blob: 909c3137c4283d35402e029645d987c7698115b3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
// Copyright IBM Corp
// Copyright ASPEED Technology
#define pr_fmt(fmt) "clk-ast2600: " fmt
#include <linux/mfd/syscon.h>
#include <linux/mod_devicetable.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <dt-bindings/clock/ast2600-clock.h>
#include "clk-aspeed.h"
/*
* This includes the gates (configured from aspeed_g6_gates), plus the
* explicitly-configured clocks (ASPEED_CLK_HPLL and up).
*/
#define ASPEED_G6_NUM_CLKS 72
#define ASPEED_G6_SILICON_REV 0x014
#define CHIP_REVISION_ID GENMASK(23, 16)
#define ASPEED_G6_RESET_CTRL 0x040
#define ASPEED_G6_RESET_CTRL2 0x050
#define ASPEED_G6_CLK_STOP_CTRL 0x080
#define ASPEED_G6_CLK_STOP_CTRL2 0x090
#define ASPEED_G6_MISC_CTRL 0x0C0
#define UART_DIV13_EN BIT(12)
#define ASPEED_G6_CLK_SELECTION1 0x300
#define ASPEED_G6_CLK_SELECTION2 0x304
#define ASPEED_G6_CLK_SELECTION4 0x310
#define ASPEED_G6_CLK_SELECTION5 0x314
#define I3C_CLK_SELECTION_SHIFT 31
#define I3C_CLK_SELECTION BIT(31)
#define I3C_CLK_SELECT_HCLK (0 << I3C_CLK_SELECTION_SHIFT)
#define I3C_CLK_SELECT_APLL_DIV (1 << I3C_CLK_SELECTION_SHIFT)
#define APLL_DIV_SELECTION_SHIFT 28
#define APLL_DIV_SELECTION GENMASK(30, 28)
#define APLL_DIV_2 (0b001 << APLL_DIV_SELECTION_SHIFT)
#define APLL_DIV_3 (0b010 << APLL_DIV_SELECTION_SHIFT)
#define APLL_DIV_4 (0b011 << APLL_DIV_SELECTION_SHIFT)
#define APLL_DIV_5 (0b100 << APLL_DIV_SELECTION_SHIFT)
#define APLL_DIV_6 (0b101 << APLL_DIV_SELECTION_SHIFT)
#define APLL_DIV_7 (0b110 << APLL_DIV_SELECTION_SHIFT)
#define APLL_DIV_8 (0b111 << APLL_DIV_SELECTION_SHIFT)
#define ASPEED_HPLL_PARAM 0x200
#define ASPEED_APLL_PARAM 0x210
#define ASPEED_MPLL_PARAM 0x220
#define ASPEED_EPLL_PARAM 0x240
#define ASPEED_DPLL_PARAM 0x260
#define ASPEED_G6_STRAP1 0x500
#define ASPEED_MAC12_CLK_DLY 0x340
#define ASPEED_MAC34_CLK_DLY 0x350
/* Globally visible clocks */
static DEFINE_SPINLOCK(aspeed_g6_clk_lock);
/* Keeps track of all clocks */
static struct clk_hw_onecell_data *aspeed_g6_clk_data;
static void __iomem *scu_g6_base;
/* AST2600 revision: A0, A1, A2, etc */
static u8 soc_rev;
/*
* The majority of the clocks in the system are gates paired with a reset
* controller that holds the IP in reset; this is represented by the @reset_idx
* member of entries here.
*
* This borrows from clk_hw_register_gate, but registers two 'gates', one
* to control the clock enable register and the other to control the reset
* IP. This allows us to enforce the ordering:
*
* 1. Place IP in reset
* 2. Enable clock
* 3. Delay
* 4. Release reset
*
* Consequently, if reset_idx is set, reset control is implicit: the clock
* consumer does not need its own reset handling, as enabling the clock will
* also deassert reset.
*
* There are some gates that do not have an associated reset; these are
* handled by using -1 as the index for the reset, and the consumer must
* explictly assert/deassert reset lines as required.
*
* Clocks marked with CLK_IS_CRITICAL:
*
* ref0 and ref1 are essential for the SoC to operate
* mpll is required if SDRAM is used
*/
static const struct aspeed_gate_data aspeed_g6_gates[] = {
/* clk rst name parent flags */
[ASPEED_CLK_GATE_MCLK] = { 0, -1, "mclk-gate", "mpll", CLK_IS_CRITICAL }, /* SDRAM */
[ASPEED_CLK_GATE_ECLK] = { 1, 6, "eclk-gate", "eclk", 0 }, /* Video Engine */
[ASPEED_CLK_GATE_GCLK] = { 2, 7, "gclk-gate", NULL, 0 }, /* 2D engine */
/* vclk parent - dclk/d1clk/hclk/mclk */
[ASPEED_CLK_GATE_VCLK] = { 3, -1, "vclk-gate", NULL, 0 }, /* Video Capture */
[ASPEED_CLK_GATE_BCLK] = { 4, 8, "bclk-gate", "bclk", 0 }, /* PCIe/PCI */
/* From dpll */
[ASPEED_CLK_GATE_DCLK] = { 5, -1, "dclk-gate", NULL, CLK_IS_CRITICAL }, /* DAC */
[ASPEED_CLK_GATE_REF0CLK] = { 6, -1, "ref0clk-gate", "clkin", CLK_IS_CRITICAL },
[ASPEED_CLK_GATE_USBPORT2CLK] = { 7, 3, "usb-port2-gate", NULL, 0 }, /* USB2.0 Host port 2 */
/* Reserved 8 */
[ASPEED_CLK_GATE_USBUHCICLK] = { 9, 15, "usb-uhci-gate", NULL, 0 }, /* USB1.1 (requires port 2 enabled) */
/* From dpll/epll/40mhz usb p1 phy/gpioc6/dp phy pll */
[ASPEED_CLK_GATE_D1CLK] = { 10, 13, "d1clk-gate", "d1clk", 0 }, /* GFX CRT */
/* Reserved 11/12 */
[ASPEED_CLK_GATE_YCLK] = { 13, 4, "yclk-gate", NULL, 0 }, /* HAC */
[ASPEED_CLK_GATE_USBPORT1CLK] = { 14, 14, "usb-port1-gate", NULL, 0 }, /* USB2 hub/USB2 host port 1/USB1.1 dev */
[ASPEED_CLK_GATE_UART5CLK] = { 15, -1, "uart5clk-gate", "uart", 0 }, /* UART5 */
/* Reserved 16/19 */
[ASPEED_CLK_GATE_MAC1CLK] = { 20, 11, "mac1clk-gate", "mac12", 0 }, /* MAC1 */
[ASPEED_CLK_GATE_MAC2CLK] = { 21, 12, "mac2clk-gate", "mac12", 0 }, /* MAC2 */
/* Reserved 22/23 */
[ASPEED_CLK_GATE_RSACLK] = { 24, 4, "rsaclk-gate", NULL, 0 }, /* HAC */
[ASPEED_CLK_GATE_RVASCLK] = { 25, 9, "rvasclk-gate", NULL, 0 }, /* RVAS */
/* Reserved 26 */
[ASPEED_CLK_GATE_EMMCCLK] = { 27, 16, "emmcclk-gate", NULL, 0 }, /* For card clk */
/* Reserved 28/29/30 */
[ASPEED_CLK_GATE_LCLK] = { 32, 32, "lclk-gate", NULL, 0 }, /* LPC */
[ASPEED_CLK_GATE_ESPICLK] = { 33, -1, "espiclk-gate", NULL, 0 }, /* eSPI */
[ASPEED_CLK_GATE_REF1CLK] = { 34, -1, "ref1clk-gate", "clkin", CLK_IS_CRITICAL },
/* Reserved 35 */
[ASPEED_CLK_GATE_SDCLK] = { 36, 56, "sdclk-gate", NULL, 0 }, /* SDIO/SD */
[ASPEED_CLK_GATE_LHCCLK] = { 37, -1, "lhclk-gate", "lhclk", 0 }, /* LPC master/LPC+ */
/* Reserved 38 RSA: no longer used */
/* Reserved 39 */
[ASPEED_CLK_GATE_I3C0CLK] = { 40, 40, "i3c0clk-gate", "i3cclk", 0 }, /* I3C0 */
[ASPEED_CLK_GATE_I3C1CLK] = { 41, 41, "i3c1clk-gate", "i3cclk", 0 }, /* I3C1 */
[ASPEED_CLK_GATE_I3C2CLK] = { 42, 42, "i3c2clk-gate", "i3cclk", 0 }, /* I3C2 */
[ASPEED_CLK_GATE_I3C3CLK] = { 43, 43, "i3c3clk-gate", "i3cclk", 0 }, /* I3C3 */
[ASPEED_CLK_GATE_I3C4CLK] = { 44, 44, "i3c4clk-gate", "i3cclk", 0 }, /* I3C4 */
[ASPEED_CLK_GATE_I3C5CLK] = { 45, 45, "i3c5clk-gate", "i3cclk", 0 }, /* I3C5 */
/* Reserved: 46 & 47 */
[ASPEED_CLK_GATE_UART1CLK] = { 48, -1, "uart1clk-gate", "uart", 0 }, /* UART1 */
[ASPEED_CLK_GATE_UART2CLK] = { 49, -1, "uart2clk-gate", "uart", 0 }, /* UART2 */
[ASPEED_CLK_GATE_UART3CLK] = { 50, -1, "uart3clk-gate", "uart", 0 }, /* UART3 */
[ASPEED_CLK_GATE_UART4CLK] = { 51, -1, "uart4clk-gate", "uart", 0 }, /* UART4 */
[ASPEED_CLK_GATE_MAC3CLK] = { 52, 52, "mac3clk-gate", "mac34", 0 }, /* MAC3 */
[ASPEED_CLK_GATE_MAC4CLK] = { 53, 53, "mac4clk-gate", "mac34", 0 }, /* MAC4 */
[ASPEED_CLK_GATE_UART6CLK] = { 54, -1, "uart6clk-gate", "uartx", 0 }, /* UART6 */
[ASPEED_CLK_GATE_UART7CLK] = { 55, -1, "uart7clk-gate", "uartx", 0 }, /* UART7 */
[ASPEED_CLK_GATE_UART8CLK] = { 56, -1, "uart8clk-gate", "uartx", 0 }, /* UART8 */
[ASPEED_CLK_GATE_UART9CLK] = { 57, -1, "uart9clk-gate", "uartx", 0 }, /* UART9 */
[ASPEED_CLK_GATE_UART10CLK] = { 58, -1, "uart10clk-gate", "uartx", 0 }, /* UART10 */
[ASPEED_CLK_GATE_UART11CLK] = { 59, -1, "uart11clk-gate", "uartx", 0 }, /* UART11 */
[ASPEED_CLK_GATE_UART12CLK] = { 60, -1, "uart12clk-gate", "uartx", 0 }, /* UART12 */
[ASPEED_CLK_GATE_UART13CLK] = { 61, -1, "uart13clk-gate", "uartx", 0 }, /* UART13 */
[ASPEED_CLK_GATE_FSICLK] = { 62, 59, "fsiclk-gate", NULL, 0 }, /* FSI */
};
static const struct clk_div_table ast2600_eclk_div_table[] = {
{ 0x0, 2 },
{ 0x1, 2 },
{ 0x2, 3 },
{ 0x3, 4 },
{ 0x4, 5 },
{ 0x5, 6 },
{ 0x6, 7 },
{ 0x7, 8 },
{ 0 }
};
static const struct clk_div_table ast2600_emmc_extclk_div_table[] = {
{ 0x0, 2 },
{ 0x1, 4 },
{ 0x2, 6 },
{ 0x3, 8 },
{ 0x4, 10 },
{ 0x5, 12 },
{ 0x6, 14 },
{ 0x7, 16 },
{ 0 }
};
static const struct clk_div_table ast2600_mac_div_table[] = {
{ 0x0, 4 },
{ 0x1, 4 },
{ 0x2, 6 },
{ 0x3, 8 },
{ 0x4, 10 },
{ 0x5, 12 },
{ 0x6, 14 },
{ 0x7, 16 },
{ 0 }
};
static const struct clk_div_table ast2600_div_table[] = {
{ 0x0, 4 },
{ 0x1, 8 },
{ 0x2, 12 },
{ 0x3, 16 },
{ 0x4, 20 },
{ 0x5, 24 },
{ 0x6, 28 },
{ 0x7, 32 },
{ 0 }
};
/* For hpll/dpll/epll/mpll */
static struct clk_hw *ast2600_calc_pll(const char *name, u32 val)
{
unsigned int mult, div;
if (val & BIT(24)) {
/* Pass through mode */
mult = div = 1;
} else {
/* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1) */
u32 m = val & 0x1fff;
u32 n = (val >> 13) & 0x3f;
u32 p = (val >> 19) & 0xf;
mult = (m + 1) / (n + 1);
div = (p + 1);
}
return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
mult, div);
};
static struct clk_hw *ast2600_calc_apll(const char *name, u32 val)
{
unsigned int mult, div;
if (soc_rev >= 2) {
if (val & BIT(24)) {
/* Pass through mode */
mult = div = 1;
} else {
/* F = 25Mhz * [(m + 1) / (n + 1)] / (p + 1) */
u32 m = val & 0x1fff;
u32 n = (val >> 13) & 0x3f;
u32 p = (val >> 19) & 0xf;
mult = (m + 1);
div = (n + 1) * (p + 1);
}
} else {
if (val & BIT(20)) {
/* Pass through mode */
mult = div = 1;
} else {
/* F = 25Mhz * (2-od) * [(m + 2) / (n + 1)] */
u32 m = (val >> 5) & 0x3f;
u32 od = (val >> 4) & 0x1;
u32 n = val & 0xf;
mult = (2 - od) * (m + 2);
div = n + 1;
}
}
return clk_hw_register_fixed_factor(NULL, name, "clkin", 0,
mult, div);
};
static u32 get_bit(u8 idx)
{
return BIT(idx % 32);
}
static u32 get_reset_reg(struct aspeed_clk_gate *gate)
{
if (gate->reset_idx < 32)
return ASPEED_G6_RESET_CTRL;
return ASPEED_G6_RESET_CTRL2;
}
static u32 get_clock_reg(struct aspeed_clk_gate *gate)
{
if (gate->clock_idx < 32)
return ASPEED_G6_CLK_STOP_CTRL;
return ASPEED_G6_CLK_STOP_CTRL2;
}
static int aspeed_g6_clk_is_enabled(struct clk_hw *hw)
{
struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
u32 clk = get_bit(gate->clock_idx);
u32 rst = get_bit(gate->reset_idx);
u32 reg;
u32 enval;
/*
* If the IP is in reset, treat the clock as not enabled,
* this happens with some clocks such as the USB one when
* coming from cold reset. Without this, aspeed_clk_enable()
* will fail to lift the reset.
*/
if (gate->reset_idx >= 0) {
regmap_read(gate->map, get_reset_reg(gate), &reg);
if (reg & rst)
return 0;
}
regmap_read(gate->map, get_clock_reg(gate), &reg);
enval = (gate->flags & CLK_GATE_SET_TO_DISABLE) ? 0 : clk;
return ((reg & clk) == enval) ? 1 : 0;
}
static int aspeed_g6_clk_enable(struct clk_hw *hw)
{
struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
unsigned long flags;
u32 clk = get_bit(gate->clock_idx);
u32 rst = get_bit(gate->reset_idx);
spin_lock_irqsave(gate->lock, flags);
if (aspeed_g6_clk_is_enabled(hw)) {
spin_unlock_irqrestore(gate->lock, flags);
return 0;
}
if (gate->reset_idx >= 0) {
/* Put IP in reset */
regmap_write(gate->map, get_reset_reg(gate), rst);
/* Delay 100us */
udelay(100);
}
/* Enable clock */
if (gate->flags & CLK_GATE_SET_TO_DISABLE) {
/* Clock is clear to enable, so use set to clear register */
regmap_write(gate->map, get_clock_reg(gate) + 0x04, clk);
} else {
/* Clock is set to enable, so use write to set register */
regmap_write(gate->map, get_clock_reg(gate), clk);
}
if (gate->reset_idx >= 0) {
/* A delay of 10ms is specified by the ASPEED docs */
mdelay(10);
/* Take IP out of reset */
regmap_write(gate->map, get_reset_reg(gate) + 0x4, rst);
}
spin_unlock_irqrestore(gate->lock, flags);
return 0;
}
static void aspeed_g6_clk_disable(struct clk_hw *hw)
{
struct aspeed_clk_gate *gate = to_aspeed_clk_gate(hw);
unsigned long flags;
u32 clk = get_bit(gate->clock_idx);
spin_lock_irqsave(gate->lock, flags);
if (gate->flags & CLK_GATE_SET_TO_DISABLE) {
regmap_write(gate->map, get_clock_reg(gate), clk);
} else {
/* Use set to clear register */
regmap_write(gate->map, get_clock_reg(gate) + 0x4, clk);
}
spin_unlock_irqrestore(gate->lock, flags);
}
static const struct clk_ops aspeed_g6_clk_gate_ops = {
.enable = aspeed_g6_clk_enable,
.disable = aspeed_g6_clk_disable,
.is_enabled = aspeed_g6_clk_is_enabled,
};
static int aspeed_g6_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct aspeed_reset *ar = to_aspeed_reset(rcdev);
u32 rst = get_bit(id);
u32 reg = id >= 32 ? ASPEED_G6_RESET_CTRL2 : ASPEED_G6_RESET_CTRL;
/* Use set to clear register */
return regmap_write(ar->map, reg + 0x04, rst);
}
static int aspeed_g6_reset_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct aspeed_reset *ar = to_aspeed_reset(rcdev);
u32 rst = get_bit(id);
u32 reg = id >= 32 ? ASPEED_G6_RESET_CTRL2 : ASPEED_G6_RESET_CTRL;
return regmap_write(ar->map, reg, rst);
}
static int aspeed_g6_reset_status(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct aspeed_reset *ar = to_aspeed_reset(rcdev);
int ret;
u32 val;
u32 rst = get_bit(id);
u32 reg = id >= 32 ? ASPEED_G6_RESET_CTRL2 : ASPEED_G6_RESET_CTRL;
ret = regmap_read(ar->map, reg, &val);
if (ret)
return ret;
return !!(val & rst);
}
static const struct reset_control_ops aspeed_g6_reset_ops = {
.assert = aspeed_g6_reset_assert,
.deassert = aspeed_g6_reset_deassert,
.status = aspeed_g6_reset_status,
};
static struct clk_hw *aspeed_g6_clk_hw_register_gate(struct device *dev,
const char *name, const char *parent_name, unsigned long flags,
struct regmap *map, u8 clock_idx, u8 reset_idx,
u8 clk_gate_flags, spinlock_t *lock)
{
struct aspeed_clk_gate *gate;
struct clk_init_data init;
struct clk_hw *hw;
int ret;
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &aspeed_g6_clk_gate_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
gate->map = map;
gate->clock_idx = clock_idx;
gate->reset_idx = reset_idx;
gate->flags = clk_gate_flags;
gate->lock = lock;
gate->hw.init = &init;
hw = &gate->hw;
ret = clk_hw_register(dev, hw);
if (ret) {
kfree(gate);
hw = ERR_PTR(ret);
}
return hw;
}
static const char *const emmc_extclk_parent_names[] = {
"emmc_extclk_hpll_in",
"mpll",
};
static const char * const vclk_parent_names[] = {
"dpll",
"d1pll",
"hclk",
"mclk",
};
static const char * const d1clk_parent_names[] = {
"dpll",
"epll",
"usb-phy-40m",
"gpioc6_clkin",
"dp_phy_pll",
};
static int aspeed_g6_clk_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct aspeed_reset *ar;
struct regmap *map;
struct clk_hw *hw;
u32 val, rate;
int i, ret;
map = syscon_node_to_regmap(dev->of_node);
if (IS_ERR(map)) {
dev_err(dev, "no syscon regmap\n");
return PTR_ERR(map);
}
ar = devm_kzalloc(dev, sizeof(*ar), GFP_KERNEL);
if (!ar)
return -ENOMEM;
ar->map = map;
ar->rcdev.owner = THIS_MODULE;
ar->rcdev.nr_resets = 64;
ar->rcdev.ops = &aspeed_g6_reset_ops;
ar->rcdev.of_node = dev->of_node;
ret = devm_reset_controller_register(dev, &ar->rcdev);
if (ret) {
dev_err(dev, "could not register reset controller\n");
return ret;
}
/* UART clock div13 setting */
regmap_read(map, ASPEED_G6_MISC_CTRL, &val);
if (val & UART_DIV13_EN)
rate = 24000000 / 13;
else
rate = 24000000;
hw = clk_hw_register_fixed_rate(dev, "uart", NULL, 0, rate);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_UART] = hw;
/* UART6~13 clock div13 setting */
regmap_read(map, 0x80, &val);
if (val & BIT(31))
rate = 24000000 / 13;
else
rate = 24000000;
hw = clk_hw_register_fixed_rate(dev, "uartx", NULL, 0, rate);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_UARTX] = hw;
/* EMMC ext clock */
hw = clk_hw_register_fixed_factor(dev, "emmc_extclk_hpll_in", "hpll",
0, 1, 2);
if (IS_ERR(hw))
return PTR_ERR(hw);
hw = clk_hw_register_mux(dev, "emmc_extclk_mux",
emmc_extclk_parent_names,
ARRAY_SIZE(emmc_extclk_parent_names), 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION1, 11, 1,
0, &aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hw = clk_hw_register_gate(dev, "emmc_extclk_gate", "emmc_extclk_mux",
0, scu_g6_base + ASPEED_G6_CLK_SELECTION1,
15, 0, &aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hw = clk_hw_register_divider_table(dev, "emmc_extclk",
"emmc_extclk_gate", 0,
scu_g6_base +
ASPEED_G6_CLK_SELECTION1, 12,
3, 0, ast2600_emmc_extclk_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_EMMC] = hw;
/* SD/SDIO clock divider and gate */
hw = clk_hw_register_gate(dev, "sd_extclk_gate", "hpll", 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION4, 31, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hw = clk_hw_register_divider_table(dev, "sd_extclk", "sd_extclk_gate",
0, scu_g6_base + ASPEED_G6_CLK_SELECTION4, 28, 3, 0,
ast2600_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_SDIO] = hw;
/* MAC1/2 RMII 50MHz RCLK */
hw = clk_hw_register_fixed_rate(dev, "mac12rclk", "hpll", 0, 50000000);
if (IS_ERR(hw))
return PTR_ERR(hw);
/* MAC1/2 AHB bus clock divider */
hw = clk_hw_register_divider_table(dev, "mac12", "hpll", 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION1, 16, 3, 0,
ast2600_mac_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_MAC12] = hw;
/* RMII1 50MHz (RCLK) output enable */
hw = clk_hw_register_gate(dev, "mac1rclk", "mac12rclk", 0,
scu_g6_base + ASPEED_MAC12_CLK_DLY, 29, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_MAC1RCLK] = hw;
/* RMII2 50MHz (RCLK) output enable */
hw = clk_hw_register_gate(dev, "mac2rclk", "mac12rclk", 0,
scu_g6_base + ASPEED_MAC12_CLK_DLY, 30, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_MAC2RCLK] = hw;
/* MAC1/2 RMII 50MHz RCLK */
hw = clk_hw_register_fixed_rate(dev, "mac34rclk", "hclk", 0, 50000000);
if (IS_ERR(hw))
return PTR_ERR(hw);
/* MAC3/4 AHB bus clock divider */
hw = clk_hw_register_divider_table(dev, "mac34", "hpll", 0,
scu_g6_base + 0x310, 24, 3, 0,
ast2600_mac_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_MAC34] = hw;
/* RMII3 50MHz (RCLK) output enable */
hw = clk_hw_register_gate(dev, "mac3rclk", "mac34rclk", 0,
scu_g6_base + ASPEED_MAC34_CLK_DLY, 29, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_MAC3RCLK] = hw;
/* RMII4 50MHz (RCLK) output enable */
hw = clk_hw_register_gate(dev, "mac4rclk", "mac34rclk", 0,
scu_g6_base + ASPEED_MAC34_CLK_DLY, 30, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_MAC4RCLK] = hw;
/* LPC Host (LHCLK) clock divider */
hw = clk_hw_register_divider_table(dev, "lhclk", "hpll", 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION1, 20, 3, 0,
ast2600_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_LHCLK] = hw;
/* gfx d1clk : use dp clk */
regmap_update_bits(map, ASPEED_G6_CLK_SELECTION1, GENMASK(10, 8), BIT(10));
/* SoC Display clock selection */
hw = clk_hw_register_mux(dev, "d1clk", d1clk_parent_names,
ARRAY_SIZE(d1clk_parent_names), 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION1, 8, 3, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_D1CLK] = hw;
/* d1 clk div 0x308[17:15] x [14:12] - 8,7,6,5,4,3,2,1 */
regmap_write(map, 0x308, 0x12000); /* 3x3 = 9 */
/* P-Bus (BCLK) clock divider */
hw = clk_hw_register_divider_table(dev, "bclk", "epll", 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION1, 20, 3, 0,
ast2600_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_BCLK] = hw;
/* Video Capture clock selection */
hw = clk_hw_register_mux(dev, "vclk", vclk_parent_names,
ARRAY_SIZE(vclk_parent_names), 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION2, 12, 3, 0,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_VCLK] = hw;
/* Video Engine clock divider */
hw = clk_hw_register_divider_table(dev, "eclk", NULL, 0,
scu_g6_base + ASPEED_G6_CLK_SELECTION1, 28, 3, 0,
ast2600_eclk_div_table,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[ASPEED_CLK_ECLK] = hw;
for (i = 0; i < ARRAY_SIZE(aspeed_g6_gates); i++) {
const struct aspeed_gate_data *gd = &aspeed_g6_gates[i];
u32 gate_flags;
if (!gd->name)
continue;
/*
* Special case: the USB port 1 clock (bit 14) is always
* working the opposite way from the other ones.
*/
gate_flags = (gd->clock_idx == 14) ? 0 : CLK_GATE_SET_TO_DISABLE;
hw = aspeed_g6_clk_hw_register_gate(dev,
gd->name,
gd->parent_name,
gd->flags,
map,
gd->clock_idx,
gd->reset_idx,
gate_flags,
&aspeed_g6_clk_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
aspeed_g6_clk_data->hws[i] = hw;
}
return 0;
};
static const struct of_device_id aspeed_g6_clk_dt_ids[] = {
{ .compatible = "aspeed,ast2600-scu" },
{ }
};
static struct platform_driver aspeed_g6_clk_driver = {
.probe = aspeed_g6_clk_probe,
.driver = {
.name = "ast2600-clk",
.of_match_table = aspeed_g6_clk_dt_ids,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(aspeed_g6_clk_driver);
static const u32 ast2600_a0_axi_ahb_div_table[] = {
2, 2, 3, 5,
};
static const u32 ast2600_a1_axi_ahb_div0_tbl[] = {
3, 2, 3, 4,
};
static const u32 ast2600_a1_axi_ahb_div1_tbl[] = {
3, 4, 6, 8,
};
static const u32 ast2600_a1_axi_ahb200_tbl[] = {
3, 4, 3, 4, 2, 2, 2, 2,
};
static void __init aspeed_g6_cc(struct regmap *map)
{
struct clk_hw *hw;
u32 val, div, divbits, axi_div, ahb_div;
clk_hw_register_fixed_rate(NULL, "clkin", NULL, 0, 25000000);
/*
* High-speed PLL clock derived from the crystal. This the CPU clock,
* and we assume that it is enabled
*/
regmap_read(map, ASPEED_HPLL_PARAM, &val);
aspeed_g6_clk_data->hws[ASPEED_CLK_HPLL] = ast2600_calc_pll("hpll", val);
regmap_read(map, ASPEED_MPLL_PARAM, &val);
aspeed_g6_clk_data->hws[ASPEED_CLK_MPLL] = ast2600_calc_pll("mpll", val);
regmap_read(map, ASPEED_DPLL_PARAM, &val);
aspeed_g6_clk_data->hws[ASPEED_CLK_DPLL] = ast2600_calc_pll("dpll", val);
regmap_read(map, ASPEED_EPLL_PARAM, &val);
aspeed_g6_clk_data->hws[ASPEED_CLK_EPLL] = ast2600_calc_pll("epll", val);
regmap_read(map, ASPEED_APLL_PARAM, &val);
aspeed_g6_clk_data->hws[ASPEED_CLK_APLL] = ast2600_calc_apll("apll", val);
/* Strap bits 12:11 define the AXI/AHB clock frequency ratio (aka HCLK)*/
regmap_read(map, ASPEED_G6_STRAP1, &val);
if (val & BIT(16))
axi_div = 1;
else
axi_div = 2;
divbits = (val >> 11) & 0x3;
if (soc_rev >= 1) {
if (!divbits) {
ahb_div = ast2600_a1_axi_ahb200_tbl[(val >> 8) & 0x3];
if (val & BIT(16))
ahb_div *= 2;
} else {
if (val & BIT(16))
ahb_div = ast2600_a1_axi_ahb_div1_tbl[divbits];
else
ahb_div = ast2600_a1_axi_ahb_div0_tbl[divbits];
}
} else {
ahb_div = ast2600_a0_axi_ahb_div_table[(val >> 11) & 0x3];
}
hw = clk_hw_register_fixed_factor(NULL, "ahb", "hpll", 0, 1, axi_div * ahb_div);
aspeed_g6_clk_data->hws[ASPEED_CLK_AHB] = hw;
regmap_read(map, ASPEED_G6_CLK_SELECTION1, &val);
val = (val >> 23) & 0x7;
div = 4 * (val + 1);
hw = clk_hw_register_fixed_factor(NULL, "apb1", "hpll", 0, 1, div);
aspeed_g6_clk_data->hws[ASPEED_CLK_APB1] = hw;
regmap_read(map, ASPEED_G6_CLK_SELECTION4, &val);
val = (val >> 9) & 0x7;
div = 2 * (val + 1);
hw = clk_hw_register_fixed_factor(NULL, "apb2", "ahb", 0, 1, div);
aspeed_g6_clk_data->hws[ASPEED_CLK_APB2] = hw;
/* USB 2.0 port1 phy 40MHz clock */
hw = clk_hw_register_fixed_rate(NULL, "usb-phy-40m", NULL, 0, 40000000);
aspeed_g6_clk_data->hws[ASPEED_CLK_USBPHY_40M] = hw;
/* i3c clock: source from apll, divide by 8 */
regmap_update_bits(map, ASPEED_G6_CLK_SELECTION5,
I3C_CLK_SELECTION | APLL_DIV_SELECTION,
I3C_CLK_SELECT_APLL_DIV | APLL_DIV_8);
hw = clk_hw_register_fixed_factor(NULL, "i3cclk", "apll", 0, 1, 8);
aspeed_g6_clk_data->hws[ASPEED_CLK_I3C] = hw;
};
static void __init aspeed_g6_cc_init(struct device_node *np)
{
struct regmap *map;
int ret;
int i;
scu_g6_base = of_iomap(np, 0);
if (!scu_g6_base)
return;
soc_rev = (readl(scu_g6_base + ASPEED_G6_SILICON_REV) & CHIP_REVISION_ID) >> 16;
aspeed_g6_clk_data = kzalloc(struct_size(aspeed_g6_clk_data, hws,
ASPEED_G6_NUM_CLKS), GFP_KERNEL);
if (!aspeed_g6_clk_data)
return;
aspeed_g6_clk_data->num = ASPEED_G6_NUM_CLKS;
/*
* This way all clocks fetched before the platform device probes,
* except those we assign here for early use, will be deferred.
*/
for (i = 0; i < ASPEED_G6_NUM_CLKS; i++)
aspeed_g6_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER);
/*
* We check that the regmap works on this very first access,
* but as this is an MMIO-backed regmap, subsequent regmap
* access is not going to fail and we skip error checks from
* this point.
*/
map = syscon_node_to_regmap(np);
if (IS_ERR(map)) {
pr_err("no syscon regmap\n");
return;
}
aspeed_g6_cc(map);
ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, aspeed_g6_clk_data);
if (ret)
pr_err("failed to add DT provider: %d\n", ret);
};
CLK_OF_DECLARE_DRIVER(aspeed_cc_g6, "aspeed,ast2600-scu", aspeed_g6_cc_init);