| struct pp_atomctrl_internal_ss_info ss_info; |
| uint32_t vco_freq = clock * dividers.uc_pll_post_div; |
| |
| if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, |
| vco_freq, &ss_info)) { |
| uint32_t clk_s = ref_clock * 5 / |
| (ref_divider * ss_info.speed_spectrum_rate); |
| uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage * |
| fbdiv / (clk_s * 10000); |
| |
| cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
| CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); |
| cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
| CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
| cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, |
| CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); |
| } |
| } |
| |
| sclk->SclkFrequency = clock; |
| sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| |
| return 0; |
| } |
| |
| static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, |
| const struct phm_phase_shedding_limits_table *pl, |
| uint32_t sclk, uint32_t *p_shed) |
| { |
| unsigned int i; |
| |
| /* use the minimum phase shedding */ |
| *p_shed = 1; |
| |
| for (i = 0; i < pl->count; i++) { |
| if (sclk < pl->entries[i].Sclk) { |
| *p_shed = i; |
| break; |
| } |
| } |
| } |
| |
| static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock, |
| uint32_t clock_insr) |
| { |
| uint8_t i; |
| uint32_t temp; |
| uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK); |
| |
| if (clock < min) { |
| pr_info("Engine clock can't satisfy stutter requirement!\n"); |
| return 0; |
| } |
| for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { |
| temp = clock >> i; |
| |
| if (temp >= min || i == 0) |
| break; |
| } |
| return i; |
| } |
| |
| static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level) |
| { |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| |
| result = ci_calculate_sclk_params(hwmgr, clock, level); |
| |
| /* populate graphics levels */ |
| result = ci_get_dependency_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.vddc_dependency_on_sclk, clock, |
| (uint32_t *)(&level->MinVddc)); |
| if (result) { |
| pr_err("vdd_dep_on_sclk table is NULL\n"); |
| return result; |
| } |
| |
| level->SclkFrequency = clock; |
| level->MinVddcPhases = 1; |
| |
| if (data->vddc_phase_shed_control) |
| ci_populate_phase_value_based_on_sclk(hwmgr, |
| hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| clock, |
| &level->MinVddcPhases); |
| |
| level->ActivityLevel = data->current_profile_setting.sclk_activity; |
| level->CcPwrDynRm = 0; |
| level->CcPwrDynRm1 = 0; |
| level->EnabledForActivity = 0; |
| /* this level can be used for throttling.*/ |
| level->EnabledForThrottle = 1; |
| level->UpH = data->current_profile_setting.sclk_up_hyst; |
| level->DownH = data->current_profile_setting.sclk_down_hyst; |
| level->VoltageDownH = 0; |
| level->PowerThrottle = 0; |
| |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) |
| level->DeepSleepDivId = |
| ci_get_sleep_divider_id_from_clock(clock, |
| CISLAND_MINIMUM_ENGINE_CLOCK); |
| |
| /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
| level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| if (0 == result) { |
| level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
| } |
| |
| return result; |
| } |
| |
| static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| int result = 0; |
| uint32_t array = smu_data->dpm_table_start + |
| offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); |
| uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) * |
| SMU7_MAX_LEVELS_GRAPHICS; |
| struct SMU7_Discrete_GraphicsLevel *levels = |
| smu_data->smc_state_table.GraphicsLevel; |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| result = ci_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| &levels[i]); |
| if (result) |
| return result; |
| if (i > 1) |
| smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
| if (i == (dpm_table->sclk_table.count - 1)) |
| smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| } |
| |
| smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| |
| smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| result = ci_copy_bytes_to_smc(hwmgr, array, |
| (u8 *)levels, array_size, |
| SMC_RAM_END); |
| |
| return result; |
| |
| } |
| |
| static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
| smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; |
| smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| |
| return 0; |
| } |
| |
| static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| { |
| uint16_t tdc_limit; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); |
| smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
| smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| defaults->tdc_vddc_throttle_release_limit_perc; |
| smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
| |
| return 0; |
| } |
| |
| static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| uint32_t temp; |
| |
| if (ci_read_smc_sram_dword(hwmgr, |
| fuse_table_offset + |
| offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl), |
| (uint32_t *)&temp, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", |
| return -EINVAL); |
| else |
| smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
| |
| return 0; |
| } |
| |
| static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| { |
| uint16_t tmp; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| |
| if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) |
| || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) |
| tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity; |
| else |
| tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; |
| |
| smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp); |
| |
| return 0; |
| } |
| |
| static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
| uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
| uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2; |
| |
| PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, |
| "The CAC Leakage table does not exist!", return -EINVAL); |
| PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, |
| "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL); |
| PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, |
| "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL); |
| |
| for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { |
| lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); |
| hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); |
| hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3); |
| } else { |
| lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc); |
| hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint8_t *vid = smu_data->power_tune_table.VddCVid; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, |
| "There should never be more than 8 entries for VddcVid!!!", |
| return -EINVAL); |
| |
| for (i = 0; i < (int)data->vddc_voltage_table.count; i++) |
| vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); |
| |
| return 0; |
| } |
| |
| static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
| u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
| int i, min, max; |
| |
| min = max = hi_vid[0]; |
| for (i = 0; i < 8; i++) { |
| if (0 != hi_vid[i]) { |
| if (min > hi_vid[i]) |
| min = hi_vid[i]; |
| if (max < hi_vid[i]) |
| max = hi_vid[i]; |
| } |
| |
| if (0 != lo_vid[i]) { |
| if (min > lo_vid[i]) |
| min = lo_vid[i]; |
| if (max < lo_vid[i]) |
| max = lo_vid[i]; |
| } |
| } |
| |
| if ((min == 0) || (max == 0)) |
| return -EINVAL; |
| smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max; |
| smu_data->power_tune_table.GnbLPMLMinVid = (u8)min; |
| |
| return 0; |
| } |
| |
| static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint16_t HiSidd; |
| uint16_t LoSidd; |
| struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; |
| |
| HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| |
| smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(HiSidd); |
| smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(LoSidd); |
| |
| return 0; |
| } |
| |
| static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint32_t pm_fuse_table_offset; |
| int ret = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment)) { |
| if (ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, PmFuseTable), |
| &pm_fuse_table_offset, SMC_RAM_END)) { |
| pr_err("Attempt to get pm_fuse_table_offset Failed!\n"); |
| return -EINVAL; |
| } |
| |
| /* DW0 - DW3 */ |
| ret = ci_populate_bapm_vddc_vid_sidd(hwmgr); |
| /* DW4 - DW5 */ |
| ret |= ci_populate_vddc_vid(hwmgr); |
| /* DW6 */ |
| ret |= ci_populate_svi_load_line(hwmgr); |
| /* DW7 */ |
| ret |= ci_populate_tdc_limit(hwmgr); |
| /* DW8 */ |
| ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset); |
| |
| ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset); |
| |
| ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr); |
| |
| ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr); |
| if (ret) |
| return ret; |
| |
| ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
| (uint8_t *)&smu_data->power_tune_table, |
| sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END); |
| } |
| return ret; |
| } |
| |
| static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
| struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; |
| struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; |
| const uint16_t *def1, *def2; |
| int i, j, k; |
| |
| dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256)); |
| dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); |
| |
| dpm_table->DTETjOffset = 0; |
| dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES); |
| dpm_table->GpuTjHyst = 8; |
| |
| dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
| |
| if (ppm) { |
| dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; |
| dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; |
| } else { |
| dpm_table->PPM_PkgPwrLimit = 0; |
| dpm_table->PPM_TemperatureLimit = 0; |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit); |
| CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit); |
| |
| dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); |
| def1 = defaults->bapmti_r; |
| def2 = defaults->bapmti_rc; |
| |
| for (i = 0; i < SMU7_DTE_ITERATIONS; i++) { |
| for (j = 0; j < SMU7_DTE_SOURCES; j++) { |
| for (k = 0; k < SMU7_DTE_SINKS; k++) { |
| dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1); |
| dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2); |
| def1++; |
| def2++; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, |
| pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, |
| uint16_t *lo) |
| { |
| uint16_t v_index; |
| bool vol_found = false; |
| *hi = tab->value * VOLTAGE_SCALE; |
| *lo = tab->value * VOLTAGE_SCALE; |
| |
| PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, |
| "The SCLK/VDDC Dependency Table does not exist.\n", |
| return -EINVAL); |
| |
| if (NULL == hwmgr->dyn_state.cac_leakage_table) { |
| pr_warn("CAC Leakage Table does not exist, using vddc.\n"); |
| return 0; |
| } |
| |
| for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| vol_found = true; |
| if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); |
| } else { |
| pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n"); |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); |
| } |
| break; |
| } |
| } |
| |
| if (!vol_found) { |
| for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| vol_found = true; |
| if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; |
| } else { |
| pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table."); |
| *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; |
| *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); |
| } |
| break; |
| } |
| } |
| |
| if (!vol_found) |
| pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, |
| pp_atomctrl_voltage_table_entry *tab, |
| SMU7_Discrete_VoltageLevel *smc_voltage_tab) |
| { |
| int result; |
| |
| result = ci_get_std_voltage_value_sidd(hwmgr, tab, |
| &smc_voltage_tab->StdVoltageHiSidd, |
| &smc_voltage_tab->StdVoltageLoSidd); |
| if (result) { |
| smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; |
| smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; |
| } |
| |
| smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); |
| CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); |
| CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd); |
| |
| return 0; |
| } |
| |
| static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| unsigned int count; |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| table->VddcLevelCount = data->vddc_voltage_table.count; |
| for (count = 0; count < table->VddcLevelCount; count++) { |
| result = ci_populate_smc_voltage_table(hwmgr, |
| &(data->vddc_voltage_table.entries[count]), |
| &(table->VddcLevel[count])); |
| PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL); |
| |
| /* GPIO voltage control */ |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { |
| table->VddcLevel[count].Smio = (uint8_t) count; |
| table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low; |
| table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low; |
| } else { |
| table->VddcLevel[count].Smio = 0; |
| } |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); |
| |
| return 0; |
| } |
| |
| static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| int result; |
| |
| table->VddciLevelCount = data->vddci_voltage_table.count; |
| |
| for (count = 0; count < table->VddciLevelCount; count++) { |
| result = ci_populate_smc_voltage_table(hwmgr, |
| &(data->vddci_voltage_table.entries[count]), |
| &(table->VddciLevel[count])); |
| PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL); |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| table->VddciLevel[count].Smio = (uint8_t) count; |
| table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low; |
| table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low; |
| } else { |
| table->VddciLevel[count].Smio = 0; |
| } |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); |
| |
| return 0; |
| } |
| |
| static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| int result; |
| |
| table->MvddLevelCount = data->mvdd_voltage_table.count; |
| |
| for (count = 0; count < table->MvddLevelCount; count++) { |
| result = ci_populate_smc_voltage_table(hwmgr, |
| &(data->mvdd_voltage_table.entries[count]), |
| &table->MvddLevel[count]); |
| PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL); |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| table->MvddLevel[count].Smio = (uint8_t) count; |
| table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low; |
| table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low; |
| } else { |
| table->MvddLevel[count].Smio = 0; |
| } |
| } |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); |
| |
| return 0; |
| } |
| |
| |
| static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| int result; |
| |
| result = ci_populate_smc_vddc_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDC voltage table to SMC", return -EINVAL); |
| |
| result = ci_populate_smc_vdd_ci_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate VDDCI voltage table to SMC", return -EINVAL); |
| |
| result = ci_populate_smc_mvdd_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate MVDD voltage table to SMC", return -EINVAL); |
| |
| return 0; |
| } |
| |
| static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU7_Discrete_Ulv *state) |
| { |
| uint32_t voltage_response_time, ulv_voltage; |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); |
| PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;); |
| |
| if (ulv_voltage == 0) { |
| data->ulv_supported = false; |
| return 0; |
| } |
| |
| if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| state->VddcOffset = 0; |
| else |
| /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ |
| state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); |
| } else { |
| /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| state->VddcOffsetVid = 0; |
| else /* used in SVI2 Mode */ |
| state->VddcOffsetVid = (uint8_t)( |
| (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) |
| * VOLTAGE_VID_OFFSET_SCALE2 |
| / VOLTAGE_VID_OFFSET_SCALE1); |
| } |
| state->VddcPhase = 1; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| |
| return 0; |
| } |
| |
| static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_Ulv *ulv_level) |
| { |
| return ci_populate_ulv_level(hwmgr, ulv_level); |
| } |
| |
| static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint32_t i; |
| |
| /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = |
| (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = 1; |
| table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30); |
| } |
| |
| smu_data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| static int ci_calculate_mclk_params( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU7_Discrete_MemoryLevel *mclk, |
| bool strobe_mode, |
| bool dllStateOn |
| ) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
| uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
| uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
| uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
| uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
| uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
| uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
| |
| pp_atomctrl_memory_clock_param mpll_param; |
| int result; |
| |
| result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
| memory_clock, &mpll_param, strobe_mode); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Error retrieving Memory Clock Parameters from VBIOS.", return result); |
| |
| mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); |
| |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); |
| |
| mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, |
| MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
| |
| if (data->is_memory_gddr5) { |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
| pp_atomctrl_internal_ss_info ss_info; |
| uint32_t freq_nom; |
| uint32_t tmp; |
| uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
| |
| /* for GDDR5 for all modes and DDR3 */ |
| if (1 == mpll_param.qdr) |
| freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
| else |
| freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
| |
| /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
| tmp = (freq_nom / reference_clock); |
| tmp = tmp * tmp; |
| |
| if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
| uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
| uint32_t clkv = |
| (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
| ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
| |
| mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); |
| mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); |
| } |
| } |
| |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); |
| |
| |
| mclk->MclkFrequency = memory_clock; |
| mclk->MpllFuncCntl = mpll_func_cntl; |
| mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
| mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
| mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
| mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
| mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
| mclk->DllCntl = dll_cntl; |
| mclk->MpllSs1 = mpll_ss1; |
| mclk->MpllSs2 = mpll_ss2; |
| |
| return 0; |
| } |
| |
| static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock, |
| bool strobe_mode) |
| { |
| uint8_t mc_para_index; |
| |
| if (strobe_mode) { |
| if (memory_clock < 12500) |
| mc_para_index = 0x00; |
| else if (memory_clock > 47500) |
| mc_para_index = 0x0f; |
| else |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
| } else { |
| if (memory_clock < 65000) |
| mc_para_index = 0x00; |
| else if (memory_clock > 135000) |
| mc_para_index = 0x0f; |
| else |
| mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
| } |
| |
| return mc_para_index; |
| } |
| |
| static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
| { |
| uint8_t mc_para_index; |
| |
| if (memory_clock < 10000) |
| mc_para_index = 0; |
| else if (memory_clock >= 80000) |
| mc_para_index = 0x0f; |
| else |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
| |
| return mc_para_index; |
| } |
| |
| static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, |
| uint32_t memory_clock, uint32_t *p_shed) |
| { |
| unsigned int i; |
| |
| *p_shed = 1; |
| |
| for (i = 0; i < pl->count; i++) { |
| if (memory_clock < pl->entries[i].Mclk) { |
| *p_shed = i; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ci_populate_single_memory_level( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU7_Discrete_MemoryLevel *memory_level |
| ) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int result = 0; |
| bool dll_state_on; |
| uint32_t mclk_edc_wr_enable_threshold = 40000; |
| uint32_t mclk_edc_enable_threshold = 40000; |
| uint32_t mclk_strobe_mode_threshold = 40000; |
| |
| if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) { |
| result = ci_get_dependency_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); |
| } |
| |
| if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { |
| result = ci_get_dependency_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.vddci_dependency_on_mclk, |
| memory_clock, |
| &memory_level->MinVddci); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result); |
| } |
| |
| if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) { |
| result = ci_get_dependency_volt_by_clk(hwmgr, |
| hwmgr->dyn_state.mvdd_dependency_on_mclk, |
| memory_clock, |
| &memory_level->MinMvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result); |
| } |
| |
| memory_level->MinVddcPhases = 1; |
| |
| if (data->vddc_phase_shed_control) { |
| ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| memory_clock, &memory_level->MinVddcPhases); |
| } |
| |
| memory_level->EnabledForThrottle = 1; |
| memory_level->EnabledForActivity = 1; |
| memory_level->UpH = data->current_profile_setting.mclk_up_hyst; |
| memory_level->DownH = data->current_profile_setting.mclk_down_hyst; |
| memory_level->VoltageDownH = 0; |
| |
| /* Indicates maximum activity level for this performance level.*/ |
| memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
| memory_level->StutterEnable = 0; |
| memory_level->StrobeEnable = 0; |
| memory_level->EdcReadEnable = 0; |
| memory_level->EdcWriteEnable = 0; |
| memory_level->RttEnable = 0; |
| |
| /* default set to low watermark. Highest level will be set to high later.*/ |
| memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
| data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
| |
| /* stutter mode not support on ci */ |
| |
| /* decide strobe mode*/ |
| memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
| (memory_clock <= mclk_strobe_mode_threshold); |
| |
| /* decide EDC mode and memory clock ratio*/ |
| if (data->is_memory_gddr5) { |
| memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock, |
| memory_level->StrobeEnable); |
| |
| if ((mclk_edc_enable_threshold != 0) && |
| (memory_clock > mclk_edc_enable_threshold)) { |
| memory_level->EdcReadEnable = 1; |
| } |
| |
| if ((mclk_edc_wr_enable_threshold != 0) && |
| (memory_clock > mclk_edc_wr_enable_threshold)) { |
| memory_level->EdcWriteEnable = 1; |
| } |
| |
| if (memory_level->StrobeEnable) { |
| if (ci_get_mclk_frequency_ratio(memory_clock, 1) >= |
| ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| else |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; |
| } else |
| dll_state_on = data->dll_default_on; |
| } else { |
| memory_level->StrobeRatio = |
| ci_get_ddr3_mclk_frequency_ratio(memory_clock); |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| } |
| |
| result = ci_calculate_mclk_params(hwmgr, |
| memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
| |
| if (0 == result) { |
| memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); |
| memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); |
| memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); |
| /* MCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); |
| /* Indicates maximum activity level for this performance level.*/ |
| CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); |
| } |
| |
| return result; |
| } |
| |
| static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| struct amdgpu_device *adev = hwmgr->adev; |
| uint32_t dev_id; |
| |
| uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel); |
| uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY; |
| SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", return -EINVAL); |
| result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, |
| &(smu_data->smc_state_table.MemoryLevel[i])); |
| if (0 != result) |
| return result; |
| } |
| |
| smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
| |
| dev_id = adev->pdev->device; |
| |
| if ((dpm_table->mclk_table.count >= 2) |
| && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) { |
| smu_data->smc_state_table.MemoryLevel[1].MinVddci = |
| smu_data->smc_state_table.MemoryLevel[0].MinVddci; |
| smu_data->smc_state_table.MemoryLevel[1].MinMvdd = |
| smu_data->smc_state_table.MemoryLevel[0].MinMvdd; |
| } |
| smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); |
| |
| smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| result = ci_copy_bytes_to_smc(hwmgr, |
| level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, |
| SMC_RAM_END); |
| |
| return result; |
| } |
| |
| static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, |
| SMU7_Discrete_VoltageLevel *voltage) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| uint32_t i = 0; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { |
| if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { |
| /* Always round to higher voltage. */ |
| voltage->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", return -EINVAL); |
| |
| } else { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| |
| SMU7_Discrete_VoltageLevel voltage_level; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| |
| |
| /* The ACPI state should not do DPM on DC (or ever).*/ |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| if (data->acpi_vddc) |
| table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); |
| else |
| table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE); |
| |
| table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1; |
| /* assign zero for now*/ |
| table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| table->ACPILevel.SclkFrequency, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| /* divider ID for required SCLK*/ |
| table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| table->ACPILevel.DeepSleepDivId = 0; |
| |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); |
| spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, |
| CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); |
| |
| table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| /* For various features to be enabled/disabled while this level is active.*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| /* SCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| |
| /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
| table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; |
| table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; |
| else { |
| if (data->acpi_vddci != 0) |
| table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE); |
| else |
| table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE); |
| } |
| |
| if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
| table->MemoryACPILevel.MinMvdd = |
| PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); |
| else |
| table->MemoryACPILevel.MinMvdd = 0; |
| |
| /* Force reset on DLL*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); |
| |
| /* Disable DLL in ACPIState*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); |
| |
| /* Enable DLL bypass signal*/ |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK0_BYPASS, 0); |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK1_BYPASS, 0); |
| |
| table->MemoryACPILevel.DllCntl = |
| PP_HOST_TO_SMC_UL(dll_cntl); |
| table->MemoryACPILevel.MclkPwrmgtCntl = |
| PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); |
| table->MemoryACPILevel.MpllAdFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); |
| table->MemoryACPILevel.MpllDqFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl_1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); |
| table->MemoryACPILevel.MpllFuncCntl_2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); |
| table->MemoryACPILevel.MpllSs1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); |
| table->MemoryACPILevel.MpllSs2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpH = 0; |
| table->MemoryACPILevel.DownH = 100; |
| table->MemoryACPILevel.VoltageDownH = 0; |
| /* Indicates maximum activity level for this performance level.*/ |
| table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); |
| |
| table->MemoryACPILevel.StutterEnable = 0; |
| table->MemoryACPILevel.StrobeEnable = 0; |
| table->MemoryACPILevel.EdcReadEnable = 0; |
| table->MemoryACPILevel.EdcWriteEnable = 0; |
| table->MemoryACPILevel.RttEnable = 0; |
| |
| return result; |
| } |
| |
| static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_uvd_clock_voltage_dependency_table *uvd_table = |
| hwmgr->dyn_state.uvd_clock_voltage_dependency_table; |
| |
| table->UvdLevelCount = (uint8_t)(uvd_table->count); |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].VclkFrequency = |
| uvd_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = |
| uvd_table->entries[count].dclk; |
| table->UvdLevel[count].MinVddc = |
| uvd_table->entries[count].v * VOLTAGE_SCALE; |
| table->UvdLevel[count].MinVddcPhases = 1; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].VclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Vclk clock", return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Dclk clock", return result); |
| |
| table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc); |
| } |
| |
| return result; |
| } |
| |
| static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_vce_clock_voltage_dependency_table *vce_table = |
| hwmgr->dyn_state.vce_clock_voltage_dependency_table; |
| |
| table->VceLevelCount = (uint8_t)(vce_table->count); |
| table->VceBootLevel = 0; |
| |
| for (count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = vce_table->entries[count].evclk; |
| table->VceLevel[count].MinVoltage = |
| vce_table->entries[count].v * VOLTAGE_SCALE; |
| table->VceLevel[count].MinPhases = 1; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for VCE engine clock", |
| return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_acp_clock_voltage_dependency_table *acp_table = |
| hwmgr->dyn_state.acp_clock_voltage_dependency_table; |
| |
| table->AcpLevelCount = (uint8_t)(acp_table->count); |
| table->AcpBootLevel = 0; |
| |
| for (count = 0; count < table->AcpLevelCount; count++) { |
| table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk; |
| table->AcpLevel[count].MinVoltage = acp_table->entries[count].v; |
| table->AcpLevel[count].MinPhases = 1; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->AcpLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for engine clock", return result); |
| |
| table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int ci_populate_memory_timing_parameters( |
| struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint32_t memory_clock, |
| struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs |
| ) |
| { |
| uint32_t dramTiming; |
| uint32_t dramTiming2; |
| uint32_t burstTime; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| engine_clock, memory_clock); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); |
| arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| |
| return 0; |
| } |
| |
| static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| int result = 0; |
| SMU7_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| |
| memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable)); |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = ci_populate_memory_timing_parameters |
| (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| |
| if (0 != result) |
| break; |
| } |
| } |
| |
| if (0 == result) { |
| result = ci_copy_bytes_to_smc( |
| hwmgr, |
| smu_data->arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU7_Discrete_MCArbDramTimingTable), |
| SMC_RAM_END |
| ); |
| } |
| |
| return result; |
| } |
| |
| static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table*/ |
| result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
| |
| if (0 != result) { |
| smu_data->smc_state_table.GraphicsBootLevel = 0; |
| pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n"); |
| result = 0; |
| } |
| |
| result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
| |
| if (0 != result) { |
| smu_data->smc_state_table.MemoryBootLevel = 0; |
| pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n"); |
| result = 0; |
| } |
| |
| table->BootVddc = data->vbios_boot_state.vddc_bootup_value; |
| table->BootVddci = data->vbios_boot_state.vddci_bootup_value; |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
| |
| return result; |
| } |
| |
| static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_MCRegisters *mc_reg_table) |
| { |
| const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend; |
| |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
| if (smu_data->mc_reg_table.validflag & 1<<j) { |
| PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE, |
| "Index of mc_reg_table->address[] array out of boundary", return -EINVAL); |
| mc_reg_table->address[i].s0 = |
| PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); |
| mc_reg_table->address[i].s1 = |
| PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); |
| i++; |
| } |
| } |
| |
| mc_reg_table->last = (uint8_t)i; |
| |
| return 0; |
| } |
| |
| static void ci_convert_mc_registers( |
| const struct ci_mc_reg_entry *entry, |
| SMU7_Discrete_MCRegisterSet *data, |
| uint32_t num_entries, uint32_t valid_flag) |
| { |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < num_entries; j++) { |
| if (valid_flag & 1<<j) { |
| data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); |
| i++; |
| } |
| } |
| } |
| |
| static int ci_convert_mc_reg_table_entry_to_smc( |
| struct pp_hwmgr *hwmgr, |
| const uint32_t memory_clock, |
| SMU7_Discrete_MCRegisterSet *mc_reg_table_data |
| ) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint32_t i = 0; |
| |
| for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
| if (memory_clock <= |
| smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
| break; |
| } |
| } |
| |
| if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
| --i; |
| |
| ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
| mc_reg_table_data, smu_data->mc_reg_table.last, |
| smu_data->mc_reg_table.validflag); |
| |
| return 0; |
| } |
| |
| static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_MCRegisters *mc_regs) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int res; |
| uint32_t i; |
| |
| for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| res = ci_convert_mc_reg_table_entry_to_smc( |
| hwmgr, |
| data->dpm_table.mclk_table.dpm_levels[i].value, |
| &mc_regs->data[i] |
| ); |
| |
| if (0 != res) |
| result = res; |
| } |
| |
| return result; |
| } |
| |
| static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t address; |
| int32_t result; |
| |
| if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) |
| return 0; |
| |
| |
| memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters)); |
| |
| result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
| |
| if (result != 0) |
| return result; |
| |
| address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]); |
| |
| return ci_copy_bytes_to_smc(hwmgr, address, |
| (uint8_t *)&smu_data->mc_regs.data[0], |
| sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, |
| SMC_RAM_END); |
| } |
| |
| static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| |
| memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters)); |
| result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize MCRegTable for the MC register addresses!", return result;); |
| |
| result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize MCRegTable for driver state!", return result;); |
| |
| return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start, |
| (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END); |
| } |
| |
| static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| uint8_t count, level; |
| |
| count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); |
| |
| for (level = 0; level < count; level++) { |
| if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk |
| >= data->vbios_boot_state.sclk_bootup_value) { |
| smu_data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); |
| |
| for (level = 0; level < count; level++) { |
| if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk |
| >= data->vbios_boot_state.mclk_bootup_value) { |
| smu_data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, |
| SMU7_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) |
| table->SVI2Enable = 1; |
| else |
| table->SVI2Enable = 0; |
| return 0; |
| } |
| |
| static int ci_start_smc(struct pp_hwmgr *hwmgr) |
| { |
| /* set smc instruct start point at 0x0 */ |
| ci_program_jump_on_start(hwmgr); |
| |
| /* enable smc clock */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
| |
| PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, |
| INTERRUPTS_ENABLED, 1); |
| |
| return 0; |
| } |
| |
| static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint16_t config; |
| |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= config; |
| } else { |
| pr_info("VDDCshould be on SVI2 controller!"); |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| static int ci_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| u32 i; |
| |
| ci_initialize_power_tune_defaults(hwmgr); |
| memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) |
| ci_populate_smc_voltage_tables(hwmgr, table); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| if (data->ulv_supported) { |
| result = ci_populate_ulv_state(hwmgr, &(table->Ulv)); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ULV state!", return result); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, 0x40035); |
| } |
| |
| result = ci_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Graphics Level!", return result); |
| |
| result = ci_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Memory Level!", return result); |
| |
| result = ci_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Link Level!", return result); |
| |
| result = ci_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACPI Level!", return result); |
| |
| result = ci_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize VCE Level!", return result); |
| |
| result = ci_populate_smc_acp_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACP Level!", return result); |
| |
| /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ |
| /* need to populate the ARB settings for the initial state. */ |
| result = ci_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to Write ARB settings for the initial state.", return result); |
| |
| result = ci_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize UVD Level!", return result); |
| |
| table->UvdBootLevel = 0; |
| table->VceBootLevel = 0; |
| table->AcpBootLevel = 0; |
| table->SamuBootLevel = 0; |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| result = ci_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot Level!", return result); |
| |
| result = ci_populate_smc_initial_state(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); |
| |
| result = ci_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); |
| |
| table->UVDInterval = 1; |
| table->VCEInterval = 1; |
| table->ACPInterval = 1; |
| table->SAMUInterval = 1; |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| |
| table->TemperatureLimitHigh = |
| (data->thermal_temp_setting.temperature_high * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| table->TemperatureLimitLow = |
| (data->thermal_temp_setting.temperature_low * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->VddcVddciDelta = 4000; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| |
| PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| |
| table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count; |
| table->PCIeGenInterval = 1; |
| |
| result = ci_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate VRConfig setting!", return result); |
| data->vr_config = table->VRConfig; |
| |
| ci_populate_smc_svi2_config(hwmgr, table); |
| |
| for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++) |
| CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
| table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } else { |
| table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); |
| table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); |
| table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start + |
| offsetof(SMU7_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController), |
| SMC_RAM_END); |
| |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload dpm data to SMC memory!", return result;); |
| |
| result = ci_populate_initial_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate initialize MC Reg table!", return result); |
| |
| result = ci_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate PM fuses to SMC memory!", return result); |
| |
| ci_start_smc(hwmgr); |
| |
| return 0; |
| } |
| |
| static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
| uint32_t duty100; |
| uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
| uint16_t fdo_min, slope1, slope2; |
| uint32_t reference_clock; |
| int res; |
| uint64_t tmp64; |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) |
| return 0; |
| |
| if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| if (0 == ci_data->fan_table_start) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); |
| |
| if (0 == duty100) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
| do_div(tmp64, 10000); |
| fdo_min = (uint16_t)tmp64; |
| |
| t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
| t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
| |
| pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
| pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
| |
| slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
| slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
| |
| fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); |
| fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); |
| fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); |
| |
| fan_table.Slope1 = cpu_to_be16(slope1); |
| fan_table.Slope2 = cpu_to_be16(slope2); |
| |
| fan_table.FdoMin = cpu_to_be16(fdo_min); |
| |
| fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); |
| |
| fan_table.HystUp = cpu_to_be16(1); |
| |
| fan_table.HystSlope = cpu_to_be16(1); |
| |
| fan_table.TempRespLim = cpu_to_be16(5); |
| |
| reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
| |
| fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); |
| |
| fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
| |
| fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); |
| |
| res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); |
| |
| return 0; |
| } |
| |
| static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return ci_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (data->low_sclk_interrupt_threshold != 0)) { |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = ci_copy_bytes_to_smc( |
| hwmgr, |
| smu_data->dpm_table_start + |
| offsetof(SMU7_Discrete_DpmTable, |
| LowSclkInterruptT), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| SMC_RAM_END); |
| } |
| |
| result = ci_update_and_upload_mc_reg_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result); |
| |
| result = ci_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "Failed to program memory timing parameters!", |
| ); |
| |
| return result; |
| } |
| |
| static uint32_t ci_get_offsetof(uint32_t type, uint32_t member) |
| { |
| switch (type) { |
| case SMU_SoftRegisters: |
| switch (member) { |
| case HandshakeDisables: |
| return offsetof(SMU7_SoftRegisters, HandshakeDisables); |
| case VoltageChangeTimeout: |
| return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout); |
| case AverageGraphicsActivity: |
| return offsetof(SMU7_SoftRegisters, AverageGraphicsA); |
| case AverageMemoryActivity: |
| return offsetof(SMU7_SoftRegisters, AverageMemoryA); |
| case PreVBlankGap: |
| return offsetof(SMU7_SoftRegisters, PreVBlankGap); |
| case VBlankTimeout: |
| return offsetof(SMU7_SoftRegisters, VBlankTimeout); |
| case DRAM_LOG_ADDR_H: |
| return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H); |
| case DRAM_LOG_ADDR_L: |
| return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L); |
| case DRAM_LOG_PHY_ADDR_H: |
| return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
| case DRAM_LOG_PHY_ADDR_L: |
| return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
| case DRAM_LOG_BUFF_SIZE: |
| return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
| } |
| break; |
| case SMU_Discrete_DpmTable: |
| switch (member) { |
| case LowSclkInterruptThreshold: |
| return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT); |
| } |
| break; |
| } |
| pr_debug("can't get the offset of type %x member %x\n", type, member); |
| return 0; |
| } |
| |
| static uint32_t ci_get_mac_definition(uint32_t value) |
| { |
| switch (value) { |
| case SMU_MAX_LEVELS_GRAPHICS: |
| return SMU7_MAX_LEVELS_GRAPHICS; |
| case SMU_MAX_LEVELS_MEMORY: |
| return SMU7_MAX_LEVELS_MEMORY; |
| case SMU_MAX_LEVELS_LINK: |
| return SMU7_MAX_LEVELS_LINK; |
| case SMU_MAX_ENTRIES_SMIO: |
| return SMU7_MAX_ENTRIES_SMIO; |
| case SMU_MAX_LEVELS_VDDC: |
| return SMU7_MAX_LEVELS_VDDC; |
| case SMU_MAX_LEVELS_VDDCI: |
| return SMU7_MAX_LEVELS_VDDCI; |
| case SMU_MAX_LEVELS_MVDD: |
| return SMU7_MAX_LEVELS_MVDD; |
| } |
| |
| pr_debug("can't get the mac of %x\n", value); |
| return 0; |
| } |
| |
| static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t byte_count, start_addr; |
| uint8_t *src; |
| uint32_t data; |
| |
| struct cgs_firmware_info info = {0}; |
| |
| cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info); |
| |
| hwmgr->is_kicker = info.is_kicker; |
| hwmgr->smu_version = info.version; |
| byte_count = info.image_size; |
| src = (uint8_t *)info.kptr; |
| start_addr = info.ucode_start_address; |
| |
| if (byte_count > SMC_RAM_END) { |
| pr_err("SMC address is beyond the SMC RAM area.\n"); |
| return -EINVAL; |
| } |
| |
| cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr); |
| PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1); |
| |
| for (; byte_count >= 4; byte_count -= 4) { |
| data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]; |
| cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); |
| src += 4; |
| } |
| PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); |
| |
| if (0 != byte_count) { |
| pr_err("SMC size must be divisible by 4\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int ci_upload_firmware(struct pp_hwmgr *hwmgr) |
| { |
| if (ci_is_smc_ram_running(hwmgr)) { |
| pr_info("smc is running, no need to load smc firmware\n"); |
| return 0; |
| } |
| PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, |
| boot_seq_done, 1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL, |
| pre_fetcher_en, 1); |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
| return ci_load_smc_ucode(hwmgr); |
| } |
| |
| static int ci_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| |
| uint32_t tmp = 0; |
| int result; |
| bool error = false; |
| |
| if (ci_upload_firmware(hwmgr)) |
| return -EINVAL; |
| |
| result = ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, DpmTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| ci_data->dpm_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, SoftRegisters), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) { |
| data->soft_regs_start = tmp; |
| ci_data->soft_regs_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, mcRegisterTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| ci_data->mc_reg_table_start = tmp; |
| |
| result = ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, FanTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| ci_data->fan_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, mcArbDramTimingTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| ci_data->arb_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = ci_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU7_Firmware_Header, Version), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| hwmgr->microcode_version_info.SMC = tmp; |
| |
| error |= (0 != result); |
| |
| return error ? 1 : 0; |
| } |
| |
| static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
| { |
| return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); |
| } |
| |
| static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
| { |
| bool result = true; |
| |
| switch (in_reg) { |
| case mmMC_SEQ_RAS_TIMING: |
| *out_reg = mmMC_SEQ_RAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_DLL_STBY: |
| *out_reg = mmMC_SEQ_DLL_STBY_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD0: |
| *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD1: |
| *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CTRL: |
| *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; |
| break; |
| |
| case mmMC_SEQ_CAS_TIMING: |
| *out_reg = mmMC_SEQ_CAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING: |
| *out_reg = mmMC_SEQ_MISC_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING2: |
| *out_reg = mmMC_SEQ_MISC_TIMING2_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CMD: |
| *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CTL: |
| *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D0: |
| *out_reg = mmMC_SEQ_RD_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D1: |
| *out_reg = mmMC_SEQ_RD_CTL_D1_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D0: |
| *out_reg = mmMC_SEQ_WR_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D1: |
| *out_reg = mmMC_SEQ_WR_CTL_D1_LP; |
| break; |
| |
| case mmMC_PMG_CMD_EMRS: |
| *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS1: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_TIMING: |
| *out_reg = mmMC_SEQ_PMG_TIMING_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS2: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_2: |
| *out_reg = mmMC_SEQ_WR_CTL_2_LP; |
| break; |
| |
| default: |
| result = false; |
| break; |
| } |
| |
| return result; |
| } |
| |
| static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table) |
| { |
| uint32_t i; |
| uint16_t address; |
| |
| for (i = 0; i < table->last; i++) { |
| table->mc_reg_address[i].s0 = |
| ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) |
| ? address : table->mc_reg_address[i].s1; |
| } |
| return 0; |
| } |
| |
| static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
| struct ci_mc_reg_table *ni_table) |
| { |
| uint8_t i, j; |
| |
| PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| for (i = 0; i < table->last; i++) |
| ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
| |
| ni_table->last = table->last; |
| |
| for (i = 0; i < table->num_entries; i++) { |
| ni_table->mc_reg_table_entry[i].mclk_max = |
| table->mc_reg_table_entry[i].mclk_max; |
| for (j = 0; j < table->last; j++) { |
| ni_table->mc_reg_table_entry[i].mc_data[j] = |
| table->mc_reg_table_entry[i].mc_data[j]; |
| } |
| } |
| |
| ni_table->num_entries = table->num_entries; |
| |
| return 0; |
| } |
| |
| static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
| struct ci_mc_reg_table *table) |
| { |
| uint8_t i, j, k; |
| uint32_t temp_reg; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| for (i = 0, j = table->last; i < table->last; i++) { |
| PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| switch (table->mc_reg_address[i].s1) { |
| |
| case mmMC_SEQ_MISC1: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| ((temp_reg & 0xffff0000)) | |
| ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
| } |
| j++; |
| |
| PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| |
| if (!data->is_memory_gddr5) |
| table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
| } |
| j++; |
| |
| if (!data->is_memory_gddr5) { |
| PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; |
| table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
| } |
| j++; |
| } |
| |
| break; |
| |
| case mmMC_SEQ_RESERVE_M: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| } |
| j++; |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| table->last = j; |
| |
| return 0; |
| } |
| |
| static int ci_set_valid_flag(struct ci_mc_reg_table *table) |
| { |
| uint8_t i, j; |
| |
| for (i = 0; i < table->last; i++) { |
| for (j = 1; j < table->num_entries; j++) { |
| if (table->mc_reg_table_entry[j-1].mc_data[i] != |
| table->mc_reg_table_entry[j].mc_data[i]) { |
| table->validflag |= (1 << i); |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| pp_atomctrl_mc_reg_table *table; |
| struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
| uint8_t module_index = ci_get_memory_modile_index(hwmgr); |
| |
| table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| /* Program additional LP registers that are no longer programmed by VBIOS */ |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); |
| |
| result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
| |
| if (0 == result) |
| result = ci_copy_vbios_smc_reg_table(table, ni_table); |
| |
| if (0 == result) { |
| ci_set_s0_mc_reg_index(ni_table); |
| result = ci_set_mc_special_registers(hwmgr, ni_table); |
| } |
| |
| if (0 == result) |
| ci_set_valid_flag(ni_table); |
| |
| kfree(table); |
| |
| return result; |
| } |
| |
| static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return ci_is_smc_ram_running(hwmgr); |
| } |
| |
| static int ci_smu_init(struct pp_hwmgr *hwmgr) |
| { |
| struct ci_smumgr *ci_priv = NULL; |
| |
| ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL); |
| |
| if (ci_priv == NULL) |
| return -ENOMEM; |
| |
| hwmgr->smu_backend = ci_priv; |
| |
| return 0; |
| } |
| |
| static int ci_smu_fini(struct pp_hwmgr *hwmgr) |
| { |
| kfree(hwmgr->smu_backend); |
| hwmgr->smu_backend = NULL; |
| return 0; |
| } |
| |
| static int ci_start_smu(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr, |
| void *profile_setting) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct ci_smumgr *smu_data = (struct ci_smumgr *) |
| (hwmgr->smu_backend); |
| struct profile_mode_setting *setting; |
| struct SMU7_Discrete_GraphicsLevel *levels = |
| smu_data->smc_state_table.GraphicsLevel; |
| uint32_t array = smu_data->dpm_table_start + |
| offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); |
| |
| uint32_t mclk_array = smu_data->dpm_table_start + |
| offsetof(SMU7_Discrete_DpmTable, MemoryLevel); |
| struct SMU7_Discrete_MemoryLevel *mclk_levels = |
| smu_data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; |
| |
| if (profile_setting == NULL) |
| return -EINVAL; |
| |
| setting = (struct profile_mode_setting *)profile_setting; |
| |
| if (setting->bupdate_sclk) { |
| if (!data->sclk_dpm_key_disabled) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL); |
| for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { |
| if (levels[i].ActivityLevel != |
| cpu_to_be16(setting->sclk_activity)) { |
| levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); |
| |
| clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) |
| + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel); |
| offset = clk_activity_offset & ~0x3; |
| tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
| tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
| |
| } |
| if (levels[i].UpH != setting->sclk_up_hyst || |
| levels[i].DownH != setting->sclk_down_hyst) { |
| levels[i].UpH = setting->sclk_up_hyst; |
| levels[i].DownH = setting->sclk_down_hyst; |
| up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) |
| + offsetof(SMU7_Discrete_GraphicsLevel, UpH); |
| down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) |
| + offsetof(SMU7_Discrete_GraphicsLevel, DownH); |
| offset = up_hyst_offset & ~0x3; |
| tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
| tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t)); |
| tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t)); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
| } |
| } |
| if (!data->sclk_dpm_key_disabled) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL); |
| } |
| |
| if (setting->bupdate_mclk) { |
| if (!data->mclk_dpm_key_disabled) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL); |
| for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { |
| if (mclk_levels[i].ActivityLevel != |
| cpu_to_be16(setting->mclk_activity)) { |
| mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); |
| |
| clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) |
| + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel); |
| offset = clk_activity_offset & ~0x3; |
| tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
| tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
| |
| } |
| if (mclk_levels[i].UpH != setting->mclk_up_hyst || |
| mclk_levels[i].DownH != setting->mclk_down_hyst) { |
| mclk_levels[i].UpH = setting->mclk_up_hyst; |
| mclk_levels[i].DownH = setting->mclk_down_hyst; |
| up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) |
| + offsetof(SMU7_Discrete_MemoryLevel, UpH); |
| down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) |
| + offsetof(SMU7_Discrete_MemoryLevel, DownH); |
| offset = up_hyst_offset & ~0x3; |
| tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
| tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t)); |
| tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t)); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
| } |
| } |
| if (!data->mclk_dpm_key_disabled) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL); |
| } |
| return 0; |
| } |
| |
| static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| struct smu7_hwmgr *data = hwmgr->backend; |
| struct ci_smumgr *smu_data = hwmgr->smu_backend; |
| struct phm_uvd_clock_voltage_dependency_table *uvd_table = |
| hwmgr->dyn_state.uvd_clock_voltage_dependency_table; |
| uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | |
| AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | |
| AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | |
| AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; |
| uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc : |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc; |
| int32_t i; |
| |
| if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0) |
| smu_data->smc_state_table.UvdBootLevel = 0; |
| else |
| smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1; |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475, |
| UvdBootLevel, smu_data->smc_state_table.UvdBootLevel); |
| |
| data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0; |
| |
| for (i = uvd_table->count - 1; i >= 0; i--) { |
| if (uvd_table->entries[i].v <= max_vddc) |
| data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i; |
| if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM)) |
| break; |
| } |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.uvd_dpm_enable_mask, |
| NULL); |
| |
| return 0; |
| } |
| |
| static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| struct smu7_hwmgr *data = hwmgr->backend; |
| struct phm_vce_clock_voltage_dependency_table *vce_table = |
| hwmgr->dyn_state.vce_clock_voltage_dependency_table; |
| uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | |
| AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | |
| AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | |
| AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; |
| uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc : |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc; |
| int32_t i; |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475, |
| VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/ |
| |
| data->dpm_level_enable_mask.vce_dpm_enable_mask = 0; |
| |
| for (i = vce_table->count - 1; i >= 0; i--) { |
| if (vce_table->entries[i].v <= max_vddc) |
| data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i; |
| if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM)) |
| break; |
| } |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.vce_dpm_enable_mask, |
| NULL); |
| |
| return 0; |
| } |
| |
| static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
| { |
| switch (type) { |
| case SMU_UVD_TABLE: |
| ci_update_uvd_smc_table(hwmgr); |
| break; |
| case SMU_VCE_TABLE: |
| ci_update_vce_smc_table(hwmgr); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static void ci_reset_smc(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, |
| rst_reg, 1); |
| } |
| |
| |
| static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_CLOCK_CNTL_0, |
| ck_disable, 1); |
| } |
| |
| static int ci_stop_smc(struct pp_hwmgr *hwmgr) |
| { |
| ci_reset_smc(hwmgr); |
| ci_stop_smc_clock(hwmgr); |
| |
| return 0; |
| } |
| |
| const struct pp_smumgr_func ci_smu_funcs = { |
| .name = "ci_smu", |
| .smu_init = ci_smu_init, |
| .smu_fini = ci_smu_fini, |
| .start_smu = ci_start_smu, |
| .check_fw_load_finish = NULL, |
| .request_smu_load_fw = NULL, |
| .request_smu_load_specific_fw = NULL, |
| .send_msg_to_smc = ci_send_msg_to_smc, |
| .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter, |
| .get_argument = smu7_get_argument, |
| .download_pptable_settings = NULL, |
| .upload_pptable_settings = NULL, |
| .get_offsetof = ci_get_offsetof, |
| .process_firmware_header = ci_process_firmware_header, |
| .init_smc_table = ci_init_smc_table, |
| .update_sclk_threshold = ci_update_sclk_threshold, |
| .thermal_setup_fan_table = ci_thermal_setup_fan_table, |
| .populate_all_graphic_levels = ci_populate_all_graphic_levels, |
| .populate_all_memory_levels = ci_populate_all_memory_levels, |
| .get_mac_definition = ci_get_mac_definition, |
| .initialize_mc_reg_table = ci_initialize_mc_reg_table, |
| .is_dpm_running = ci_is_dpm_running, |
| .update_dpm_settings = ci_update_dpm_settings, |
| .update_smc_table = ci_update_smc_table, |
| .stop_smc = ci_stop_smc, |
| }; |