blob: ba38649cc1428603b09155ea5db75630a6910c53 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2009-2010 Intel Corporation
*
* Authors:
* Jesse Barnes <jbarnes@virtuousgeek.org>
*/
/*
* Some Intel Ibex Peak based platforms support so-called "intelligent
* power sharing", which allows the CPU and GPU to cooperate to maximize
* performance within a given TDP (thermal design point). This driver
* performs the coordination between the CPU and GPU, monitors thermal and
* power statistics in the platform, and initializes power monitoring
* hardware. It also provides a few tunables to control behavior. Its
* primary purpose is to safely allow CPU and GPU turbo modes to be enabled
* by tracking power and thermal budget; secondarily it can boost turbo
* performance by allocating more power or thermal budget to the CPU or GPU
* based on available headroom and activity.
*
* The basic algorithm is driven by a 5s moving average of temperature. If
* thermal headroom is available, the CPU and/or GPU power clamps may be
* adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
* we scale back the clamp. Aside from trigger events (when we're critically
* close or over our TDP) we don't adjust the clamps more than once every
* five seconds.
*
* The thermal device (device 31, function 6) has a set of registers that
* are updated by the ME firmware. The ME should also take the clamp values
* written to those registers and write them to the CPU, but we currently
* bypass that functionality and write the CPU MSR directly.
*
* UNSUPPORTED:
* - dual MCP configs
*
* TODO:
* - handle CPU hotplug
* - provide turbo enable/disable api
*
* Related documents:
* - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
* - CDI 401376 - Ibex Peak EDS
* - ref 26037, 26641 - IPS BIOS spec
* - ref 26489 - Nehalem BIOS writer's guide
* - ref 26921 - Ibex Peak BIOS Specification
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/tick.h>
#include <linux/timer.h>
#include <linux/dmi.h>
#include <drm/i915_drm.h>
#include <asm/msr.h>
#include <asm/processor.h>
#include "intel_ips.h"
#include <linux/io-64-nonatomic-lo-hi.h>
#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
/*
* Package level MSRs for monitor/control
*/
#define PLATFORM_INFO 0xce
#define PLATFORM_TDP (1<<29)
#define PLATFORM_RATIO (1<<28)
#define IA32_MISC_ENABLE 0x1a0
#define IA32_MISC_TURBO_EN (1ULL<<38)
#define TURBO_POWER_CURRENT_LIMIT 0x1ac
#define TURBO_TDC_OVR_EN (1UL<<31)
#define TURBO_TDC_MASK (0x000000007fff0000UL)
#define TURBO_TDC_SHIFT (16)
#define TURBO_TDP_OVR_EN (1UL<<15)
#define TURBO_TDP_MASK (0x0000000000003fffUL)
/*
* Core/thread MSRs for monitoring
*/
#define IA32_PERF_CTL 0x199
#define IA32_PERF_TURBO_DIS (1ULL<<32)
/*
* Thermal PCI device regs
*/
#define THM_CFG_TBAR 0x10
#define THM_CFG_TBAR_HI 0x14
#define THM_TSIU 0x00
#define THM_TSE 0x01
#define TSE_EN 0xb8
#define THM_TSS 0x02
#define THM_TSTR 0x03
#define THM_TSTTP 0x04
#define THM_TSCO 0x08
#define THM_TSES 0x0c
#define THM_TSGPEN 0x0d
#define TSGPEN_HOT_LOHI (1<<1)
#define TSGPEN_CRIT_LOHI (1<<2)
#define THM_TSPC 0x0e
#define THM_PPEC 0x10
#define THM_CTA 0x12
#define THM_PTA 0x14
#define PTA_SLOPE_MASK (0xff00)
#define PTA_SLOPE_SHIFT 8
#define PTA_OFFSET_MASK (0x00ff)
#define THM_MGTA 0x16
#define MGTA_SLOPE_MASK (0xff00)
#define MGTA_SLOPE_SHIFT 8
#define MGTA_OFFSET_MASK (0x00ff)
#define THM_TRC 0x1a
#define TRC_CORE2_EN (1<<15)
#define TRC_THM_EN (1<<12)
#define TRC_C6_WAR (1<<8)
#define TRC_CORE1_EN (1<<7)
#define TRC_CORE_PWR (1<<6)
#define TRC_PCH_EN (1<<5)
#define TRC_MCH_EN (1<<4)
#define TRC_DIMM4 (1<<3)
#define TRC_DIMM3 (1<<2)
#define TRC_DIMM2 (1<<1)
#define TRC_DIMM1 (1<<0)
#define THM_TES 0x20
#define THM_TEN 0x21
#define TEN_UPDATE_EN 1
#define THM_PSC 0x24
#define PSC_NTG (1<<0) /* No GFX turbo support */
#define PSC_NTPC (1<<1) /* No CPU turbo support */
#define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
#define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
#define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
#define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
#define PSP_PBRT (1<<4) /* BIOS run time support */
#define THM_CTV1 0x30
#define CTV_TEMP_ERROR (1<<15)
#define CTV_TEMP_MASK 0x3f
#define CTV_
#define THM_CTV2 0x32
#define THM_CEC 0x34 /* undocumented power accumulator in joules */
#define THM_AE 0x3f
#define THM_HTS 0x50 /* 32 bits */
#define HTS_PCPL_MASK (0x7fe00000)
#define HTS_PCPL_SHIFT 21
#define HTS_GPL_MASK (0x001ff000)
#define HTS_GPL_SHIFT 12
#define HTS_PP_MASK (0x00000c00)
#define HTS_PP_SHIFT 10
#define HTS_PP_DEF 0
#define HTS_PP_PROC 1
#define HTS_PP_BAL 2
#define HTS_PP_GFX 3
#define HTS_PCTD_DIS (1<<9)
#define HTS_GTD_DIS (1<<8)
#define HTS_PTL_MASK (0x000000fe)
#define HTS_PTL_SHIFT 1
#define HTS_NVV (1<<0)
#define THM_HTSHI 0x54 /* 16 bits */
#define HTS2_PPL_MASK (0x03ff)
#define HTS2_PRST_MASK (0x3c00)
#define HTS2_PRST_SHIFT 10
#define HTS2_PRST_UNLOADED 0
#define HTS2_PRST_RUNNING 1
#define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
#define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
#define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
#define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
#define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
#define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
#define THM_PTL 0x56
#define THM_MGTV 0x58
#define TV_MASK 0x000000000000ff00
#define TV_SHIFT 8
#define THM_PTV 0x60
#define PTV_MASK 0x00ff
#define THM_MMGPC 0x64
#define THM_MPPC 0x66
#define THM_MPCPC 0x68
#define THM_TSPIEN 0x82
#define TSPIEN_AUX_LOHI (1<<0)
#define TSPIEN_HOT_LOHI (1<<1)
#define TSPIEN_CRIT_LOHI (1<<2)
#define TSPIEN_AUX2_LOHI (1<<3)
#define THM_TSLOCK 0x83
#define THM_ATR 0x84
#define THM_TOF 0x87
#define THM_STS 0x98
#define STS_PCPL_MASK (0x7fe00000)
#define STS_PCPL_SHIFT 21
#define STS_GPL_MASK (0x001ff000)
#define STS_GPL_SHIFT 12
#define STS_PP_MASK (0x00000c00)
#define STS_PP_SHIFT 10
#define STS_PP_DEF 0
#define STS_PP_PROC 1
#define STS_PP_BAL 2
#define STS_PP_GFX 3
#define STS_PCTD_DIS (1<<9)
#define STS_GTD_DIS (1<<8)
#define STS_PTL_MASK (0x000000fe)
#define STS_PTL_SHIFT 1
#define STS_NVV (1<<0)
#define THM_SEC 0x9c
#define SEC_ACK (1<<0)
#define THM_TC3 0xa4
#define THM_TC1 0xa8
#define STS_PPL_MASK (0x0003ff00)
#define STS_PPL_SHIFT 16
#define THM_TC2 0xac
#define THM_DTV 0xb0
#define THM_ITV 0xd8
#define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
#define ITV_ME_SEQNO_SHIFT (16)
#define ITV_MCH_TEMP_MASK 0x0000ff00
#define ITV_MCH_TEMP_SHIFT (8)
#define ITV_PCH_TEMP_MASK 0x000000ff
#define thm_readb(off) readb(ips->regmap + (off))
#define thm_readw(off) readw(ips->regmap + (off))
#define thm_readl(off) readl(ips->regmap + (off))
#define thm_readq(off) readq(ips->regmap + (off))
#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
#define thm_writew(off, val) writew((val), ips->regmap + (off))
#define thm_writel(off, val) writel((val), ips->regmap + (off))
static const int IPS_ADJUST_PERIOD = 5000; /* ms */
static bool late_i915_load = false;
/* For initial average collection */
static const int IPS_SAMPLE_PERIOD = 200; /* ms */
static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
/* Per-SKU limits */
struct ips_mcp_limits {
int mcp_power_limit; /* mW units */
int core_power_limit;
int mch_power_limit;
int core_temp_limit; /* degrees C */
int mch_temp_limit;
};
/* Max temps are -10 degrees C to avoid PROCHOT# */
static struct ips_mcp_limits ips_sv_limits = {
.mcp_power_limit = 35000,
.core_power_limit = 29000,
.mch_power_limit = 20000,
.core_temp_limit = 95,
.mch_temp_limit = 90
};
static struct ips_mcp_limits ips_lv_limits = {
.mcp_power_limit = 25000,
.core_power_limit = 21000,
.mch_power_limit = 13000,
.core_temp_limit = 95,
.mch_temp_limit = 90
};
static struct ips_mcp_limits ips_ulv_limits = {
.mcp_power_limit = 18000,
.core_power_limit = 14000,
.mch_power_limit = 11000,
.core_temp_limit = 95,
.mch_temp_limit = 90
};
struct ips_driver {
struct device *dev;
void __iomem *regmap;
int irq;
struct task_struct *monitor;
struct task_struct *adjust;
struct dentry *debug_root;
struct timer_list timer;
/* Average CPU core temps (all averages in .01 degrees C for precision) */
u16 ctv1_avg_temp;
u16 ctv2_avg_temp;
/* GMCH average */
u16 mch_avg_temp;
/* Average for the CPU (both cores?) */
u16 mcp_avg_temp;
/* Average power consumption (in mW) */
u32 cpu_avg_power;
u32 mch_avg_power;
/* Offset values */
u16 cta_val;
u16 pta_val;
u16 mgta_val;
/* Maximums & prefs, protected by turbo status lock */
spinlock_t turbo_status_lock;
u16 mcp_temp_limit;
u16 mcp_power_limit;
u16 core_power_limit;
u16 mch_power_limit;
bool cpu_turbo_enabled;
bool __cpu_turbo_on;
bool gpu_turbo_enabled;
bool __gpu_turbo_on;
bool gpu_preferred;
bool poll_turbo_status;
bool second_cpu;
bool turbo_toggle_allowed;
struct ips_mcp_limits *limits;
/* Optional MCH interfaces for if i915 is in use */
unsigned long (*read_mch_val)(void);
bool (*gpu_raise)(void);
bool (*gpu_lower)(void);
bool (*gpu_busy)(void);
bool (*gpu_turbo_disable)(void);
/* For restoration at unload */
u64 orig_turbo_limit;
u64 orig_turbo_ratios;
};
static bool
ips_gpu_turbo_enabled(struct ips_driver *ips);
/**
* ips_cpu_busy - is CPU busy?
* @ips: IPS driver struct
*
* Check CPU for load to see whether we should increase its thermal budget.
*
* RETURNS:
* True if the CPU could use more power, false otherwise.
*/
static bool ips_cpu_busy(struct ips_driver *ips)
{
if ((avenrun[0] >> FSHIFT) > 1)
return true;
return false;
}
/**
* ips_cpu_raise - raise CPU power clamp
* @ips: IPS driver struct
*
* Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
* this platform.
*
* We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
* long as we haven't hit the TDP limit for the SKU).
*/
static void ips_cpu_raise(struct ips_driver *ips)
{
u64 turbo_override;
u16 cur_tdp_limit, new_tdp_limit;
if (!ips->cpu_turbo_enabled)
return;
rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
/* Clamp to SKU TDP limit */
if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
new_tdp_limit = cur_tdp_limit;
thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
turbo_override &= ~TURBO_TDP_MASK;
turbo_override |= new_tdp_limit;
wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
}
/**
* ips_cpu_lower - lower CPU power clamp
* @ips: IPS driver struct
*
* Lower CPU power clamp b %IPS_CPU_STEP if possible.
*
* We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
* as low as the platform limits will allow (though we could go lower there
* wouldn't be much point).
*/
static void ips_cpu_lower(struct ips_driver *ips)
{
u64 turbo_override;
u16 cur_limit, new_limit;
rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
cur_limit = turbo_override & TURBO_TDP_MASK;
new_limit = cur_limit - 8; /* 1W decrease */
/* Clamp to SKU TDP limit */
if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
thm_writew(THM_MPCPC, (new_limit * 10) / 8);
turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
turbo_override &= ~TURBO_TDP_MASK;
turbo_override |= new_limit;
wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
}
/**
* do_enable_cpu_turbo - internal turbo enable function
* @data: unused
*
* Internal function for actually updating MSRs. When we enable/disable
* turbo, we need to do it on each CPU; this function is the one called
* by on_each_cpu() when needed.
*/
static void do_enable_cpu_turbo(void *data)
{
u64 perf_ctl;
rdmsrl(IA32_PERF_CTL, perf_ctl);
if (perf_ctl & IA32_PERF_TURBO_DIS) {
perf_ctl &= ~IA32_PERF_TURBO_DIS;
wrmsrl(IA32_PERF_CTL, perf_ctl);
}
}
/**
* ips_enable_cpu_turbo - enable turbo mode on all CPUs
* @ips: IPS driver struct
*
* Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
* all logical threads.
*/
static void ips_enable_cpu_turbo(struct ips_driver *ips)
{
/* Already on, no need to mess with MSRs */
if (ips->__cpu_turbo_on)
return;
if (ips->turbo_toggle_allowed)
on_each_cpu(do_enable_cpu_turbo, ips, 1);
ips->__cpu_turbo_on = true;
}
/**
* do_disable_cpu_turbo - internal turbo disable function
* @data: unused
*
* Internal function for actually updating MSRs. When we enable/disable
* turbo, we need to do it on each CPU; this function is the one called
* by on_each_cpu() when needed.
*/
static void do_disable_cpu_turbo(void *data)
{
u64 perf_ctl;
rdmsrl(IA32_PERF_CTL, perf_ctl);
if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
perf_ctl |= IA32_PERF_TURBO_DIS;
wrmsrl(IA32_PERF_CTL, perf_ctl);
}
}
/**
* ips_disable_cpu_turbo - disable turbo mode on all CPUs
* @ips: IPS driver struct
*
* Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
* all logical threads.
*/
static void ips_disable_cpu_turbo(struct ips_driver *ips)
{
/* Already off, leave it */
if (!ips->__cpu_turbo_on)
return;
if (ips->turbo_toggle_allowed)
on_each_cpu(do_disable_cpu_turbo, ips, 1);
ips->__cpu_turbo_on = false;
}
/**
* ips_gpu_busy - is GPU busy?
* @ips: IPS driver struct
*
* Check GPU for load to see whether we should increase its thermal budget.
* We need to call into the i915 driver in this case.
*
* RETURNS:
* True if the GPU could use more power, false otherwise.
*/
static bool ips_gpu_busy(struct ips_driver *ips)
{
if (!ips_gpu_turbo_enabled(ips))
return false;
return ips->gpu_busy();
}
/**
* ips_gpu_raise - raise GPU power clamp
* @ips: IPS driver struct
*
* Raise the GPU frequency/power if possible. We need to call into the
* i915 driver in this case.
*/
static void ips_gpu_raise(struct ips_driver *ips)
{
if (!ips_gpu_turbo_enabled(ips))
return;
if (!ips->gpu_raise())
ips->gpu_turbo_enabled = false;
return;
}
/**
* ips_gpu_lower - lower GPU power clamp
* @ips: IPS driver struct
*
* Lower GPU frequency/power if possible. Need to call i915.
*/
static void ips_gpu_lower(struct ips_driver *ips)
{
if (!ips_gpu_turbo_enabled(ips))
return;
if (!ips->gpu_lower())
ips->gpu_turbo_enabled = false;
return;
}
/**
* ips_enable_gpu_turbo - notify the gfx driver turbo is available
* @ips: IPS driver struct
*
* Call into the graphics driver indicating that it can safely use
* turbo mode.
*/
static void ips_enable_gpu_turbo(struct ips_driver *ips)
{
if (ips->__gpu_turbo_on)
return;
ips->__gpu_turbo_on = true;
}
/**
* ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
* @ips: IPS driver struct
*
* Request that the graphics driver disable turbo mode.
*/
static void ips_disable_gpu_turbo(struct ips_driver *ips)
{
/* Avoid calling i915 if turbo is already disabled */
if (!ips->__gpu_turbo_on)
return;
if (!ips->gpu_turbo_disable())
dev_err(ips->dev, "failed to disable graphics turbo\n");
else
ips->__gpu_turbo_on = false;
}
/**
* mcp_exceeded - check whether we're outside our thermal & power limits
* @ips: IPS driver struct
*
* Check whether the MCP is over its thermal or power budget.
*
* Returns: %true if the temp or power has exceeded its maximum, else %false
*/
static bool mcp_exceeded(struct ips_driver *ips)
{
unsigned long flags;
bool ret = false;
u32 temp_limit;
u32 avg_power;
spin_lock_irqsave(&ips->turbo_status_lock, flags);
temp_limit = ips->mcp_temp_limit * 100;
if (ips->mcp_avg_temp > temp_limit)
ret = true;
avg_power = ips->cpu_avg_power + ips->mch_avg_power;
if (avg_power > ips->mcp_power_limit)
ret = true;
spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
return ret;
}
/**
* cpu_exceeded - check whether a CPU core is outside its limits
* @ips: IPS driver struct
* @cpu: CPU number to check
*
* Check a given CPU's average temp or power is over its limit.
*
* Returns: %true if the temp or power has exceeded its maximum, else %false
*/
static bool cpu_exceeded(struct ips_driver *ips, int cpu)
{
unsigned long flags;
int avg;
bool ret = false;
spin_lock_irqsave(&ips->turbo_status_lock, flags);
avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
if (avg > (ips->limits->core_temp_limit * 100))
ret = true;
if (ips->cpu_avg_power > ips->core_power_limit * 100)
ret = true;
spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
if (ret)
dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
return ret;
}
/**
* mch_exceeded - check whether the GPU is over budget
* @ips: IPS driver struct
*
* Check the MCH temp & power against their maximums.
*
* Returns: %true if the temp or power has exceeded its maximum, else %false
*/
static bool mch_exceeded(struct ips_driver *ips)
{
unsigned long flags;
bool ret = false;
spin_lock_irqsave(&ips->turbo_status_lock, flags);
if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
ret = true;
if (ips->mch_avg_power > ips->mch_power_limit)
ret = true;
spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
return ret;
}
/**
* verify_limits - verify BIOS provided limits
* @ips: IPS structure
*
* BIOS can optionally provide non-default limits for power and temp. Check
* them here and use the defaults if the BIOS values are not provided or
* are otherwise unusable.
*/
static void verify_limits(struct ips_driver *ips)
{
if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
ips->mcp_power_limit > 35000)
ips->mcp_power_limit = ips->limits->mcp_power_limit;
if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
ips->mcp_temp_limit > 150)
ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
ips->limits->mch_temp_limit);
}
/**
* update_turbo_limits - get various limits & settings from regs
* @ips: IPS driver struct
*
* Update the IPS power & temp limits, along with turbo enable flags,
* based on latest register contents.
*
* Used at init time and for runtime BIOS support, which requires polling
* the regs for updates (as a result of AC->DC transition for example).
*
* LOCKING:
* Caller must hold turbo_status_lock (outside of init)
*/
static void update_turbo_limits(struct ips_driver *ips)
{
u32 hts = thm_readl(THM_HTS);
ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
/*
* Disable turbo for now, until we can figure out why the power figures
* are wrong
*/
ips->cpu_turbo_enabled = false;
if (ips->gpu_busy)
ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
ips->core_power_limit = thm_readw(THM_MPCPC);
ips->mch_power_limit = thm_readw(THM_MMGPC);
ips->mcp_temp_limit = thm_readw(THM_PTL);
ips->mcp_power_limit = thm_readw(THM_MPPC);
verify_limits(ips);
/* Ignore BIOS CPU vs GPU pref */
}
/**
* ips_adjust - adjust power clamp based on thermal state
* @data: ips driver structure
*
* Wake up every 5s or so and check whether we should adjust the power clamp.
* Check CPU and GPU load to determine which needs adjustment. There are
* several things to consider here:
* - do we need to adjust up or down?
* - is CPU busy?
* - is GPU busy?
* - is CPU in turbo?
* - is GPU in turbo?
* - is CPU or GPU preferred? (CPU is default)
*
* So, given the above, we do the following:
* - up (TDP available)
* - CPU not busy, GPU not busy - nothing
* - CPU busy, GPU not busy - adjust CPU up
* - CPU not busy, GPU busy - adjust GPU up
* - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
* non-preferred unit if necessary
* - down (at TDP limit)
* - adjust both CPU and GPU down if possible
*
* |cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
* cpu < gpu < |cpu+gpu+ cpu+ gpu+ nothing
* cpu < gpu >= |cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
* cpu >= gpu < |cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
* cpu >= gpu >=|cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
*
* Returns: %0
*/
static int ips_adjust(void *data)
{
struct ips_driver *ips = data;
unsigned long flags;
dev_dbg(ips->dev, "starting ips-adjust thread\n");
/*
* Adjust CPU and GPU clamps every 5s if needed. Doing it more
* often isn't recommended due to ME interaction.
*/
do {
bool cpu_busy = ips_cpu_busy(ips);
bool gpu_busy = ips_gpu_busy(ips);
spin_lock_irqsave(&ips->turbo_status_lock, flags);
if (ips->poll_turbo_status)
update_turbo_limits(ips);
spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
/* Update turbo status if necessary */
if (ips->cpu_turbo_enabled)
ips_enable_cpu_turbo(ips);
else
ips_disable_cpu_turbo(ips);
if (ips->gpu_turbo_enabled)
ips_enable_gpu_turbo(ips);
else
ips_disable_gpu_turbo(ips);
/* We're outside our comfort zone, crank them down */
if (mcp_exceeded(ips)) {
ips_cpu_lower(ips);
ips_gpu_lower(ips);
goto sleep;
}
if (!cpu_exceeded(ips, 0) && cpu_busy)
ips_cpu_raise(ips);
else
ips_cpu_lower(ips);
if (!mch_exceeded(ips) && gpu_busy)
ips_gpu_raise(ips);
else
ips_gpu_lower(ips);
sleep:
schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
} while (!kthread_should_stop());
dev_dbg(ips->dev, "ips-adjust thread stopped\n");
return 0;
}
/*
* Helpers for reading out temp/power values and calculating their
* averages for the decision making and monitoring functions.
*/
static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
{
u64 total = 0;
int i;
u16 avg;
for (i = 0; i < IPS_SAMPLE_COUNT; i++)
total += (u64)(array[i] * 100);
do_div(total, IPS_SAMPLE_COUNT);
avg = (u16)total;
return avg;
}
static u16 read_mgtv(struct ips_driver *ips)
{
u16 __maybe_unused ret;
u64 slope, offset;
u64 val;
val = thm_readq(THM_MGTV);
val = (val & TV_MASK) >> TV_SHIFT;
slope = offset = thm_readw(THM_MGTA);
slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
offset = offset & MGTA_OFFSET_MASK;
ret = ((val * slope + 0x40) >> 7) + offset;
return 0; /* MCH temp reporting buggy */
}
static u16 read_ptv(struct ips_driver *ips)
{
u16 val;
val = thm_readw(THM_PTV) & PTV_MASK;
return val;
}
static u16 read_ctv(struct ips_driver *ips, int cpu)
{
int reg = cpu ? THM_CTV2 : THM_CTV1;
u16 val;
val = thm_readw(reg);
if (!(val & CTV_TEMP_ERROR))
val = (val) >> 6; /* discard fractional component */
else
val = 0;
return val;
}
static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
{
u32 val;
u32 ret;
/*
* CEC is in joules/65535. Take difference over time to
* get watts.
*/
val = thm_readl(THM_CEC);
/* period is in ms and we want mW */
ret = (((val - *last) * 1000) / period);
ret = (ret * 1000) / 65535;
*last = val;
return 0;
}
static const u16 temp_decay_factor = 2;
static u16 update_average_temp(u16 avg, u16 val)
{
u16 ret;
/* Multiply by 100 for extra precision */
ret = (val * 100 / temp_decay_factor) +
(((temp_decay_factor - 1) * avg) / temp_decay_factor);
return ret;
}
static const u16 power_decay_factor = 2;
static u16 update_average_power(u32 avg, u32 val)
{
u32 ret;
ret = (val / power_decay_factor) +
(((power_decay_factor - 1) * avg) / power_decay_factor);
return ret;
}
static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
{
u64 total = 0;
u32 avg;
int i;
for (i = 0; i < IPS_SAMPLE_COUNT; i++)
total += array[i];
do_div(total, IPS_SAMPLE_COUNT);
avg = (u32)total;
return avg;
}
static void monitor_timeout(struct timer_list *t)
{
struct ips_driver *ips = from_timer(ips, t, timer);
wake_up_process(ips->monitor);
}
/**
* ips_monitor - temp/power monitoring thread
* @data: ips driver structure
*
* This is the main function for the IPS driver. It monitors power and
* temperature in the MCP and adjusts CPU and GPU power clamps accordingly.
*
* We keep a 5s moving average of power consumption and temperature. Using
* that data, along with CPU vs GPU preference, we adjust the power clamps
* up or down.
*
* Returns: %0 on success or -errno on error
*/
static int ips_monitor(void *data)
{
struct ips_driver *ips = data;
unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
int i;
u32 *cpu_samples, *mchp_samples, old_cpu_power;
u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
u8 cur_seqno, last_seqno;
mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
!cpu_samples || !mchp_samples) {
dev_err(ips->dev,
"failed to allocate sample array, ips disabled\n");
kfree(mcp_samples);
kfree(ctv1_samples);
kfree(ctv2_samples);
kfree(mch_samples);
kfree(cpu_samples);
kfree(mchp_samples);
return -ENOMEM;
}
last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
ITV_ME_SEQNO_SHIFT;
seqno_timestamp = get_jiffies_64();
old_cpu_power = thm_readl(THM_CEC);
schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
/* Collect an initial average */
for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
u32 mchp, cpu_power;
u16 val;
mcp_samples[i] = read_ptv(ips);
val = read_ctv(ips, 0);
ctv1_samples[i] = val;
val = read_ctv(ips, 1);
ctv2_samples[i] = val;
val = read_mgtv(ips);
mch_samples[i] = val;
cpu_power = get_cpu_power(ips, &old_cpu_power,
IPS_SAMPLE_PERIOD);
cpu_samples[i] = cpu_power;
if (ips->read_mch_val) {
mchp = ips->read_mch_val();
mchp_samples[i] = mchp;
}
schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
if (kthread_should_stop())
break;
}
ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
kfree(mcp_samples);
kfree(ctv1_samples);
kfree(ctv2_samples);
kfree(mch_samples);
kfree(cpu_samples);
kfree(mchp_samples);
/* Start the adjustment thread now that we have data */
wake_up_process(ips->adjust);
/*
* Ok, now we have an initial avg. From here on out, we track the
* running avg using a decaying average calculation. This allows
* us to reduce the sample frequency if the CPU and GPU are idle.
*/
old_cpu_power = thm_readl(THM_CEC);
schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
last_sample_period = IPS_SAMPLE_PERIOD;
timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
do {
u32 cpu_val, mch_val;
u16 val;
/* MCP itself */
val = read_ptv(ips);
ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
/* Processor 0 */
val = read_ctv(ips, 0);
ips->ctv1_avg_temp =
update_average_temp(ips->ctv1_avg_temp, val);
/* Power */
cpu_val = get_cpu_power(ips, &old_cpu_power,
last_sample_period);
ips->cpu_avg_power =
update_average_power(ips->cpu_avg_power, cpu_val);
if (ips->second_cpu) {
/* Processor 1 */
val = read_ctv(ips, 1);
ips->ctv2_avg_temp =
update_average_temp(ips->ctv2_avg_temp, val);
}
/* MCH */
val = read_mgtv(ips);
ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
/* Power */
if (ips->read_mch_val) {
mch_val = ips->read_mch_val();
ips->mch_avg_power =
update_average_power(ips->mch_avg_power,
mch_val);
}
/*
* Make sure ME is updating thermal regs.
* Note:
* If it's been more than a second since the last update,
* the ME is probably hung.
*/
cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
ITV_ME_SEQNO_SHIFT;
if (cur_seqno == last_seqno &&
time_after(jiffies, seqno_timestamp + HZ)) {
dev_warn(ips->dev,
"ME failed to update for more than 1s, likely hung\n");
} else {
seqno_timestamp = get_jiffies_64();
last_seqno = cur_seqno;
}
last_msecs = jiffies_to_msecs(jiffies);
expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
__set_current_state(TASK_INTERRUPTIBLE);
mod_timer(&ips->timer, expire);
schedule();
/* Calculate actual sample period for power averaging */
last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
if (!last_sample_period)
last_sample_period = 1;
} while (!kthread_should_stop());
del_timer_sync(&ips->timer);
dev_dbg(ips->dev, "ips-monitor thread stopped\n");
return 0;
}
/**
* ips_irq_handler - handle temperature triggers and other IPS events
* @irq: irq number
* @arg: unused
*
* Handle temperature limit trigger events, generally by lowering the clamps.
* If we're at a critical limit, we clamp back to the lowest possible value
* to prevent emergency shutdown.
*
* Returns: IRQ_NONE or IRQ_HANDLED
*/
static irqreturn_t ips_irq_handler(int irq, void *arg)
{
struct ips_driver *ips = arg;
u8 tses = thm_readb(THM_TSES);
u8 tes = thm_readb(THM_TES);
if (!tses && !tes)
return IRQ_NONE;
dev_info(ips->dev, "TSES: 0x%02x\n", tses);
dev_info(ips->dev, "TES: 0x%02x\n", tes);
/* STS update from EC? */
if (tes & 1) {
u32 sts, tc1;
sts = thm_readl(THM_STS);
tc1 = thm_readl(THM_TC1);
if (sts & STS_NVV) {
spin_lock(&ips->turbo_status_lock);
ips->core_power_limit = (sts & STS_PCPL_MASK) >>
STS_PCPL_SHIFT;
ips->mch_power_limit = (sts & STS_GPL_MASK) >>
STS_GPL_SHIFT;
/* ignore EC CPU vs GPU pref */
ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
/*
* Disable turbo for now, until we can figure
* out why the power figures are wrong
*/
ips->cpu_turbo_enabled = false;
if (ips->gpu_busy)
ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
STS_PTL_SHIFT;
ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
STS_PPL_SHIFT;
verify_limits(ips);
spin_unlock(&ips->turbo_status_lock);
thm_writeb(THM_SEC, SEC_ACK);
}
thm_writeb(THM_TES, tes);
}
/* Thermal trip */
if (tses) {
dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
tses);
thm_writeb(THM_TSES, tses);
}
return IRQ_HANDLED;
}
#ifndef CONFIG_DEBUG_FS
static void ips_debugfs_init(struct ips_driver *ips) { return; }
static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
#else
/* Expose current state and limits in debugfs if possible */
static int cpu_temp_show(struct seq_file *m, void *data)
{
struct ips_driver *ips = m->private;
seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
ips->ctv1_avg_temp % 100);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(cpu_temp);
static int cpu_power_show(struct seq_file *m, void *data)
{
struct ips_driver *ips = m->private;
seq_printf(m, "%dmW\n", ips->cpu_avg_power);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(cpu_power);
static int cpu_clamp_show(struct seq_file *m, void *data)
{
u64 turbo_override;
int tdp, tdc;
rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
tdp = (int)(turbo_override & TURBO_TDP_MASK);
tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
/* Convert to .1W/A units */
tdp = tdp * 10 / 8;
tdc = tdc * 10 / 8;
/* Watts Amperes */
seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
tdc / 10, tdc % 10);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(cpu_clamp);
static int mch_temp_show(struct seq_file *m, void *data)
{
struct ips_driver *ips = m->private;
seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
ips->mch_avg_temp % 100);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mch_temp);
static int mch_power_show(struct seq_file *m, void *data)
{
struct ips_driver *ips = m->private;
seq_printf(m, "%dmW\n", ips->mch_avg_power);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mch_power);
static void ips_debugfs_cleanup(struct ips_driver *ips)
{
debugfs_remove_recursive(ips->debug_root);
}
static void ips_debugfs_init(struct ips_driver *ips)
{
ips->debug_root = debugfs_create_dir("ips", NULL);
debugfs_create_file("cpu_temp", 0444, ips->debug_root, ips, &cpu_temp_fops);
debugfs_create_file("cpu_power", 0444, ips->debug_root, ips, &cpu_power_fops);
debugfs_create_file("cpu_clamp", 0444, ips->debug_root, ips, &cpu_clamp_fops);
debugfs_create_file("mch_temp", 0444, ips->debug_root, ips, &mch_temp_fops);
debugfs_create_file("mch_power", 0444, ips->debug_root, ips, &mch_power_fops);
}
#endif /* CONFIG_DEBUG_FS */
/**
* ips_detect_cpu - detect whether CPU supports IPS
* @ips: IPS driver struct
*
* Walk our list and see if we're on a supported CPU. If we find one,
* return the limits for it.
*
* Returns: the &ips_mcp_limits struct that matches the boot CPU or %NULL
*/
static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
{
u64 turbo_power, misc_en;
struct ips_mcp_limits *limits = NULL;
u16 tdp;
if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
dev_info(ips->dev, "Non-IPS CPU detected.\n");
return NULL;
}
rdmsrl(IA32_MISC_ENABLE, misc_en);
/*
* If the turbo enable bit isn't set, we shouldn't try to enable/disable
* turbo manually or we'll get an illegal MSR access, even though
* turbo will still be available.
*/
if (misc_en & IA32_MISC_TURBO_EN)
ips->turbo_toggle_allowed = true;
else
ips->turbo_toggle_allowed = false;
if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
limits = &ips_sv_limits;
else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
limits = &ips_lv_limits;
else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
limits = &ips_ulv_limits;
else {
dev_info(ips->dev, "No CPUID match found.\n");
return NULL;
}
rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
tdp = turbo_power & TURBO_TDP_MASK;
/* Sanity check TDP against CPU */
if (limits->core_power_limit != (tdp / 8) * 1000) {
dev_info(ips->dev,
"CPU TDP doesn't match expected value (found %d, expected %d)\n",
tdp / 8, limits->core_power_limit / 1000);
limits->core_power_limit = (tdp / 8) * 1000;
}
return limits;
}
/**
* ips_get_i915_syms - try to get GPU control methods from i915 driver
* @ips: IPS driver
*
* The i915 driver exports several interfaces to allow the IPS driver to
* monitor and control graphics turbo mode. If we can find them, we can
* enable graphics turbo, otherwise we must disable it to avoid exceeding
* thermal and power limits in the MCP.
*
* Returns: %true if the required symbols are found, else %false
*/
static bool ips_get_i915_syms(struct ips_driver *ips)
{
ips->read_mch_val = symbol_get(i915_read_mch_val);
if (!ips->read_mch_val)
goto out_err;
ips->gpu_raise = symbol_get(i915_gpu_raise);
if (!ips->gpu_raise)
goto out_put_mch;
ips->gpu_lower = symbol_get(i915_gpu_lower);
if (!ips->gpu_lower)
goto out_put_raise;
ips->gpu_busy = symbol_get(i915_gpu_busy);
if (!ips->gpu_busy)
goto out_put_lower;
ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
if (!ips->gpu_turbo_disable)
goto out_put_busy;
return true;
out_put_busy:
symbol_put(i915_gpu_busy);
out_put_lower:
symbol_put(i915_gpu_lower);
out_put_raise:
symbol_put(i915_gpu_raise);
out_put_mch:
symbol_put(i915_read_mch_val);
out_err:
return false;
}
static bool
ips_gpu_turbo_enabled(struct ips_driver *ips)
{
if (!ips->gpu_busy && late_i915_load) {
if (ips_get_i915_syms(ips)) {
dev_info(ips->dev,
"i915 driver attached, reenabling gpu turbo\n");
ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
}
}
return ips->gpu_turbo_enabled;
}
void
ips_link_to_i915_driver(void)
{
/* We can't cleanly get at the various ips_driver structs from
* this caller (the i915 driver), so just set a flag saying
* that it's time to try getting the symbols again.
*/
late_i915_load = true;
}
EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
static const struct pci_device_id ips_id_table[] = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ips_id_table);
static int ips_blacklist_callback(const struct dmi_system_id *id)
{
pr_info("Blacklisted intel_ips for %s\n", id->ident);
return 1;
}
static const struct dmi_system_id ips_blacklist[] = {
{
.callback = ips_blacklist_callback,
.ident = "HP ProBook",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
},
},
{ } /* terminating entry */
};
static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
u64 platform_info;
struct ips_driver *ips;
u32 hts;
int ret = 0;
u16 htshi, trc, trc_required_mask;
u8 tse;
if (dmi_check_system(ips_blacklist))
return -ENODEV;
ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
if (!ips)
return -ENOMEM;
spin_lock_init(&ips->turbo_status_lock);
ips->dev = &dev->dev;
ips->limits = ips_detect_cpu(ips);
if (!ips->limits) {
dev_info(&dev->dev, "IPS not supported on this CPU\n");
return -ENXIO;
}
ret = pcim_enable_device(dev);
if (ret) {
dev_err(&dev->dev, "can't enable PCI device, aborting\n");
return ret;
}
ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
if (ret) {
dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
return ret;
}
ips->regmap = pcim_iomap_table(dev)[0];
pci_set_drvdata(dev, ips);
tse = thm_readb(THM_TSE);
if (tse != TSE_EN) {
dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
return -ENXIO;
}
trc = thm_readw(THM_TRC);
trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
if ((trc & trc_required_mask) != trc_required_mask) {
dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
return -ENXIO;
}
if (trc & TRC_CORE2_EN)
ips->second_cpu = true;
update_turbo_limits(ips);
dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
ips->mcp_power_limit / 10);
dev_dbg(&dev->dev, "max core power clamp: %dW\n",
ips->core_power_limit / 10);
/* BIOS may update limits at runtime */
if (thm_readl(THM_PSC) & PSP_PBRT)
ips->poll_turbo_status = true;
if (!ips_get_i915_syms(ips)) {
dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
ips->gpu_turbo_enabled = false;
} else {
dev_dbg(&dev->dev, "graphics turbo enabled\n");
ips->gpu_turbo_enabled = true;
}
/*
* Check PLATFORM_INFO MSR to make sure this chip is
* turbo capable.
*/
rdmsrl(PLATFORM_INFO, platform_info);
if (!(platform_info & PLATFORM_TDP)) {
dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
return -ENODEV;
}
/*
* IRQ handler for ME interaction
* Note: don't use MSI here as the PCH has bugs.
*/
ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY);
if (ret < 0)
return ret;
ips->irq = pci_irq_vector(dev, 0);
ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
if (ret) {
dev_err(&dev->dev, "request irq failed, aborting\n");
return ret;
}
/* Enable aux, hot & critical interrupts */
thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
thm_writeb(THM_TEN, TEN_UPDATE_EN);
/* Collect adjustment values */
ips->cta_val = thm_readw(THM_CTA);
ips->pta_val = thm_readw(THM_PTA);
ips->mgta_val = thm_readw(THM_MGTA);
/* Save turbo limits & ratios */
rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
ips_disable_cpu_turbo(ips);
ips->cpu_turbo_enabled = false;
/* Create thermal adjust thread */
ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
if (IS_ERR(ips->adjust)) {
dev_err(&dev->dev,
"failed to create thermal adjust thread, aborting\n");
ret = -ENOMEM;
goto error_free_irq;
}
/*
* Set up the work queue and monitor thread. The monitor thread
* will wake up ips_adjust thread.
*/
ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
if (IS_ERR(ips->monitor)) {
dev_err(&dev->dev,
"failed to create thermal monitor thread, aborting\n");
ret = -ENOMEM;
goto error_thread_cleanup;
}
hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
thm_writew(THM_HTSHI, htshi);
thm_writel(THM_HTS, hts);
ips_debugfs_init(ips);
dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
ips->mcp_temp_limit);
return ret;
error_thread_cleanup:
kthread_stop(ips->adjust);
error_free_irq:
free_irq(ips->irq, ips);
pci_free_irq_vectors(dev);
return ret;
}
static void ips_remove(struct pci_dev *dev)
{
struct ips_driver *ips = pci_get_drvdata(dev);
u64 turbo_override;
ips_debugfs_cleanup(ips);
/* Release i915 driver */
if (ips->read_mch_val)
symbol_put(i915_read_mch_val);
if (ips->gpu_raise)
symbol_put(i915_gpu_raise);
if (ips->gpu_lower)
symbol_put(i915_gpu_lower);
if (ips->gpu_busy)
symbol_put(i915_gpu_busy);
if (ips->gpu_turbo_disable)
symbol_put(i915_gpu_turbo_disable);
rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
free_irq(ips->irq, ips);
pci_free_irq_vectors(dev);
if (ips->adjust)
kthread_stop(ips->adjust);
if (ips->monitor)
kthread_stop(ips->monitor);
dev_dbg(&dev->dev, "IPS driver removed\n");
}
static struct pci_driver ips_pci_driver = {
.name = "intel ips",
.id_table = ips_id_table,
.probe = ips_probe,
.remove = ips_remove,
};
module_pci_driver(ips_pci_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
MODULE_DESCRIPTION("Intelligent Power Sharing Driver");