| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (C) 2022 Jonathan Neuschäfer |
| |
| #include <linux/clk.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/spi/spi-mem.h> |
| |
| #define FIU_CFG 0x00 |
| #define FIU_BURST_BFG 0x01 |
| #define FIU_RESP_CFG 0x02 |
| #define FIU_CFBB_PROT 0x03 |
| #define FIU_FWIN1_LOW 0x04 |
| #define FIU_FWIN1_HIGH 0x06 |
| #define FIU_FWIN2_LOW 0x08 |
| #define FIU_FWIN2_HIGH 0x0a |
| #define FIU_FWIN3_LOW 0x0c |
| #define FIU_FWIN3_HIGH 0x0e |
| #define FIU_PROT_LOCK 0x10 |
| #define FIU_PROT_CLEAR 0x11 |
| #define FIU_SPI_FL_CFG 0x14 |
| #define FIU_UMA_CODE 0x16 |
| #define FIU_UMA_AB0 0x17 |
| #define FIU_UMA_AB1 0x18 |
| #define FIU_UMA_AB2 0x19 |
| #define FIU_UMA_DB0 0x1a |
| #define FIU_UMA_DB1 0x1b |
| #define FIU_UMA_DB2 0x1c |
| #define FIU_UMA_DB3 0x1d |
| #define FIU_UMA_CTS 0x1e |
| #define FIU_UMA_ECTS 0x1f |
| |
| #define FIU_BURST_CFG_R16 3 |
| |
| #define FIU_UMA_CTS_D_SIZE(x) (x) |
| #define FIU_UMA_CTS_A_SIZE BIT(3) |
| #define FIU_UMA_CTS_WR BIT(4) |
| #define FIU_UMA_CTS_CS(x) ((x) << 5) |
| #define FIU_UMA_CTS_EXEC_DONE BIT(7) |
| |
| #define SHM_FLASH_SIZE 0x02 |
| #define SHM_FLASH_SIZE_STALL_HOST BIT(6) |
| |
| /* |
| * I observed a typical wait time of 16 iterations for a UMA transfer to |
| * finish, so this should be a safe limit. |
| */ |
| #define UMA_WAIT_ITERATIONS 100 |
| |
| /* The memory-mapped view of flash is 16 MiB long */ |
| #define MAX_MEMORY_SIZE_PER_CS (16 << 20) |
| #define MAX_MEMORY_SIZE_TOTAL (4 * MAX_MEMORY_SIZE_PER_CS) |
| |
| struct wpcm_fiu_spi { |
| struct device *dev; |
| struct clk *clk; |
| void __iomem *regs; |
| void __iomem *memory; |
| size_t memory_size; |
| struct regmap *shm_regmap; |
| }; |
| |
| static void wpcm_fiu_set_opcode(struct wpcm_fiu_spi *fiu, u8 opcode) |
| { |
| writeb(opcode, fiu->regs + FIU_UMA_CODE); |
| } |
| |
| static void wpcm_fiu_set_addr(struct wpcm_fiu_spi *fiu, u32 addr) |
| { |
| writeb((addr >> 0) & 0xff, fiu->regs + FIU_UMA_AB0); |
| writeb((addr >> 8) & 0xff, fiu->regs + FIU_UMA_AB1); |
| writeb((addr >> 16) & 0xff, fiu->regs + FIU_UMA_AB2); |
| } |
| |
| static void wpcm_fiu_set_data(struct wpcm_fiu_spi *fiu, const u8 *data, unsigned int nbytes) |
| { |
| int i; |
| |
| for (i = 0; i < nbytes; i++) |
| writeb(data[i], fiu->regs + FIU_UMA_DB0 + i); |
| } |
| |
| static void wpcm_fiu_get_data(struct wpcm_fiu_spi *fiu, u8 *data, unsigned int nbytes) |
| { |
| int i; |
| |
| for (i = 0; i < nbytes; i++) |
| data[i] = readb(fiu->regs + FIU_UMA_DB0 + i); |
| } |
| |
| /* |
| * Perform a UMA (User Mode Access) operation, i.e. a software-controlled SPI transfer. |
| */ |
| static int wpcm_fiu_do_uma(struct wpcm_fiu_spi *fiu, unsigned int cs, |
| bool use_addr, bool write, int data_bytes) |
| { |
| int i = 0; |
| u8 cts = FIU_UMA_CTS_EXEC_DONE | FIU_UMA_CTS_CS(cs); |
| |
| if (use_addr) |
| cts |= FIU_UMA_CTS_A_SIZE; |
| if (write) |
| cts |= FIU_UMA_CTS_WR; |
| cts |= FIU_UMA_CTS_D_SIZE(data_bytes); |
| |
| writeb(cts, fiu->regs + FIU_UMA_CTS); |
| |
| for (i = 0; i < UMA_WAIT_ITERATIONS; i++) |
| if (!(readb(fiu->regs + FIU_UMA_CTS) & FIU_UMA_CTS_EXEC_DONE)) |
| return 0; |
| |
| dev_info(fiu->dev, "UMA transfer has not finished in %d iterations\n", UMA_WAIT_ITERATIONS); |
| return -EIO; |
| } |
| |
| static void wpcm_fiu_ects_assert(struct wpcm_fiu_spi *fiu, unsigned int cs) |
| { |
| u8 ects = readb(fiu->regs + FIU_UMA_ECTS); |
| |
| ects &= ~BIT(cs); |
| writeb(ects, fiu->regs + FIU_UMA_ECTS); |
| } |
| |
| static void wpcm_fiu_ects_deassert(struct wpcm_fiu_spi *fiu, unsigned int cs) |
| { |
| u8 ects = readb(fiu->regs + FIU_UMA_ECTS); |
| |
| ects |= BIT(cs); |
| writeb(ects, fiu->regs + FIU_UMA_ECTS); |
| } |
| |
| struct wpcm_fiu_op_shape { |
| bool (*match)(const struct spi_mem_op *op); |
| int (*exec)(struct spi_mem *mem, const struct spi_mem_op *op); |
| }; |
| |
| static bool wpcm_fiu_normal_match(const struct spi_mem_op *op) |
| { |
| // Opcode 0x0b (FAST READ) is treated differently in hardware |
| if (op->cmd.opcode == 0x0b) |
| return false; |
| |
| return (op->addr.nbytes == 0 || op->addr.nbytes == 3) && |
| op->dummy.nbytes == 0 && op->data.nbytes <= 4; |
| } |
| |
| static int wpcm_fiu_normal_exec(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); |
| int ret; |
| |
| wpcm_fiu_set_opcode(fiu, op->cmd.opcode); |
| wpcm_fiu_set_addr(fiu, op->addr.val); |
| if (op->data.dir == SPI_MEM_DATA_OUT) |
| wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes); |
| |
| ret = wpcm_fiu_do_uma(fiu, spi_get_chipselect(mem->spi, 0), op->addr.nbytes == 3, |
| op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes); |
| |
| if (op->data.dir == SPI_MEM_DATA_IN) |
| wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); |
| |
| return ret; |
| } |
| |
| static bool wpcm_fiu_fast_read_match(const struct spi_mem_op *op) |
| { |
| return op->cmd.opcode == 0x0b && op->addr.nbytes == 3 && |
| op->dummy.nbytes == 1 && |
| op->data.nbytes >= 1 && op->data.nbytes <= 4 && |
| op->data.dir == SPI_MEM_DATA_IN; |
| } |
| |
| static int wpcm_fiu_fast_read_exec(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| return -EINVAL; |
| } |
| |
| /* |
| * 4-byte addressing. |
| * |
| * Flash view: [ C A A A A D D D D] |
| * bytes: 13 aa bb cc dd -> 5a a5 f0 0f |
| * FIU's view: [ C A A A][ C D D D D] |
| * FIU mode: [ read/write][ read ] |
| */ |
| static bool wpcm_fiu_4ba_match(const struct spi_mem_op *op) |
| { |
| return op->addr.nbytes == 4 && op->dummy.nbytes == 0 && op->data.nbytes <= 4; |
| } |
| |
| static int wpcm_fiu_4ba_exec(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); |
| int cs = spi_get_chipselect(mem->spi, 0); |
| |
| wpcm_fiu_ects_assert(fiu, cs); |
| |
| wpcm_fiu_set_opcode(fiu, op->cmd.opcode); |
| wpcm_fiu_set_addr(fiu, op->addr.val >> 8); |
| wpcm_fiu_do_uma(fiu, cs, true, false, 0); |
| |
| wpcm_fiu_set_opcode(fiu, op->addr.val & 0xff); |
| wpcm_fiu_set_addr(fiu, 0); |
| if (op->data.dir == SPI_MEM_DATA_OUT) |
| wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes); |
| wpcm_fiu_do_uma(fiu, cs, false, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes); |
| |
| wpcm_fiu_ects_deassert(fiu, cs); |
| |
| if (op->data.dir == SPI_MEM_DATA_IN) |
| wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); |
| |
| return 0; |
| } |
| |
| /* |
| * RDID (Read Identification) needs special handling because Linux expects to |
| * be able to read 6 ID bytes and FIU can only read up to 4 at once. |
| * |
| * We're lucky in this case, because executing the RDID instruction twice will |
| * result in the same result. |
| * |
| * What we do is as follows (C: write command/opcode byte, D: read data byte, |
| * A: write address byte): |
| * |
| * 1. C D D D |
| * 2. C A A A D D D |
| */ |
| static bool wpcm_fiu_rdid_match(const struct spi_mem_op *op) |
| { |
| return op->cmd.opcode == 0x9f && op->addr.nbytes == 0 && |
| op->dummy.nbytes == 0 && op->data.nbytes == 6 && |
| op->data.dir == SPI_MEM_DATA_IN; |
| } |
| |
| static int wpcm_fiu_rdid_exec(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); |
| int cs = spi_get_chipselect(mem->spi, 0); |
| |
| /* First transfer */ |
| wpcm_fiu_set_opcode(fiu, op->cmd.opcode); |
| wpcm_fiu_set_addr(fiu, 0); |
| wpcm_fiu_do_uma(fiu, cs, false, false, 3); |
| wpcm_fiu_get_data(fiu, op->data.buf.in, 3); |
| |
| /* Second transfer */ |
| wpcm_fiu_set_opcode(fiu, op->cmd.opcode); |
| wpcm_fiu_set_addr(fiu, 0); |
| wpcm_fiu_do_uma(fiu, cs, true, false, 3); |
| wpcm_fiu_get_data(fiu, op->data.buf.in + 3, 3); |
| |
| return 0; |
| } |
| |
| /* |
| * With some dummy bytes. |
| * |
| * C A A A X* X D D D D |
| * [C A A A D*][C D D D D] |
| */ |
| static bool wpcm_fiu_dummy_match(const struct spi_mem_op *op) |
| { |
| // Opcode 0x0b (FAST READ) is treated differently in hardware |
| if (op->cmd.opcode == 0x0b) |
| return false; |
| |
| return (op->addr.nbytes == 0 || op->addr.nbytes == 3) && |
| op->dummy.nbytes >= 1 && op->dummy.nbytes <= 5 && |
| op->data.nbytes <= 4; |
| } |
| |
| static int wpcm_fiu_dummy_exec(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); |
| int cs = spi_get_chipselect(mem->spi, 0); |
| |
| wpcm_fiu_ects_assert(fiu, cs); |
| |
| /* First transfer */ |
| wpcm_fiu_set_opcode(fiu, op->cmd.opcode); |
| wpcm_fiu_set_addr(fiu, op->addr.val); |
| wpcm_fiu_do_uma(fiu, cs, op->addr.nbytes != 0, true, op->dummy.nbytes - 1); |
| |
| /* Second transfer */ |
| wpcm_fiu_set_opcode(fiu, 0); |
| wpcm_fiu_set_addr(fiu, 0); |
| wpcm_fiu_do_uma(fiu, cs, false, false, op->data.nbytes); |
| wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); |
| |
| wpcm_fiu_ects_deassert(fiu, cs); |
| |
| return 0; |
| } |
| |
| static const struct wpcm_fiu_op_shape wpcm_fiu_op_shapes[] = { |
| { .match = wpcm_fiu_normal_match, .exec = wpcm_fiu_normal_exec }, |
| { .match = wpcm_fiu_fast_read_match, .exec = wpcm_fiu_fast_read_exec }, |
| { .match = wpcm_fiu_4ba_match, .exec = wpcm_fiu_4ba_exec }, |
| { .match = wpcm_fiu_rdid_match, .exec = wpcm_fiu_rdid_exec }, |
| { .match = wpcm_fiu_dummy_match, .exec = wpcm_fiu_dummy_exec }, |
| }; |
| |
| static const struct wpcm_fiu_op_shape *wpcm_fiu_find_op_shape(const struct spi_mem_op *op) |
| { |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(wpcm_fiu_op_shapes); i++) { |
| const struct wpcm_fiu_op_shape *shape = &wpcm_fiu_op_shapes[i]; |
| |
| if (shape->match(op)) |
| return shape; |
| } |
| |
| return NULL; |
| } |
| |
| static bool wpcm_fiu_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| if (!spi_mem_default_supports_op(mem, op)) |
| return false; |
| |
| if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) |
| return false; |
| |
| if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 || |
| op->dummy.buswidth > 1 || op->data.buswidth > 1) |
| return false; |
| |
| return wpcm_fiu_find_op_shape(op) != NULL; |
| } |
| |
| /* |
| * In order to ensure the integrity of SPI transfers performed via UMA, |
| * temporarily disable (stall) memory accesses coming from the host CPU. |
| */ |
| static void wpcm_fiu_stall_host(struct wpcm_fiu_spi *fiu, bool stall) |
| { |
| if (fiu->shm_regmap) { |
| int res = regmap_update_bits(fiu->shm_regmap, SHM_FLASH_SIZE, |
| SHM_FLASH_SIZE_STALL_HOST, |
| stall ? SHM_FLASH_SIZE_STALL_HOST : 0); |
| if (res) |
| dev_warn(fiu->dev, "Failed to (un)stall host memory accesses: %d\n", res); |
| } |
| } |
| |
| static int wpcm_fiu_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); |
| const struct wpcm_fiu_op_shape *shape = wpcm_fiu_find_op_shape(op); |
| |
| wpcm_fiu_stall_host(fiu, true); |
| |
| if (shape) |
| return shape->exec(mem, op); |
| |
| wpcm_fiu_stall_host(fiu, false); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int wpcm_fiu_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| { |
| if (op->data.nbytes > 4) |
| op->data.nbytes = 4; |
| |
| return 0; |
| } |
| |
| static int wpcm_fiu_dirmap_create(struct spi_mem_dirmap_desc *desc) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller); |
| int cs = spi_get_chipselect(desc->mem->spi, 0); |
| |
| if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) |
| return -ENOTSUPP; |
| |
| /* |
| * Unfortunately, FIU only supports a 16 MiB direct mapping window (per |
| * attached flash chip), but the SPI MEM core doesn't support partial |
| * direct mappings. This means that we can't support direct mapping on |
| * flashes that are bigger than 16 MiB. |
| */ |
| if (desc->info.offset + desc->info.length > MAX_MEMORY_SIZE_PER_CS) |
| return -ENOTSUPP; |
| |
| /* Don't read past the memory window */ |
| if (cs * MAX_MEMORY_SIZE_PER_CS + desc->info.offset + desc->info.length > fiu->memory_size) |
| return -ENOTSUPP; |
| |
| return 0; |
| } |
| |
| static ssize_t wpcm_fiu_direct_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) |
| { |
| struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller); |
| int cs = spi_get_chipselect(desc->mem->spi, 0); |
| |
| if (offs >= MAX_MEMORY_SIZE_PER_CS) |
| return -ENOTSUPP; |
| |
| offs += cs * MAX_MEMORY_SIZE_PER_CS; |
| |
| if (!fiu->memory || offs >= fiu->memory_size) |
| return -ENOTSUPP; |
| |
| len = min_t(size_t, len, fiu->memory_size - offs); |
| memcpy_fromio(buf, fiu->memory + offs, len); |
| |
| return len; |
| } |
| |
| static const struct spi_controller_mem_ops wpcm_fiu_mem_ops = { |
| .adjust_op_size = wpcm_fiu_adjust_op_size, |
| .supports_op = wpcm_fiu_supports_op, |
| .exec_op = wpcm_fiu_exec_op, |
| .dirmap_create = wpcm_fiu_dirmap_create, |
| .dirmap_read = wpcm_fiu_direct_read, |
| }; |
| |
| static void wpcm_fiu_hw_init(struct wpcm_fiu_spi *fiu) |
| { |
| /* Configure memory-mapped flash access */ |
| writeb(FIU_BURST_CFG_R16, fiu->regs + FIU_BURST_BFG); |
| writeb(MAX_MEMORY_SIZE_TOTAL / (512 << 10), fiu->regs + FIU_CFG); |
| writeb(MAX_MEMORY_SIZE_PER_CS / (512 << 10) | BIT(6), fiu->regs + FIU_SPI_FL_CFG); |
| |
| /* Deassert all manually asserted chip selects */ |
| writeb(0x0f, fiu->regs + FIU_UMA_ECTS); |
| } |
| |
| static int wpcm_fiu_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct spi_controller *ctrl; |
| struct wpcm_fiu_spi *fiu; |
| struct resource *res; |
| |
| ctrl = devm_spi_alloc_host(dev, sizeof(*fiu)); |
| if (!ctrl) |
| return -ENOMEM; |
| |
| fiu = spi_controller_get_devdata(ctrl); |
| fiu->dev = dev; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control"); |
| fiu->regs = devm_ioremap_resource(dev, res); |
| if (IS_ERR(fiu->regs)) { |
| dev_err(dev, "Failed to map registers\n"); |
| return PTR_ERR(fiu->regs); |
| } |
| |
| fiu->clk = devm_clk_get_enabled(dev, NULL); |
| if (IS_ERR(fiu->clk)) |
| return PTR_ERR(fiu->clk); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory"); |
| fiu->memory = devm_ioremap_resource(dev, res); |
| fiu->memory_size = min_t(size_t, resource_size(res), MAX_MEMORY_SIZE_TOTAL); |
| if (IS_ERR(fiu->memory)) { |
| dev_err(dev, "Failed to map flash memory window\n"); |
| return PTR_ERR(fiu->memory); |
| } |
| |
| fiu->shm_regmap = syscon_regmap_lookup_by_phandle_optional(dev->of_node, "nuvoton,shm"); |
| |
| wpcm_fiu_hw_init(fiu); |
| |
| ctrl->bus_num = -1; |
| ctrl->mem_ops = &wpcm_fiu_mem_ops; |
| ctrl->num_chipselect = 4; |
| ctrl->dev.of_node = dev->of_node; |
| |
| /* |
| * The FIU doesn't include a clock divider, the clock is entirely |
| * determined by the AHB3 bus clock. |
| */ |
| ctrl->min_speed_hz = clk_get_rate(fiu->clk); |
| ctrl->max_speed_hz = clk_get_rate(fiu->clk); |
| |
| return devm_spi_register_controller(dev, ctrl); |
| } |
| |
| static const struct of_device_id wpcm_fiu_dt_ids[] = { |
| { .compatible = "nuvoton,wpcm450-fiu", }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, wpcm_fiu_dt_ids); |
| |
| static struct platform_driver wpcm_fiu_driver = { |
| .driver = { |
| .name = "wpcm450-fiu", |
| .bus = &platform_bus_type, |
| .of_match_table = wpcm_fiu_dt_ids, |
| }, |
| .probe = wpcm_fiu_probe, |
| }; |
| module_platform_driver(wpcm_fiu_driver); |
| |
| MODULE_DESCRIPTION("Nuvoton WPCM450 FIU SPI controller driver"); |
| MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>"); |
| MODULE_LICENSE("GPL"); |