blob: 824c94d44f943da22191c7726a647e79cdb4fcd5 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* caam descriptor construction helper functions
*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
* Copyright 2019 NXP
*/
#ifndef DESC_CONSTR_H
#define DESC_CONSTR_H
#include "desc.h"
#include "regs.h"
#define IMMEDIATE (1 << 23)
#define CAAM_CMD_SZ sizeof(u32)
#define CAAM_PTR_SZ caam_ptr_sz
#define CAAM_PTR_SZ_MAX sizeof(dma_addr_t)
#define CAAM_PTR_SZ_MIN sizeof(u32)
#define CAAM_DESC_BYTES_MAX (CAAM_CMD_SZ * MAX_CAAM_DESCSIZE)
#define __DESC_JOB_IO_LEN(n) (CAAM_CMD_SZ * 5 + (n) * 3)
#define DESC_JOB_IO_LEN __DESC_JOB_IO_LEN(CAAM_PTR_SZ)
#define DESC_JOB_IO_LEN_MAX __DESC_JOB_IO_LEN(CAAM_PTR_SZ_MAX)
#define DESC_JOB_IO_LEN_MIN __DESC_JOB_IO_LEN(CAAM_PTR_SZ_MIN)
/*
* The CAAM QI hardware constructs a job descriptor which points
* to shared descriptor (as pointed by context_a of FQ to CAAM).
* When the job descriptor is executed by deco, the whole job
* descriptor together with shared descriptor gets loaded in
* deco buffer which is 64 words long (each 32-bit).
*
* The job descriptor constructed by QI hardware has layout:
*
* HEADER (1 word)
* Shdesc ptr (1 or 2 words)
* SEQ_OUT_PTR (1 word)
* Out ptr (1 or 2 words)
* Out length (1 word)
* SEQ_IN_PTR (1 word)
* In ptr (1 or 2 words)
* In length (1 word)
*
* The shdesc ptr is used to fetch shared descriptor contents
* into deco buffer.
*
* Apart from shdesc contents, the total number of words that
* get loaded in deco buffer are '8' or '11'. The remaining words
* in deco buffer can be used for storing shared descriptor.
*/
#define MAX_SDLEN ((CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN_MIN) / CAAM_CMD_SZ)
#ifdef DEBUG
#define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\
&__func__[sizeof("append")]); } while (0)
#else
#define PRINT_POS
#endif
#define SET_OK_NO_PROP_ERRORS (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_CHG_SHARE_OK_NO_PROP << \
LDST_OFFSET_SHIFT))
#define DISABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_DISABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
#define ENABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_ENABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
extern bool caam_little_end;
extern size_t caam_ptr_sz;
/*
* HW fetches 4 S/G table entries at a time, irrespective of how many entries
* are in the table. It's SW's responsibility to make sure these accesses
* do not have side effects.
*/
static inline int pad_sg_nents(int sg_nents)
{
return ALIGN(sg_nents, 4);
}
static inline int desc_len(u32 * const desc)
{
return caam32_to_cpu(*desc) & HDR_DESCLEN_MASK;
}
static inline int desc_bytes(void * const desc)
{
return desc_len(desc) * CAAM_CMD_SZ;
}
static inline u32 *desc_end(u32 * const desc)
{
return desc + desc_len(desc);
}
static inline void *sh_desc_pdb(u32 * const desc)
{
return desc + 1;
}
static inline void init_desc(u32 * const desc, u32 options)
{
*desc = cpu_to_caam32((options | HDR_ONE) + 1);
}
static inline void init_sh_desc(u32 * const desc, u32 options)
{
PRINT_POS;
init_desc(desc, CMD_SHARED_DESC_HDR | options);
}
static inline void init_sh_desc_pdb(u32 * const desc, u32 options,
size_t pdb_bytes)
{
u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
init_sh_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT) + pdb_len) |
options);
}
static inline void init_job_desc(u32 * const desc, u32 options)
{
init_desc(desc, CMD_DESC_HDR | options);
}
static inline void init_job_desc_pdb(u32 * const desc, u32 options,
size_t pdb_bytes)
{
u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
init_job_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT)) | options);
}
static inline void append_ptr(u32 * const desc, dma_addr_t ptr)
{
if (caam_ptr_sz == sizeof(dma_addr_t)) {
dma_addr_t *offset = (dma_addr_t *)desc_end(desc);
*offset = cpu_to_caam_dma(ptr);
} else {
u32 *offset = (u32 *)desc_end(desc);
*offset = cpu_to_caam_dma(ptr);
}
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) +
CAAM_PTR_SZ / CAAM_CMD_SZ);
}
static inline void init_job_desc_shared(u32 * const desc, dma_addr_t ptr,
int len, u32 options)
{
PRINT_POS;
init_job_desc(desc, HDR_SHARED | options |
(len << HDR_START_IDX_SHIFT));
append_ptr(desc, ptr);
}
static inline void append_data(u32 * const desc, const void *data, int len)
{
u32 *offset = desc_end(desc);
/* Avoid gcc warning: memcpy with data == NULL */
if (!IS_ENABLED(CONFIG_CRYPTO_DEV_FSL_CAAM_DEBUG) || data)
memcpy(offset, data, len);
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) +
(len + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ);
}
static inline void append_cmd(u32 * const desc, u32 command)
{
u32 *cmd = desc_end(desc);
*cmd = cpu_to_caam32(command);
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + 1);
}
#define append_u32 append_cmd
static inline void append_u64(u32 * const desc, u64 data)
{
u32 *offset = desc_end(desc);
/* Only 32-bit alignment is guaranteed in descriptor buffer */
if (caam_little_end) {
*offset = cpu_to_caam32(lower_32_bits(data));
*(++offset) = cpu_to_caam32(upper_32_bits(data));
} else {
*offset = cpu_to_caam32(upper_32_bits(data));
*(++offset) = cpu_to_caam32(lower_32_bits(data));
}
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + 2);
}
/* Write command without affecting header, and return pointer to next word */
static inline u32 *write_cmd(u32 * const desc, u32 command)
{
*desc = cpu_to_caam32(command);
return desc + 1;
}
static inline void append_cmd_ptr(u32 * const desc, dma_addr_t ptr, int len,
u32 command)
{
append_cmd(desc, command | len);
append_ptr(desc, ptr);
}
/* Write length after pointer, rather than inside command */
static inline void append_cmd_ptr_extlen(u32 * const desc, dma_addr_t ptr,
unsigned int len, u32 command)
{
append_cmd(desc, command);
if (!(command & (SQIN_RTO | SQIN_PRE)))
append_ptr(desc, ptr);
append_cmd(desc, len);
}
static inline void append_cmd_data(u32 * const desc, const void *data, int len,
u32 command)
{
append_cmd(desc, command | IMMEDIATE | len);
append_data(desc, data, len);
}
#define APPEND_CMD_RET(cmd, op) \
static inline u32 *append_##cmd(u32 * const desc, u32 options) \
{ \
u32 *cmd = desc_end(desc); \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
return cmd; \
}
APPEND_CMD_RET(jump, JUMP)
APPEND_CMD_RET(move, MOVE)
APPEND_CMD_RET(move_len, MOVE_LEN)
static inline void set_jump_tgt_here(u32 * const desc, u32 *jump_cmd)
{
*jump_cmd = cpu_to_caam32(caam32_to_cpu(*jump_cmd) |
(desc_len(desc) - (jump_cmd - desc)));
}
static inline void set_move_tgt_here(u32 * const desc, u32 *move_cmd)
{
u32 val = caam32_to_cpu(*move_cmd);
val &= ~MOVE_OFFSET_MASK;
val |= (desc_len(desc) << (MOVE_OFFSET_SHIFT + 2)) & MOVE_OFFSET_MASK;
*move_cmd = cpu_to_caam32(val);
}
#define APPEND_CMD(cmd, op) \
static inline void append_##cmd(u32 * const desc, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
}
APPEND_CMD(operation, OPERATION)
#define APPEND_CMD_LEN(cmd, op) \
static inline void append_##cmd(u32 * const desc, unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | len | options); \
}
APPEND_CMD_LEN(seq_load, SEQ_LOAD)
APPEND_CMD_LEN(seq_store, SEQ_STORE)
APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD)
APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE)
#define APPEND_CMD_PTR(cmd, op) \
static inline void append_##cmd(u32 * const desc, dma_addr_t ptr, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr(desc, ptr, len, CMD_##op | options); \
}
APPEND_CMD_PTR(key, KEY)
APPEND_CMD_PTR(load, LOAD)
APPEND_CMD_PTR(fifo_load, FIFO_LOAD)
APPEND_CMD_PTR(fifo_store, FIFO_STORE)
static inline void append_store(u32 * const desc, dma_addr_t ptr,
unsigned int len, u32 options)
{
u32 cmd_src;
cmd_src = options & LDST_SRCDST_MASK;
append_cmd(desc, CMD_STORE | options | len);
/* The following options do not require pointer */
if (!(cmd_src == LDST_SRCDST_WORD_DESCBUF_SHARED ||
cmd_src == LDST_SRCDST_WORD_DESCBUF_JOB ||
cmd_src == LDST_SRCDST_WORD_DESCBUF_JOB_WE ||
cmd_src == LDST_SRCDST_WORD_DESCBUF_SHARED_WE))
append_ptr(desc, ptr);
}
#define APPEND_SEQ_PTR_INTLEN(cmd, op) \
static inline void append_seq_##cmd##_ptr_intlen(u32 * const desc, \
dma_addr_t ptr, \
unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
if (options & (SQIN_RTO | SQIN_PRE)) \
append_cmd(desc, CMD_SEQ_##op##_PTR | len | options); \
else \
append_cmd_ptr(desc, ptr, len, CMD_SEQ_##op##_PTR | options); \
}
APPEND_SEQ_PTR_INTLEN(in, IN)
APPEND_SEQ_PTR_INTLEN(out, OUT)
#define APPEND_CMD_PTR_TO_IMM(cmd, op) \
static inline void append_##cmd##_as_imm(u32 * const desc, const void *data, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_data(desc, data, len, CMD_##op | options); \
}
APPEND_CMD_PTR_TO_IMM(load, LOAD);
APPEND_CMD_PTR_TO_IMM(fifo_load, FIFO_LOAD);
#define APPEND_CMD_PTR_EXTLEN(cmd, op) \
static inline void append_##cmd##_extlen(u32 * const desc, dma_addr_t ptr, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr_extlen(desc, ptr, len, CMD_##op | SQIN_EXT | options); \
}
APPEND_CMD_PTR_EXTLEN(seq_in_ptr, SEQ_IN_PTR)
APPEND_CMD_PTR_EXTLEN(seq_out_ptr, SEQ_OUT_PTR)
/*
* Determine whether to store length internally or externally depending on
* the size of its type
*/
#define APPEND_CMD_PTR_LEN(cmd, op, type) \
static inline void append_##cmd(u32 * const desc, dma_addr_t ptr, \
type len, u32 options) \
{ \
PRINT_POS; \
if (sizeof(type) > sizeof(u16)) \
append_##cmd##_extlen(desc, ptr, len, options); \
else \
append_##cmd##_intlen(desc, ptr, len, options); \
}
APPEND_CMD_PTR_LEN(seq_in_ptr, SEQ_IN_PTR, u32)
APPEND_CMD_PTR_LEN(seq_out_ptr, SEQ_OUT_PTR, u32)
/*
* 2nd variant for commands whose specified immediate length differs
* from length of immediate data provided, e.g., split keys
*/
#define APPEND_CMD_PTR_TO_IMM2(cmd, op) \
static inline void append_##cmd##_as_imm(u32 * const desc, const void *data, \
unsigned int data_len, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | len | options); \
append_data(desc, data, data_len); \
}
APPEND_CMD_PTR_TO_IMM2(key, KEY);
#define APPEND_CMD_RAW_IMM(cmd, op, type) \
static inline void append_##cmd##_imm_##type(u32 * const desc, type immediate, \
u32 options) \
{ \
PRINT_POS; \
if (options & LDST_LEN_MASK) \
append_cmd(desc, CMD_##op | IMMEDIATE | options); \
else \
append_cmd(desc, CMD_##op | IMMEDIATE | options | \
sizeof(type)); \
append_cmd(desc, immediate); \
}
APPEND_CMD_RAW_IMM(load, LOAD, u32);
/*
* ee - endianness
* size - size of immediate type in bytes
*/
#define APPEND_CMD_RAW_IMM2(cmd, op, ee, size) \
static inline void append_##cmd##_imm_##ee##size(u32 *desc, \
u##size immediate, \
u32 options) \
{ \
__##ee##size data = cpu_to_##ee##size(immediate); \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | options | sizeof(data)); \
append_data(desc, &data, sizeof(data)); \
}
APPEND_CMD_RAW_IMM2(load, LOAD, be, 32);
/*
* Append math command. Only the last part of destination and source need to
* be specified
*/
#define APPEND_MATH(op, desc, dest, src_0, src_1, len) \
append_cmd(desc, CMD_MATH | MATH_FUN_##op | MATH_DEST_##dest | \
MATH_SRC0_##src_0 | MATH_SRC1_##src_1 | (u32)len);
#define append_math_add(desc, dest, src0, src1, len) \
APPEND_MATH(ADD, desc, dest, src0, src1, len)
#define append_math_sub(desc, dest, src0, src1, len) \
APPEND_MATH(SUB, desc, dest, src0, src1, len)
#define append_math_add_c(desc, dest, src0, src1, len) \
APPEND_MATH(ADDC, desc, dest, src0, src1, len)
#define append_math_sub_b(desc, dest, src0, src1, len) \
APPEND_MATH(SUBB, desc, dest, src0, src1, len)
#define append_math_and(desc, dest, src0, src1, len) \
APPEND_MATH(AND, desc, dest, src0, src1, len)
#define append_math_or(desc, dest, src0, src1, len) \
APPEND_MATH(OR, desc, dest, src0, src1, len)
#define append_math_xor(desc, dest, src0, src1, len) \
APPEND_MATH(XOR, desc, dest, src0, src1, len)
#define append_math_lshift(desc, dest, src0, src1, len) \
APPEND_MATH(LSHIFT, desc, dest, src0, src1, len)
#define append_math_rshift(desc, dest, src0, src1, len) \
APPEND_MATH(RSHIFT, desc, dest, src0, src1, len)
#define append_math_ldshift(desc, dest, src0, src1, len) \
APPEND_MATH(SHLD, desc, dest, src0, src1, len)
/* Exactly one source is IMM. Data is passed in as u32 value */
#define APPEND_MATH_IMM_u32(op, desc, dest, src_0, src_1, data) \
do { \
APPEND_MATH(op, desc, dest, src_0, src_1, CAAM_CMD_SZ); \
append_cmd(desc, data); \
} while (0)
#define append_math_add_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(ADD, desc, dest, src0, src1, data)
#define append_math_sub_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(SUB, desc, dest, src0, src1, data)
#define append_math_add_c_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(ADDC, desc, dest, src0, src1, data)
#define append_math_sub_b_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(SUBB, desc, dest, src0, src1, data)
#define append_math_and_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(AND, desc, dest, src0, src1, data)
#define append_math_or_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(OR, desc, dest, src0, src1, data)
#define append_math_xor_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(XOR, desc, dest, src0, src1, data)
#define append_math_lshift_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(LSHIFT, desc, dest, src0, src1, data)
#define append_math_rshift_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(RSHIFT, desc, dest, src0, src1, data)
/* Exactly one source is IMM. Data is passed in as u64 value */
#define APPEND_MATH_IMM_u64(op, desc, dest, src_0, src_1, data) \
do { \
u32 upper = (data >> 16) >> 16; \
APPEND_MATH(op, desc, dest, src_0, src_1, CAAM_CMD_SZ * 2 | \
(upper ? 0 : MATH_IFB)); \
if (upper) \
append_u64(desc, data); \
else \
append_u32(desc, lower_32_bits(data)); \
} while (0)
#define append_math_add_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(ADD, desc, dest, src0, src1, data)
#define append_math_sub_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(SUB, desc, dest, src0, src1, data)
#define append_math_add_c_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(ADDC, desc, dest, src0, src1, data)
#define append_math_sub_b_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(SUBB, desc, dest, src0, src1, data)
#define append_math_and_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(AND, desc, dest, src0, src1, data)
#define append_math_or_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(OR, desc, dest, src0, src1, data)
#define append_math_xor_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(XOR, desc, dest, src0, src1, data)
#define append_math_lshift_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(LSHIFT, desc, dest, src0, src1, data)
#define append_math_rshift_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(RSHIFT, desc, dest, src0, src1, data)
/**
* struct alginfo - Container for algorithm details
* @algtype: algorithm selector; for valid values, see documentation of the
* functions where it is used.
* @keylen: length of the provided algorithm key, in bytes
* @keylen_pad: padded length of the provided algorithm key, in bytes
* @key_dma: dma (bus) address where algorithm key resides
* @key_virt: virtual address where algorithm key resides
* @key_inline: true - key can be inlined in the descriptor; false - key is
* referenced by the descriptor
*/
struct alginfo {
u32 algtype;
unsigned int keylen;
unsigned int keylen_pad;
dma_addr_t key_dma;
const void *key_virt;
bool key_inline;
};
/**
* desc_inline_query() - Provide indications on which data items can be inlined
* and which shall be referenced in a shared descriptor.
* @sd_base_len: Shared descriptor base length - bytes consumed by the commands,
* excluding the data items to be inlined (or corresponding
* pointer if an item is not inlined). Each cnstr_* function that
* generates descriptors should have a define mentioning
* corresponding length.
* @jd_len: Maximum length of the job descriptor(s) that will be used
* together with the shared descriptor.
* @data_len: Array of lengths of the data items trying to be inlined
* @inl_mask: 32bit mask with bit x = 1 if data item x can be inlined, 0
* otherwise.
* @count: Number of data items (size of @data_len array); must be <= 32
*
* Return: 0 if data can be inlined / referenced, negative value if not. If 0,
* check @inl_mask for details.
*/
static inline int desc_inline_query(unsigned int sd_base_len,
unsigned int jd_len, unsigned int *data_len,
u32 *inl_mask, unsigned int count)
{
int rem_bytes = (int)(CAAM_DESC_BYTES_MAX - sd_base_len - jd_len);
unsigned int i;
*inl_mask = 0;
for (i = 0; (i < count) && (rem_bytes > 0); i++) {
if (rem_bytes - (int)(data_len[i] +
(count - i - 1) * CAAM_PTR_SZ) >= 0) {
rem_bytes -= data_len[i];
*inl_mask |= (1 << i);
} else {
rem_bytes -= CAAM_PTR_SZ;
}
}
return (rem_bytes >= 0) ? 0 : -1;
}
/**
* append_proto_dkp - Derived Key Protocol (DKP): key -> split key
* @desc: pointer to buffer used for descriptor construction
* @adata: pointer to authentication transform definitions.
* keylen should be the length of initial key, while keylen_pad
* the length of the derived (split) key.
* Valid algorithm values - one of OP_ALG_ALGSEL_{MD5, SHA1, SHA224,
* SHA256, SHA384, SHA512}.
*/
static inline void append_proto_dkp(u32 * const desc, struct alginfo *adata)
{
u32 protid;
/*
* Quick & dirty translation from OP_ALG_ALGSEL_{MD5, SHA*}
* to OP_PCLID_DKP_{MD5, SHA*}
*/
protid = (adata->algtype & OP_ALG_ALGSEL_SUBMASK) |
(0x20 << OP_ALG_ALGSEL_SHIFT);
if (adata->key_inline) {
int words;
if (adata->keylen > adata->keylen_pad) {
append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid |
OP_PCL_DKP_SRC_PTR |
OP_PCL_DKP_DST_IMM | adata->keylen);
append_ptr(desc, adata->key_dma);
words = (ALIGN(adata->keylen_pad, CAAM_CMD_SZ) -
CAAM_PTR_SZ) / CAAM_CMD_SZ;
} else {
append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid |
OP_PCL_DKP_SRC_IMM |
OP_PCL_DKP_DST_IMM | adata->keylen);
append_data(desc, adata->key_virt, adata->keylen);
words = (ALIGN(adata->keylen_pad, CAAM_CMD_SZ) -
ALIGN(adata->keylen, CAAM_CMD_SZ)) /
CAAM_CMD_SZ;
}
/* Reserve space in descriptor buffer for the derived key */
if (words)
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + words);
} else {
append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid |
OP_PCL_DKP_SRC_PTR | OP_PCL_DKP_DST_PTR |
adata->keylen);
append_ptr(desc, adata->key_dma);
}
}
#endif /* DESC_CONSTR_H */