| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2011 STRATO. All rights reserved. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/rbtree.h> |
| #include <trace/events/btrfs.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "backref.h" |
| #include "ulist.h" |
| #include "transaction.h" |
| #include "delayed-ref.h" |
| #include "locking.h" |
| #include "misc.h" |
| #include "tree-mod-log.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "extent-tree.h" |
| #include "relocation.h" |
| #include "tree-checker.h" |
| |
| /* Just arbitrary numbers so we can be sure one of these happened. */ |
| #define BACKREF_FOUND_SHARED 6 |
| #define BACKREF_FOUND_NOT_SHARED 7 |
| |
| struct extent_inode_elem { |
| u64 inum; |
| u64 offset; |
| u64 num_bytes; |
| struct extent_inode_elem *next; |
| }; |
| |
| static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, |
| const struct btrfs_key *key, |
| const struct extent_buffer *eb, |
| const struct btrfs_file_extent_item *fi, |
| struct extent_inode_elem **eie) |
| { |
| const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); |
| u64 offset = key->offset; |
| struct extent_inode_elem *e; |
| const u64 *root_ids; |
| int root_count; |
| bool cached; |
| |
| if (!ctx->ignore_extent_item_pos && |
| !btrfs_file_extent_compression(eb, fi) && |
| !btrfs_file_extent_encryption(eb, fi) && |
| !btrfs_file_extent_other_encoding(eb, fi)) { |
| u64 data_offset; |
| |
| data_offset = btrfs_file_extent_offset(eb, fi); |
| |
| if (ctx->extent_item_pos < data_offset || |
| ctx->extent_item_pos >= data_offset + data_len) |
| return 1; |
| offset += ctx->extent_item_pos - data_offset; |
| } |
| |
| if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) |
| goto add_inode_elem; |
| |
| cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, |
| &root_count); |
| if (!cached) |
| goto add_inode_elem; |
| |
| for (int i = 0; i < root_count; i++) { |
| int ret; |
| |
| ret = ctx->indirect_ref_iterator(key->objectid, offset, |
| data_len, root_ids[i], |
| ctx->user_ctx); |
| if (ret) |
| return ret; |
| } |
| |
| add_inode_elem: |
| e = kmalloc(sizeof(*e), GFP_NOFS); |
| if (!e) |
| return -ENOMEM; |
| |
| e->next = *eie; |
| e->inum = key->objectid; |
| e->offset = offset; |
| e->num_bytes = data_len; |
| *eie = e; |
| |
| return 0; |
| } |
| |
| static void free_inode_elem_list(struct extent_inode_elem *eie) |
| { |
| struct extent_inode_elem *eie_next; |
| |
| for (; eie; eie = eie_next) { |
| eie_next = eie->next; |
| kfree(eie); |
| } |
| } |
| |
| static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, |
| const struct extent_buffer *eb, |
| struct extent_inode_elem **eie) |
| { |
| u64 disk_byte; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| int slot; |
| int nritems; |
| int extent_type; |
| int ret; |
| |
| /* |
| * from the shared data ref, we only have the leaf but we need |
| * the key. thus, we must look into all items and see that we |
| * find one (some) with a reference to our extent item. |
| */ |
| nritems = btrfs_header_nritems(eb); |
| for (slot = 0; slot < nritems; ++slot) { |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(eb, fi); |
| if (extent_type == BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ |
| disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| if (disk_byte != ctx->bytenr) |
| continue; |
| |
| ret = check_extent_in_eb(ctx, &key, eb, fi, eie); |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| struct preftree { |
| struct rb_root_cached root; |
| unsigned int count; |
| }; |
| |
| #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } |
| |
| struct preftrees { |
| struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ |
| struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ |
| struct preftree indirect_missing_keys; |
| }; |
| |
| /* |
| * Checks for a shared extent during backref search. |
| * |
| * The share_count tracks prelim_refs (direct and indirect) having a |
| * ref->count >0: |
| * - incremented when a ref->count transitions to >0 |
| * - decremented when a ref->count transitions to <1 |
| */ |
| struct share_check { |
| struct btrfs_backref_share_check_ctx *ctx; |
| struct btrfs_root *root; |
| u64 inum; |
| u64 data_bytenr; |
| u64 data_extent_gen; |
| /* |
| * Counts number of inodes that refer to an extent (different inodes in |
| * the same root or different roots) that we could find. The sharedness |
| * check typically stops once this counter gets greater than 1, so it |
| * may not reflect the total number of inodes. |
| */ |
| int share_count; |
| /* |
| * The number of times we found our inode refers to the data extent we |
| * are determining the sharedness. In other words, how many file extent |
| * items we could find for our inode that point to our target data |
| * extent. The value we get here after finishing the extent sharedness |
| * check may be smaller than reality, but if it ends up being greater |
| * than 1, then we know for sure the inode has multiple file extent |
| * items that point to our inode, and we can safely assume it's useful |
| * to cache the sharedness check result. |
| */ |
| int self_ref_count; |
| bool have_delayed_delete_refs; |
| }; |
| |
| static inline int extent_is_shared(struct share_check *sc) |
| { |
| return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; |
| } |
| |
| static struct kmem_cache *btrfs_prelim_ref_cache; |
| |
| int __init btrfs_prelim_ref_init(void) |
| { |
| btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", |
| sizeof(struct prelim_ref), |
| 0, |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!btrfs_prelim_ref_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __cold btrfs_prelim_ref_exit(void) |
| { |
| kmem_cache_destroy(btrfs_prelim_ref_cache); |
| } |
| |
| static void free_pref(struct prelim_ref *ref) |
| { |
| kmem_cache_free(btrfs_prelim_ref_cache, ref); |
| } |
| |
| /* |
| * Return 0 when both refs are for the same block (and can be merged). |
| * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 |
| * indicates a 'higher' block. |
| */ |
| static int prelim_ref_compare(struct prelim_ref *ref1, |
| struct prelim_ref *ref2) |
| { |
| if (ref1->level < ref2->level) |
| return -1; |
| if (ref1->level > ref2->level) |
| return 1; |
| if (ref1->root_id < ref2->root_id) |
| return -1; |
| if (ref1->root_id > ref2->root_id) |
| return 1; |
| if (ref1->key_for_search.type < ref2->key_for_search.type) |
| return -1; |
| if (ref1->key_for_search.type > ref2->key_for_search.type) |
| return 1; |
| if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) |
| return -1; |
| if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) |
| return 1; |
| if (ref1->key_for_search.offset < ref2->key_for_search.offset) |
| return -1; |
| if (ref1->key_for_search.offset > ref2->key_for_search.offset) |
| return 1; |
| if (ref1->parent < ref2->parent) |
| return -1; |
| if (ref1->parent > ref2->parent) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void update_share_count(struct share_check *sc, int oldcount, |
| int newcount, struct prelim_ref *newref) |
| { |
| if ((!sc) || (oldcount == 0 && newcount < 1)) |
| return; |
| |
| if (oldcount > 0 && newcount < 1) |
| sc->share_count--; |
| else if (oldcount < 1 && newcount > 0) |
| sc->share_count++; |
| |
| if (newref->root_id == sc->root->root_key.objectid && |
| newref->wanted_disk_byte == sc->data_bytenr && |
| newref->key_for_search.objectid == sc->inum) |
| sc->self_ref_count += newref->count; |
| } |
| |
| /* |
| * Add @newref to the @root rbtree, merging identical refs. |
| * |
| * Callers should assume that newref has been freed after calling. |
| */ |
| static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, |
| struct preftree *preftree, |
| struct prelim_ref *newref, |
| struct share_check *sc) |
| { |
| struct rb_root_cached *root; |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct prelim_ref *ref; |
| int result; |
| bool leftmost = true; |
| |
| root = &preftree->root; |
| p = &root->rb_root.rb_node; |
| |
| while (*p) { |
| parent = *p; |
| ref = rb_entry(parent, struct prelim_ref, rbnode); |
| result = prelim_ref_compare(ref, newref); |
| if (result < 0) { |
| p = &(*p)->rb_left; |
| } else if (result > 0) { |
| p = &(*p)->rb_right; |
| leftmost = false; |
| } else { |
| /* Identical refs, merge them and free @newref */ |
| struct extent_inode_elem *eie = ref->inode_list; |
| |
| while (eie && eie->next) |
| eie = eie->next; |
| |
| if (!eie) |
| ref->inode_list = newref->inode_list; |
| else |
| eie->next = newref->inode_list; |
| trace_btrfs_prelim_ref_merge(fs_info, ref, newref, |
| preftree->count); |
| /* |
| * A delayed ref can have newref->count < 0. |
| * The ref->count is updated to follow any |
| * BTRFS_[ADD|DROP]_DELAYED_REF actions. |
| */ |
| update_share_count(sc, ref->count, |
| ref->count + newref->count, newref); |
| ref->count += newref->count; |
| free_pref(newref); |
| return; |
| } |
| } |
| |
| update_share_count(sc, 0, newref->count, newref); |
| preftree->count++; |
| trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); |
| rb_link_node(&newref->rbnode, parent, p); |
| rb_insert_color_cached(&newref->rbnode, root, leftmost); |
| } |
| |
| /* |
| * Release the entire tree. We don't care about internal consistency so |
| * just free everything and then reset the tree root. |
| */ |
| static void prelim_release(struct preftree *preftree) |
| { |
| struct prelim_ref *ref, *next_ref; |
| |
| rbtree_postorder_for_each_entry_safe(ref, next_ref, |
| &preftree->root.rb_root, rbnode) { |
| free_inode_elem_list(ref->inode_list); |
| free_pref(ref); |
| } |
| |
| preftree->root = RB_ROOT_CACHED; |
| preftree->count = 0; |
| } |
| |
| /* |
| * the rules for all callers of this function are: |
| * - obtaining the parent is the goal |
| * - if you add a key, you must know that it is a correct key |
| * - if you cannot add the parent or a correct key, then we will look into the |
| * block later to set a correct key |
| * |
| * delayed refs |
| * ============ |
| * backref type | shared | indirect | shared | indirect |
| * information | tree | tree | data | data |
| * --------------------+--------+----------+--------+---------- |
| * parent logical | y | - | - | - |
| * key to resolve | - | y | y | y |
| * tree block logical | - | - | - | - |
| * root for resolving | y | y | y | y |
| * |
| * - column 1: we've the parent -> done |
| * - column 2, 3, 4: we use the key to find the parent |
| * |
| * on disk refs (inline or keyed) |
| * ============================== |
| * backref type | shared | indirect | shared | indirect |
| * information | tree | tree | data | data |
| * --------------------+--------+----------+--------+---------- |
| * parent logical | y | - | y | - |
| * key to resolve | - | - | - | y |
| * tree block logical | y | y | y | y |
| * root for resolving | - | y | y | y |
| * |
| * - column 1, 3: we've the parent -> done |
| * - column 2: we take the first key from the block to find the parent |
| * (see add_missing_keys) |
| * - column 4: we use the key to find the parent |
| * |
| * additional information that's available but not required to find the parent |
| * block might help in merging entries to gain some speed. |
| */ |
| static int add_prelim_ref(const struct btrfs_fs_info *fs_info, |
| struct preftree *preftree, u64 root_id, |
| const struct btrfs_key *key, int level, u64 parent, |
| u64 wanted_disk_byte, int count, |
| struct share_check *sc, gfp_t gfp_mask) |
| { |
| struct prelim_ref *ref; |
| |
| if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| return 0; |
| |
| ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); |
| if (!ref) |
| return -ENOMEM; |
| |
| ref->root_id = root_id; |
| if (key) |
| ref->key_for_search = *key; |
| else |
| memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); |
| |
| ref->inode_list = NULL; |
| ref->level = level; |
| ref->count = count; |
| ref->parent = parent; |
| ref->wanted_disk_byte = wanted_disk_byte; |
| prelim_ref_insert(fs_info, preftree, ref, sc); |
| return extent_is_shared(sc); |
| } |
| |
| /* direct refs use root == 0, key == NULL */ |
| static int add_direct_ref(const struct btrfs_fs_info *fs_info, |
| struct preftrees *preftrees, int level, u64 parent, |
| u64 wanted_disk_byte, int count, |
| struct share_check *sc, gfp_t gfp_mask) |
| { |
| return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, |
| parent, wanted_disk_byte, count, sc, gfp_mask); |
| } |
| |
| /* indirect refs use parent == 0 */ |
| static int add_indirect_ref(const struct btrfs_fs_info *fs_info, |
| struct preftrees *preftrees, u64 root_id, |
| const struct btrfs_key *key, int level, |
| u64 wanted_disk_byte, int count, |
| struct share_check *sc, gfp_t gfp_mask) |
| { |
| struct preftree *tree = &preftrees->indirect; |
| |
| if (!key) |
| tree = &preftrees->indirect_missing_keys; |
| return add_prelim_ref(fs_info, tree, root_id, key, level, 0, |
| wanted_disk_byte, count, sc, gfp_mask); |
| } |
| |
| static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) |
| { |
| struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; |
| struct rb_node *parent = NULL; |
| struct prelim_ref *ref = NULL; |
| struct prelim_ref target = {}; |
| int result; |
| |
| target.parent = bytenr; |
| |
| while (*p) { |
| parent = *p; |
| ref = rb_entry(parent, struct prelim_ref, rbnode); |
| result = prelim_ref_compare(ref, &target); |
| |
| if (result < 0) |
| p = &(*p)->rb_left; |
| else if (result > 0) |
| p = &(*p)->rb_right; |
| else |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, |
| struct btrfs_root *root, struct btrfs_path *path, |
| struct ulist *parents, |
| struct preftrees *preftrees, struct prelim_ref *ref, |
| int level) |
| { |
| int ret = 0; |
| int slot; |
| struct extent_buffer *eb; |
| struct btrfs_key key; |
| struct btrfs_key *key_for_search = &ref->key_for_search; |
| struct btrfs_file_extent_item *fi; |
| struct extent_inode_elem *eie = NULL, *old = NULL; |
| u64 disk_byte; |
| u64 wanted_disk_byte = ref->wanted_disk_byte; |
| u64 count = 0; |
| u64 data_offset; |
| u8 type; |
| |
| if (level != 0) { |
| eb = path->nodes[level]; |
| ret = ulist_add(parents, eb->start, 0, GFP_NOFS); |
| if (ret < 0) |
| return ret; |
| return 0; |
| } |
| |
| /* |
| * 1. We normally enter this function with the path already pointing to |
| * the first item to check. But sometimes, we may enter it with |
| * slot == nritems. |
| * 2. We are searching for normal backref but bytenr of this leaf |
| * matches shared data backref |
| * 3. The leaf owner is not equal to the root we are searching |
| * |
| * For these cases, go to the next leaf before we continue. |
| */ |
| eb = path->nodes[0]; |
| if (path->slots[0] >= btrfs_header_nritems(eb) || |
| is_shared_data_backref(preftrees, eb->start) || |
| ref->root_id != btrfs_header_owner(eb)) { |
| if (ctx->time_seq == BTRFS_SEQ_LAST) |
| ret = btrfs_next_leaf(root, path); |
| else |
| ret = btrfs_next_old_leaf(root, path, ctx->time_seq); |
| } |
| |
| while (!ret && count < ref->count) { |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| |
| if (key.objectid != key_for_search->objectid || |
| key.type != BTRFS_EXTENT_DATA_KEY) |
| break; |
| |
| /* |
| * We are searching for normal backref but bytenr of this leaf |
| * matches shared data backref, OR |
| * the leaf owner is not equal to the root we are searching for |
| */ |
| if (slot == 0 && |
| (is_shared_data_backref(preftrees, eb->start) || |
| ref->root_id != btrfs_header_owner(eb))) { |
| if (ctx->time_seq == BTRFS_SEQ_LAST) |
| ret = btrfs_next_leaf(root, path); |
| else |
| ret = btrfs_next_old_leaf(root, path, ctx->time_seq); |
| continue; |
| } |
| fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| type = btrfs_file_extent_type(eb, fi); |
| if (type == BTRFS_FILE_EXTENT_INLINE) |
| goto next; |
| disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| data_offset = btrfs_file_extent_offset(eb, fi); |
| |
| if (disk_byte == wanted_disk_byte) { |
| eie = NULL; |
| old = NULL; |
| if (ref->key_for_search.offset == key.offset - data_offset) |
| count++; |
| else |
| goto next; |
| if (!ctx->skip_inode_ref_list) { |
| ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || |
| ret < 0) |
| break; |
| } |
| if (ret > 0) |
| goto next; |
| ret = ulist_add_merge_ptr(parents, eb->start, |
| eie, (void **)&old, GFP_NOFS); |
| if (ret < 0) |
| break; |
| if (!ret && !ctx->skip_inode_ref_list) { |
| while (old->next) |
| old = old->next; |
| old->next = eie; |
| } |
| eie = NULL; |
| } |
| next: |
| if (ctx->time_seq == BTRFS_SEQ_LAST) |
| ret = btrfs_next_item(root, path); |
| else |
| ret = btrfs_next_old_item(root, path, ctx->time_seq); |
| } |
| |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) |
| free_inode_elem_list(eie); |
| else if (ret > 0) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * resolve an indirect backref in the form (root_id, key, level) |
| * to a logical address |
| */ |
| static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, |
| struct btrfs_path *path, |
| struct preftrees *preftrees, |
| struct prelim_ref *ref, struct ulist *parents) |
| { |
| struct btrfs_root *root; |
| struct extent_buffer *eb; |
| int ret = 0; |
| int root_level; |
| int level = ref->level; |
| struct btrfs_key search_key = ref->key_for_search; |
| |
| /* |
| * If we're search_commit_root we could possibly be holding locks on |
| * other tree nodes. This happens when qgroups does backref walks when |
| * adding new delayed refs. To deal with this we need to look in cache |
| * for the root, and if we don't find it then we need to search the |
| * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage |
| * here. |
| */ |
| if (path->search_commit_root) |
| root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); |
| else |
| root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out_free; |
| } |
| |
| if (!path->search_commit_root && |
| test_bit(BTRFS_ROOT_DELETING, &root->state)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| if (btrfs_is_testing(ctx->fs_info)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| if (path->search_commit_root) |
| root_level = btrfs_header_level(root->commit_root); |
| else if (ctx->time_seq == BTRFS_SEQ_LAST) |
| root_level = btrfs_header_level(root->node); |
| else |
| root_level = btrfs_old_root_level(root, ctx->time_seq); |
| |
| if (root_level + 1 == level) |
| goto out; |
| |
| /* |
| * We can often find data backrefs with an offset that is too large |
| * (>= LLONG_MAX, maximum allowed file offset) due to underflows when |
| * subtracting a file's offset with the data offset of its |
| * corresponding extent data item. This can happen for example in the |
| * clone ioctl. |
| * |
| * So if we detect such case we set the search key's offset to zero to |
| * make sure we will find the matching file extent item at |
| * add_all_parents(), otherwise we will miss it because the offset |
| * taken form the backref is much larger then the offset of the file |
| * extent item. This can make us scan a very large number of file |
| * extent items, but at least it will not make us miss any. |
| * |
| * This is an ugly workaround for a behaviour that should have never |
| * existed, but it does and a fix for the clone ioctl would touch a lot |
| * of places, cause backwards incompatibility and would not fix the |
| * problem for extents cloned with older kernels. |
| */ |
| if (search_key.type == BTRFS_EXTENT_DATA_KEY && |
| search_key.offset >= LLONG_MAX) |
| search_key.offset = 0; |
| path->lowest_level = level; |
| if (ctx->time_seq == BTRFS_SEQ_LAST) |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| else |
| ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); |
| |
| btrfs_debug(ctx->fs_info, |
| "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", |
| ref->root_id, level, ref->count, ret, |
| ref->key_for_search.objectid, ref->key_for_search.type, |
| ref->key_for_search.offset); |
| if (ret < 0) |
| goto out; |
| |
| eb = path->nodes[level]; |
| while (!eb) { |
| if (WARN_ON(!level)) { |
| ret = 1; |
| goto out; |
| } |
| level--; |
| eb = path->nodes[level]; |
| } |
| |
| ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); |
| out: |
| btrfs_put_root(root); |
| out_free: |
| path->lowest_level = 0; |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static struct extent_inode_elem * |
| unode_aux_to_inode_list(struct ulist_node *node) |
| { |
| if (!node) |
| return NULL; |
| return (struct extent_inode_elem *)(uintptr_t)node->aux; |
| } |
| |
| static void free_leaf_list(struct ulist *ulist) |
| { |
| struct ulist_node *node; |
| struct ulist_iterator uiter; |
| |
| ULIST_ITER_INIT(&uiter); |
| while ((node = ulist_next(ulist, &uiter))) |
| free_inode_elem_list(unode_aux_to_inode_list(node)); |
| |
| ulist_free(ulist); |
| } |
| |
| /* |
| * We maintain three separate rbtrees: one for direct refs, one for |
| * indirect refs which have a key, and one for indirect refs which do not |
| * have a key. Each tree does merge on insertion. |
| * |
| * Once all of the references are located, we iterate over the tree of |
| * indirect refs with missing keys. An appropriate key is located and |
| * the ref is moved onto the tree for indirect refs. After all missing |
| * keys are thus located, we iterate over the indirect ref tree, resolve |
| * each reference, and then insert the resolved reference onto the |
| * direct tree (merging there too). |
| * |
| * New backrefs (i.e., for parent nodes) are added to the appropriate |
| * rbtree as they are encountered. The new backrefs are subsequently |
| * resolved as above. |
| */ |
| static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, |
| struct btrfs_path *path, |
| struct preftrees *preftrees, |
| struct share_check *sc) |
| { |
| int err; |
| int ret = 0; |
| struct ulist *parents; |
| struct ulist_node *node; |
| struct ulist_iterator uiter; |
| struct rb_node *rnode; |
| |
| parents = ulist_alloc(GFP_NOFS); |
| if (!parents) |
| return -ENOMEM; |
| |
| /* |
| * We could trade memory usage for performance here by iterating |
| * the tree, allocating new refs for each insertion, and then |
| * freeing the entire indirect tree when we're done. In some test |
| * cases, the tree can grow quite large (~200k objects). |
| */ |
| while ((rnode = rb_first_cached(&preftrees->indirect.root))) { |
| struct prelim_ref *ref; |
| |
| ref = rb_entry(rnode, struct prelim_ref, rbnode); |
| if (WARN(ref->parent, |
| "BUG: direct ref found in indirect tree")) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); |
| preftrees->indirect.count--; |
| |
| if (ref->count == 0) { |
| free_pref(ref); |
| continue; |
| } |
| |
| if (sc && ref->root_id != sc->root->root_key.objectid) { |
| free_pref(ref); |
| ret = BACKREF_FOUND_SHARED; |
| goto out; |
| } |
| err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); |
| /* |
| * we can only tolerate ENOENT,otherwise,we should catch error |
| * and return directly. |
| */ |
| if (err == -ENOENT) { |
| prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, |
| NULL); |
| continue; |
| } else if (err) { |
| free_pref(ref); |
| ret = err; |
| goto out; |
| } |
| |
| /* we put the first parent into the ref at hand */ |
| ULIST_ITER_INIT(&uiter); |
| node = ulist_next(parents, &uiter); |
| ref->parent = node ? node->val : 0; |
| ref->inode_list = unode_aux_to_inode_list(node); |
| |
| /* Add a prelim_ref(s) for any other parent(s). */ |
| while ((node = ulist_next(parents, &uiter))) { |
| struct prelim_ref *new_ref; |
| |
| new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, |
| GFP_NOFS); |
| if (!new_ref) { |
| free_pref(ref); |
| ret = -ENOMEM; |
| goto out; |
| } |
| memcpy(new_ref, ref, sizeof(*ref)); |
| new_ref->parent = node->val; |
| new_ref->inode_list = unode_aux_to_inode_list(node); |
| prelim_ref_insert(ctx->fs_info, &preftrees->direct, |
| new_ref, NULL); |
| } |
| |
| /* |
| * Now it's a direct ref, put it in the direct tree. We must |
| * do this last because the ref could be merged/freed here. |
| */ |
| prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); |
| |
| ulist_reinit(parents); |
| cond_resched(); |
| } |
| out: |
| /* |
| * We may have inode lists attached to refs in the parents ulist, so we |
| * must free them before freeing the ulist and its refs. |
| */ |
| free_leaf_list(parents); |
| return ret; |
| } |
| |
| /* |
| * read tree blocks and add keys where required. |
| */ |
| static int add_missing_keys(struct btrfs_fs_info *fs_info, |
| struct preftrees *preftrees, bool lock) |
| { |
| struct prelim_ref *ref; |
| struct extent_buffer *eb; |
| struct preftree *tree = &preftrees->indirect_missing_keys; |
| struct rb_node *node; |
| |
| while ((node = rb_first_cached(&tree->root))) { |
| struct btrfs_tree_parent_check check = { 0 }; |
| |
| ref = rb_entry(node, struct prelim_ref, rbnode); |
| rb_erase_cached(node, &tree->root); |
| |
| BUG_ON(ref->parent); /* should not be a direct ref */ |
| BUG_ON(ref->key_for_search.type); |
| BUG_ON(!ref->wanted_disk_byte); |
| |
| check.level = ref->level - 1; |
| check.owner_root = ref->root_id; |
| |
| eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); |
| if (IS_ERR(eb)) { |
| free_pref(ref); |
| return PTR_ERR(eb); |
| } |
| if (!extent_buffer_uptodate(eb)) { |
| free_pref(ref); |
| free_extent_buffer(eb); |
| return -EIO; |
| } |
| |
| if (lock) |
| btrfs_tree_read_lock(eb); |
| if (btrfs_header_level(eb) == 0) |
| btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); |
| else |
| btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); |
| if (lock) |
| btrfs_tree_read_unlock(eb); |
| free_extent_buffer(eb); |
| prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); |
| cond_resched(); |
| } |
| return 0; |
| } |
| |
| /* |
| * add all currently queued delayed refs from this head whose seq nr is |
| * smaller or equal that seq to the list |
| */ |
| static int add_delayed_refs(const struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_ref_head *head, u64 seq, |
| struct preftrees *preftrees, struct share_check *sc) |
| { |
| struct btrfs_delayed_ref_node *node; |
| struct btrfs_key key; |
| struct rb_node *n; |
| int count; |
| int ret = 0; |
| |
| spin_lock(&head->lock); |
| for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { |
| node = rb_entry(n, struct btrfs_delayed_ref_node, |
| ref_node); |
| if (node->seq > seq) |
| continue; |
| |
| switch (node->action) { |
| case BTRFS_ADD_DELAYED_EXTENT: |
| case BTRFS_UPDATE_DELAYED_HEAD: |
| WARN_ON(1); |
| continue; |
| case BTRFS_ADD_DELAYED_REF: |
| count = node->ref_mod; |
| break; |
| case BTRFS_DROP_DELAYED_REF: |
| count = node->ref_mod * -1; |
| break; |
| default: |
| BUG(); |
| } |
| switch (node->type) { |
| case BTRFS_TREE_BLOCK_REF_KEY: { |
| /* NORMAL INDIRECT METADATA backref */ |
| struct btrfs_delayed_tree_ref *ref; |
| struct btrfs_key *key_ptr = NULL; |
| |
| if (head->extent_op && head->extent_op->update_key) { |
| btrfs_disk_key_to_cpu(&key, &head->extent_op->key); |
| key_ptr = &key; |
| } |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| ret = add_indirect_ref(fs_info, preftrees, ref->root, |
| key_ptr, ref->level + 1, |
| node->bytenr, count, sc, |
| GFP_ATOMIC); |
| break; |
| } |
| case BTRFS_SHARED_BLOCK_REF_KEY: { |
| /* SHARED DIRECT METADATA backref */ |
| struct btrfs_delayed_tree_ref *ref; |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| |
| ret = add_direct_ref(fs_info, preftrees, ref->level + 1, |
| ref->parent, node->bytenr, count, |
| sc, GFP_ATOMIC); |
| break; |
| } |
| case BTRFS_EXTENT_DATA_REF_KEY: { |
| /* NORMAL INDIRECT DATA backref */ |
| struct btrfs_delayed_data_ref *ref; |
| ref = btrfs_delayed_node_to_data_ref(node); |
| |
| key.objectid = ref->objectid; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = ref->offset; |
| |
| /* |
| * If we have a share check context and a reference for |
| * another inode, we can't exit immediately. This is |
| * because even if this is a BTRFS_ADD_DELAYED_REF |
| * reference we may find next a BTRFS_DROP_DELAYED_REF |
| * which cancels out this ADD reference. |
| * |
| * If this is a DROP reference and there was no previous |
| * ADD reference, then we need to signal that when we |
| * process references from the extent tree (through |
| * add_inline_refs() and add_keyed_refs()), we should |
| * not exit early if we find a reference for another |
| * inode, because one of the delayed DROP references |
| * may cancel that reference in the extent tree. |
| */ |
| if (sc && count < 0) |
| sc->have_delayed_delete_refs = true; |
| |
| ret = add_indirect_ref(fs_info, preftrees, ref->root, |
| &key, 0, node->bytenr, count, sc, |
| GFP_ATOMIC); |
| break; |
| } |
| case BTRFS_SHARED_DATA_REF_KEY: { |
| /* SHARED DIRECT FULL backref */ |
| struct btrfs_delayed_data_ref *ref; |
| |
| ref = btrfs_delayed_node_to_data_ref(node); |
| |
| ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, |
| node->bytenr, count, sc, |
| GFP_ATOMIC); |
| break; |
| } |
| default: |
| WARN_ON(1); |
| } |
| /* |
| * We must ignore BACKREF_FOUND_SHARED until all delayed |
| * refs have been checked. |
| */ |
| if (ret && (ret != BACKREF_FOUND_SHARED)) |
| break; |
| } |
| if (!ret) |
| ret = extent_is_shared(sc); |
| |
| spin_unlock(&head->lock); |
| return ret; |
| } |
| |
| /* |
| * add all inline backrefs for bytenr to the list |
| * |
| * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. |
| */ |
| static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, |
| struct btrfs_path *path, |
| int *info_level, struct preftrees *preftrees, |
| struct share_check *sc) |
| { |
| int ret = 0; |
| int slot; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| unsigned long ptr; |
| unsigned long end; |
| struct btrfs_extent_item *ei; |
| u64 flags; |
| u64 item_size; |
| |
| /* |
| * enumerate all inline refs |
| */ |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| item_size = btrfs_item_size(leaf, slot); |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| |
| if (ctx->check_extent_item) { |
| ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); |
| if (ret) |
| return ret; |
| } |
| |
| flags = btrfs_extent_flags(leaf, ei); |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + item_size; |
| |
| if (found_key.type == BTRFS_EXTENT_ITEM_KEY && |
| flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| struct btrfs_tree_block_info *info; |
| |
| info = (struct btrfs_tree_block_info *)ptr; |
| *info_level = btrfs_tree_block_level(leaf, info); |
| ptr += sizeof(struct btrfs_tree_block_info); |
| BUG_ON(ptr > end); |
| } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { |
| *info_level = found_key.offset; |
| } else { |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); |
| } |
| |
| while (ptr < end) { |
| struct btrfs_extent_inline_ref *iref; |
| u64 offset; |
| int type; |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, |
| BTRFS_REF_TYPE_ANY); |
| if (type == BTRFS_REF_TYPE_INVALID) |
| return -EUCLEAN; |
| |
| offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| |
| switch (type) { |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| ret = add_direct_ref(ctx->fs_info, preftrees, |
| *info_level + 1, offset, |
| ctx->bytenr, 1, NULL, GFP_NOFS); |
| break; |
| case BTRFS_SHARED_DATA_REF_KEY: { |
| struct btrfs_shared_data_ref *sdref; |
| int count; |
| |
| sdref = (struct btrfs_shared_data_ref *)(iref + 1); |
| count = btrfs_shared_data_ref_count(leaf, sdref); |
| |
| ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, |
| ctx->bytenr, count, sc, GFP_NOFS); |
| break; |
| } |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| ret = add_indirect_ref(ctx->fs_info, preftrees, offset, |
| NULL, *info_level + 1, |
| ctx->bytenr, 1, NULL, GFP_NOFS); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: { |
| struct btrfs_extent_data_ref *dref; |
| int count; |
| u64 root; |
| |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| count = btrfs_extent_data_ref_count(leaf, dref); |
| key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| dref); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| |
| if (sc && key.objectid != sc->inum && |
| !sc->have_delayed_delete_refs) { |
| ret = BACKREF_FOUND_SHARED; |
| break; |
| } |
| |
| root = btrfs_extent_data_ref_root(leaf, dref); |
| |
| if (!ctx->skip_data_ref || |
| !ctx->skip_data_ref(root, key.objectid, key.offset, |
| ctx->user_ctx)) |
| ret = add_indirect_ref(ctx->fs_info, preftrees, |
| root, &key, 0, ctx->bytenr, |
| count, sc, GFP_NOFS); |
| break; |
| } |
| case BTRFS_EXTENT_OWNER_REF_KEY: |
| ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| if (ret) |
| return ret; |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * add all non-inline backrefs for bytenr to the list |
| * |
| * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. |
| */ |
| static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, |
| struct btrfs_root *extent_root, |
| struct btrfs_path *path, |
| int info_level, struct preftrees *preftrees, |
| struct share_check *sc) |
| { |
| struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| int ret; |
| int slot; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| while (1) { |
| ret = btrfs_next_item(extent_root, path); |
| if (ret < 0) |
| break; |
| if (ret) { |
| ret = 0; |
| break; |
| } |
| |
| slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| if (key.objectid != ctx->bytenr) |
| break; |
| if (key.type < BTRFS_TREE_BLOCK_REF_KEY) |
| continue; |
| if (key.type > BTRFS_SHARED_DATA_REF_KEY) |
| break; |
| |
| switch (key.type) { |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| /* SHARED DIRECT METADATA backref */ |
| ret = add_direct_ref(fs_info, preftrees, |
| info_level + 1, key.offset, |
| ctx->bytenr, 1, NULL, GFP_NOFS); |
| break; |
| case BTRFS_SHARED_DATA_REF_KEY: { |
| /* SHARED DIRECT FULL backref */ |
| struct btrfs_shared_data_ref *sdref; |
| int count; |
| |
| sdref = btrfs_item_ptr(leaf, slot, |
| struct btrfs_shared_data_ref); |
| count = btrfs_shared_data_ref_count(leaf, sdref); |
| ret = add_direct_ref(fs_info, preftrees, 0, |
| key.offset, ctx->bytenr, count, |
| sc, GFP_NOFS); |
| break; |
| } |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| /* NORMAL INDIRECT METADATA backref */ |
| ret = add_indirect_ref(fs_info, preftrees, key.offset, |
| NULL, info_level + 1, ctx->bytenr, |
| 1, NULL, GFP_NOFS); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: { |
| /* NORMAL INDIRECT DATA backref */ |
| struct btrfs_extent_data_ref *dref; |
| int count; |
| u64 root; |
| |
| dref = btrfs_item_ptr(leaf, slot, |
| struct btrfs_extent_data_ref); |
| count = btrfs_extent_data_ref_count(leaf, dref); |
| key.objectid = btrfs_extent_data_ref_objectid(leaf, |
| dref); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = btrfs_extent_data_ref_offset(leaf, dref); |
| |
| if (sc && key.objectid != sc->inum && |
| !sc->have_delayed_delete_refs) { |
| ret = BACKREF_FOUND_SHARED; |
| break; |
| } |
| |
| root = btrfs_extent_data_ref_root(leaf, dref); |
| |
| if (!ctx->skip_data_ref || |
| !ctx->skip_data_ref(root, key.objectid, key.offset, |
| ctx->user_ctx)) |
| ret = add_indirect_ref(fs_info, preftrees, root, |
| &key, 0, ctx->bytenr, |
| count, sc, GFP_NOFS); |
| break; |
| } |
| default: |
| WARN_ON(1); |
| } |
| if (ret) |
| return ret; |
| |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * The caller has joined a transaction or is holding a read lock on the |
| * fs_info->commit_root_sem semaphore, so no need to worry about the root's last |
| * snapshot field changing while updating or checking the cache. |
| */ |
| static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, |
| struct btrfs_root *root, |
| u64 bytenr, int level, bool *is_shared) |
| { |
| const struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_backref_shared_cache_entry *entry; |
| |
| if (!current->journal_info) |
| lockdep_assert_held(&fs_info->commit_root_sem); |
| |
| if (!ctx->use_path_cache) |
| return false; |
| |
| if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) |
| return false; |
| |
| /* |
| * Level -1 is used for the data extent, which is not reliable to cache |
| * because its reference count can increase or decrease without us |
| * realizing. We cache results only for extent buffers that lead from |
| * the root node down to the leaf with the file extent item. |
| */ |
| ASSERT(level >= 0); |
| |
| entry = &ctx->path_cache_entries[level]; |
| |
| /* Unused cache entry or being used for some other extent buffer. */ |
| if (entry->bytenr != bytenr) |
| return false; |
| |
| /* |
| * We cached a false result, but the last snapshot generation of the |
| * root changed, so we now have a snapshot. Don't trust the result. |
| */ |
| if (!entry->is_shared && |
| entry->gen != btrfs_root_last_snapshot(&root->root_item)) |
| return false; |
| |
| /* |
| * If we cached a true result and the last generation used for dropping |
| * a root changed, we can not trust the result, because the dropped root |
| * could be a snapshot sharing this extent buffer. |
| */ |
| if (entry->is_shared && |
| entry->gen != btrfs_get_last_root_drop_gen(fs_info)) |
| return false; |
| |
| *is_shared = entry->is_shared; |
| /* |
| * If the node at this level is shared, than all nodes below are also |
| * shared. Currently some of the nodes below may be marked as not shared |
| * because we have just switched from one leaf to another, and switched |
| * also other nodes above the leaf and below the current level, so mark |
| * them as shared. |
| */ |
| if (*is_shared) { |
| for (int i = 0; i < level; i++) { |
| ctx->path_cache_entries[i].is_shared = true; |
| ctx->path_cache_entries[i].gen = entry->gen; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * The caller has joined a transaction or is holding a read lock on the |
| * fs_info->commit_root_sem semaphore, so no need to worry about the root's last |
| * snapshot field changing while updating or checking the cache. |
| */ |
| static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, |
| struct btrfs_root *root, |
| u64 bytenr, int level, bool is_shared) |
| { |
| const struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_backref_shared_cache_entry *entry; |
| u64 gen; |
| |
| if (!current->journal_info) |
| lockdep_assert_held(&fs_info->commit_root_sem); |
| |
| if (!ctx->use_path_cache) |
| return; |
| |
| if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) |
| return; |
| |
| /* |
| * Level -1 is used for the data extent, which is not reliable to cache |
| * because its reference count can increase or decrease without us |
| * realizing. We cache results only for extent buffers that lead from |
| * the root node down to the leaf with the file extent item. |
| */ |
| ASSERT(level >= 0); |
| |
| if (is_shared) |
| gen = btrfs_get_last_root_drop_gen(fs_info); |
| else |
| gen = btrfs_root_last_snapshot(&root->root_item); |
| |
| entry = &ctx->path_cache_entries[level]; |
| entry->bytenr = bytenr; |
| entry->is_shared = is_shared; |
| entry->gen = gen; |
| |
| /* |
| * If we found an extent buffer is shared, set the cache result for all |
| * extent buffers below it to true. As nodes in the path are COWed, |
| * their sharedness is moved to their children, and if a leaf is COWed, |
| * then the sharedness of a data extent becomes direct, the refcount of |
| * data extent is increased in the extent item at the extent tree. |
| */ |
| if (is_shared) { |
| for (int i = 0; i < level; i++) { |
| entry = &ctx->path_cache_entries[i]; |
| entry->is_shared = is_shared; |
| entry->gen = gen; |
| } |
| } |
| } |
| |
| /* |
| * this adds all existing backrefs (inline backrefs, backrefs and delayed |
| * refs) for the given bytenr to the refs list, merges duplicates and resolves |
| * indirect refs to their parent bytenr. |
| * When roots are found, they're added to the roots list |
| * |
| * @ctx: Backref walking context object, must be not NULL. |
| * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a |
| * shared extent is detected. |
| * |
| * Otherwise this returns 0 for success and <0 for an error. |
| * |
| * FIXME some caching might speed things up |
| */ |
| static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, |
| struct share_check *sc) |
| { |
| struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_delayed_ref_root *delayed_refs = NULL; |
| struct btrfs_delayed_ref_head *head; |
| int info_level = 0; |
| int ret; |
| struct prelim_ref *ref; |
| struct rb_node *node; |
| struct extent_inode_elem *eie = NULL; |
| struct preftrees preftrees = { |
| .direct = PREFTREE_INIT, |
| .indirect = PREFTREE_INIT, |
| .indirect_missing_keys = PREFTREE_INIT |
| }; |
| |
| /* Roots ulist is not needed when using a sharedness check context. */ |
| if (sc) |
| ASSERT(ctx->roots == NULL); |
| |
| key.objectid = ctx->bytenr; |
| key.offset = (u64)-1; |
| if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| if (!ctx->trans) { |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| } |
| |
| if (ctx->time_seq == BTRFS_SEQ_LAST) |
| path->skip_locking = 1; |
| |
| again: |
| head = NULL; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret == 0) { |
| /* This shouldn't happen, indicates a bug or fs corruption. */ |
| ASSERT(ret != 0); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && |
| ctx->time_seq != BTRFS_SEQ_LAST) { |
| /* |
| * We have a specific time_seq we care about and trans which |
| * means we have the path lock, we need to grab the ref head and |
| * lock it so we have a consistent view of the refs at the given |
| * time. |
| */ |
| delayed_refs = &ctx->trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); |
| if (head) { |
| if (!mutex_trylock(&head->mutex)) { |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's |
| * released and try again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| goto again; |
| } |
| spin_unlock(&delayed_refs->lock); |
| ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, |
| &preftrees, sc); |
| mutex_unlock(&head->mutex); |
| if (ret) |
| goto out; |
| } else { |
| spin_unlock(&delayed_refs->lock); |
| } |
| } |
| |
| if (path->slots[0]) { |
| struct extent_buffer *leaf; |
| int slot; |
| |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid == ctx->bytenr && |
| (key.type == BTRFS_EXTENT_ITEM_KEY || |
| key.type == BTRFS_METADATA_ITEM_KEY)) { |
| ret = add_inline_refs(ctx, path, &info_level, |
| &preftrees, sc); |
| if (ret) |
| goto out; |
| ret = add_keyed_refs(ctx, root, path, info_level, |
| &preftrees, sc); |
| if (ret) |
| goto out; |
| } |
| } |
| |
| /* |
| * If we have a share context and we reached here, it means the extent |
| * is not directly shared (no multiple reference items for it), |
| * otherwise we would have exited earlier with a return value of |
| * BACKREF_FOUND_SHARED after processing delayed references or while |
| * processing inline or keyed references from the extent tree. |
| * The extent may however be indirectly shared through shared subtrees |
| * as a result from creating snapshots, so we determine below what is |
| * its parent node, in case we are dealing with a metadata extent, or |
| * what's the leaf (or leaves), from a fs tree, that has a file extent |
| * item pointing to it in case we are dealing with a data extent. |
| */ |
| ASSERT(extent_is_shared(sc) == 0); |
| |
| /* |
| * If we are here for a data extent and we have a share_check structure |
| * it means the data extent is not directly shared (does not have |
| * multiple reference items), so we have to check if a path in the fs |
| * tree (going from the root node down to the leaf that has the file |
| * extent item pointing to the data extent) is shared, that is, if any |
| * of the extent buffers in the path is referenced by other trees. |
| */ |
| if (sc && ctx->bytenr == sc->data_bytenr) { |
| /* |
| * If our data extent is from a generation more recent than the |
| * last generation used to snapshot the root, then we know that |
| * it can not be shared through subtrees, so we can skip |
| * resolving indirect references, there's no point in |
| * determining the extent buffers for the path from the fs tree |
| * root node down to the leaf that has the file extent item that |
| * points to the data extent. |
| */ |
| if (sc->data_extent_gen > |
| btrfs_root_last_snapshot(&sc->root->root_item)) { |
| ret = BACKREF_FOUND_NOT_SHARED; |
| goto out; |
| } |
| |
| /* |
| * If we are only determining if a data extent is shared or not |
| * and the corresponding file extent item is located in the same |
| * leaf as the previous file extent item, we can skip resolving |
| * indirect references for a data extent, since the fs tree path |
| * is the same (same leaf, so same path). We skip as long as the |
| * cached result for the leaf is valid and only if there's only |
| * one file extent item pointing to the data extent, because in |
| * the case of multiple file extent items, they may be located |
| * in different leaves and therefore we have multiple paths. |
| */ |
| if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && |
| sc->self_ref_count == 1) { |
| bool cached; |
| bool is_shared; |
| |
| cached = lookup_backref_shared_cache(sc->ctx, sc->root, |
| sc->ctx->curr_leaf_bytenr, |
| 0, &is_shared); |
| if (cached) { |
| if (is_shared) |
| ret = BACKREF_FOUND_SHARED; |
| else |
| ret = BACKREF_FOUND_NOT_SHARED; |
| goto out; |
| } |
| } |
| } |
| |
| btrfs_release_path(path); |
| |
| ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); |
| if (ret) |
| goto out; |
| |
| WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); |
| |
| ret = resolve_indirect_refs(ctx, path, &preftrees, sc); |
| if (ret) |
| goto out; |
| |
| WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); |
| |
| /* |
| * This walks the tree of merged and resolved refs. Tree blocks are |
| * read in as needed. Unique entries are added to the ulist, and |
| * the list of found roots is updated. |
| * |
| * We release the entire tree in one go before returning. |
| */ |
| node = rb_first_cached(&preftrees.direct.root); |
| while (node) { |
| ref = rb_entry(node, struct prelim_ref, rbnode); |
| node = rb_next(&ref->rbnode); |
| /* |
| * ref->count < 0 can happen here if there are delayed |
| * refs with a node->action of BTRFS_DROP_DELAYED_REF. |
| * prelim_ref_insert() relies on this when merging |
| * identical refs to keep the overall count correct. |
| * prelim_ref_insert() will merge only those refs |
| * which compare identically. Any refs having |
| * e.g. different offsets would not be merged, |
| * and would retain their original ref->count < 0. |
| */ |
| if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { |
| /* no parent == root of tree */ |
| ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); |
| if (ret < 0) |
| goto out; |
| } |
| if (ref->count && ref->parent) { |
| if (!ctx->skip_inode_ref_list && !ref->inode_list && |
| ref->level == 0) { |
| struct btrfs_tree_parent_check check = { 0 }; |
| struct extent_buffer *eb; |
| |
| check.level = ref->level; |
| |
| eb = read_tree_block(ctx->fs_info, ref->parent, |
| &check); |
| if (IS_ERR(eb)) { |
| ret = PTR_ERR(eb); |
| goto out; |
| } |
| if (!extent_buffer_uptodate(eb)) { |
| free_extent_buffer(eb); |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (!path->skip_locking) |
| btrfs_tree_read_lock(eb); |
| ret = find_extent_in_eb(ctx, eb, &eie); |
| if (!path->skip_locking) |
| btrfs_tree_read_unlock(eb); |
| free_extent_buffer(eb); |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || |
| ret < 0) |
| goto out; |
| ref->inode_list = eie; |
| /* |
| * We transferred the list ownership to the ref, |
| * so set to NULL to avoid a double free in case |
| * an error happens after this. |
| */ |
| eie = NULL; |
| } |
| ret = ulist_add_merge_ptr(ctx->refs, ref->parent, |
| ref->inode_list, |
| (void **)&eie, GFP_NOFS); |
| if (ret < 0) |
| goto out; |
| if (!ret && !ctx->skip_inode_ref_list) { |
| /* |
| * We've recorded that parent, so we must extend |
| * its inode list here. |
| * |
| * However if there was corruption we may not |
| * have found an eie, return an error in this |
| * case. |
| */ |
| ASSERT(eie); |
| if (!eie) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| while (eie->next) |
| eie = eie->next; |
| eie->next = ref->inode_list; |
| } |
| eie = NULL; |
| /* |
| * We have transferred the inode list ownership from |
| * this ref to the ref we added to the 'refs' ulist. |
| * So set this ref's inode list to NULL to avoid |
| * use-after-free when our caller uses it or double |
| * frees in case an error happens before we return. |
| */ |
| ref->inode_list = NULL; |
| } |
| cond_resched(); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| |
| prelim_release(&preftrees.direct); |
| prelim_release(&preftrees.indirect); |
| prelim_release(&preftrees.indirect_missing_keys); |
| |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) |
| free_inode_elem_list(eie); |
| return ret; |
| } |
| |
| /* |
| * Finds all leaves with a reference to the specified combination of |
| * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are |
| * added to the ulist at @ctx->refs, and that ulist is allocated by this |
| * function. The caller should free the ulist with free_leaf_list() if |
| * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is |
| * enough. |
| * |
| * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. |
| */ |
| int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) |
| { |
| int ret; |
| |
| ASSERT(ctx->refs == NULL); |
| |
| ctx->refs = ulist_alloc(GFP_NOFS); |
| if (!ctx->refs) |
| return -ENOMEM; |
| |
| ret = find_parent_nodes(ctx, NULL); |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || |
| (ret < 0 && ret != -ENOENT)) { |
| free_leaf_list(ctx->refs); |
| ctx->refs = NULL; |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Walk all backrefs for a given extent to find all roots that reference this |
| * extent. Walking a backref means finding all extents that reference this |
| * extent and in turn walk the backrefs of those, too. Naturally this is a |
| * recursive process, but here it is implemented in an iterative fashion: We |
| * find all referencing extents for the extent in question and put them on a |
| * list. In turn, we find all referencing extents for those, further appending |
| * to the list. The way we iterate the list allows adding more elements after |
| * the current while iterating. The process stops when we reach the end of the |
| * list. |
| * |
| * Found roots are added to @ctx->roots, which is allocated by this function if |
| * it points to NULL, in which case the caller is responsible for freeing it |
| * after it's not needed anymore. |
| * This function requires @ctx->refs to be NULL, as it uses it for allocating a |
| * ulist to do temporary work, and frees it before returning. |
| * |
| * Returns 0 on success, < 0 on error. |
| */ |
| static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) |
| { |
| const u64 orig_bytenr = ctx->bytenr; |
| const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; |
| bool roots_ulist_allocated = false; |
| struct ulist_iterator uiter; |
| int ret = 0; |
| |
| ASSERT(ctx->refs == NULL); |
| |
| ctx->refs = ulist_alloc(GFP_NOFS); |
| if (!ctx->refs) |
| return -ENOMEM; |
| |
| if (!ctx->roots) { |
| ctx->roots = ulist_alloc(GFP_NOFS); |
| if (!ctx->roots) { |
| ulist_free(ctx->refs); |
| ctx->refs = NULL; |
| return -ENOMEM; |
| } |
| roots_ulist_allocated = true; |
| } |
| |
| ctx->skip_inode_ref_list = true; |
| |
| ULIST_ITER_INIT(&uiter); |
| while (1) { |
| struct ulist_node *node; |
| |
| ret = find_parent_nodes(ctx, NULL); |
| if (ret < 0 && ret != -ENOENT) { |
| if (roots_ulist_allocated) { |
| ulist_free(ctx->roots); |
| ctx->roots = NULL; |
| } |
| break; |
| } |
| ret = 0; |
| node = ulist_next(ctx->refs, &uiter); |
| if (!node) |
| break; |
| ctx->bytenr = node->val; |
| cond_resched(); |
| } |
| |
| ulist_free(ctx->refs); |
| ctx->refs = NULL; |
| ctx->bytenr = orig_bytenr; |
| ctx->skip_inode_ref_list = orig_skip_inode_ref_list; |
| |
| return ret; |
| } |
| |
| int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, |
| bool skip_commit_root_sem) |
| { |
| int ret; |
| |
| if (!ctx->trans && !skip_commit_root_sem) |
| down_read(&ctx->fs_info->commit_root_sem); |
| ret = btrfs_find_all_roots_safe(ctx); |
| if (!ctx->trans && !skip_commit_root_sem) |
| up_read(&ctx->fs_info->commit_root_sem); |
| return ret; |
| } |
| |
| struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) |
| { |
| struct btrfs_backref_share_check_ctx *ctx; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return NULL; |
| |
| ulist_init(&ctx->refs); |
| |
| return ctx; |
| } |
| |
| void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) |
| { |
| if (!ctx) |
| return; |
| |
| ulist_release(&ctx->refs); |
| kfree(ctx); |
| } |
| |
| /* |
| * Check if a data extent is shared or not. |
| * |
| * @inode: The inode whose extent we are checking. |
| * @bytenr: Logical bytenr of the extent we are checking. |
| * @extent_gen: Generation of the extent (file extent item) or 0 if it is |
| * not known. |
| * @ctx: A backref sharedness check context. |
| * |
| * btrfs_is_data_extent_shared uses the backref walking code but will short |
| * circuit as soon as it finds a root or inode that doesn't match the |
| * one passed in. This provides a significant performance benefit for |
| * callers (such as fiemap) which want to know whether the extent is |
| * shared but do not need a ref count. |
| * |
| * This attempts to attach to the running transaction in order to account for |
| * delayed refs, but continues on even when no running transaction exists. |
| * |
| * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. |
| */ |
| int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, |
| u64 extent_gen, |
| struct btrfs_backref_share_check_ctx *ctx) |
| { |
| struct btrfs_backref_walk_ctx walk_ctx = { 0 }; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| struct ulist_iterator uiter; |
| struct ulist_node *node; |
| struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); |
| int ret = 0; |
| struct share_check shared = { |
| .ctx = ctx, |
| .root = root, |
| .inum = btrfs_ino(inode), |
| .data_bytenr = bytenr, |
| .data_extent_gen = extent_gen, |
| .share_count = 0, |
| .self_ref_count = 0, |
| .have_delayed_delete_refs = false, |
| }; |
| int level; |
| bool leaf_cached; |
| bool leaf_is_shared; |
| |
| for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { |
| if (ctx->prev_extents_cache[i].bytenr == bytenr) |
| return ctx->prev_extents_cache[i].is_shared; |
| } |
| |
| ulist_init(&ctx->refs); |
| |
| trans = btrfs_join_transaction_nostart(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| trans = NULL; |
| down_read(&fs_info->commit_root_sem); |
| } else { |
| btrfs_get_tree_mod_seq(fs_info, &elem); |
| walk_ctx.time_seq = elem.seq; |
| } |
| |
| ctx->use_path_cache = true; |
| |
| /* |
| * We may have previously determined that the current leaf is shared. |
| * If it is, then we have a data extent that is shared due to a shared |
| * subtree (caused by snapshotting) and we don't need to check for data |
| * backrefs. If the leaf is not shared, then we must do backref walking |
| * to determine if the data extent is shared through reflinks. |
| */ |
| leaf_cached = lookup_backref_shared_cache(ctx, root, |
| ctx->curr_leaf_bytenr, 0, |
| &leaf_is_shared); |
| if (leaf_cached && leaf_is_shared) { |
| ret = 1; |
| goto out_trans; |
| } |
| |
| walk_ctx.skip_inode_ref_list = true; |
| walk_ctx.trans = trans; |
| walk_ctx.fs_info = fs_info; |
| walk_ctx.refs = &ctx->refs; |
| |
| /* -1 means we are in the bytenr of the data extent. */ |
| level = -1; |
| ULIST_ITER_INIT(&uiter); |
| while (1) { |
| const unsigned long prev_ref_count = ctx->refs.nnodes; |
| |
| walk_ctx.bytenr = bytenr; |
| ret = find_parent_nodes(&walk_ctx, &shared); |
| if (ret == BACKREF_FOUND_SHARED || |
| ret == BACKREF_FOUND_NOT_SHARED) { |
| /* If shared must return 1, otherwise return 0. */ |
| ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; |
| if (level >= 0) |
| store_backref_shared_cache(ctx, root, bytenr, |
| level, ret == 1); |
| break; |
| } |
| if (ret < 0 && ret != -ENOENT) |
| break; |
| ret = 0; |
| |
| /* |
| * More than one extent buffer (bytenr) may have been added to |
| * the ctx->refs ulist, in which case we have to check multiple |
| * tree paths in case the first one is not shared, so we can not |
| * use the path cache which is made for a single path. Multiple |
| * extent buffers at the current level happen when: |
| * |
| * 1) level -1, the data extent: If our data extent was not |
| * directly shared (without multiple reference items), then |
| * it might have a single reference item with a count > 1 for |
| * the same offset, which means there are 2 (or more) file |
| * extent items that point to the data extent - this happens |
| * when a file extent item needs to be split and then one |
| * item gets moved to another leaf due to a b+tree leaf split |
| * when inserting some item. In this case the file extent |
| * items may be located in different leaves and therefore |
| * some of the leaves may be referenced through shared |
| * subtrees while others are not. Since our extent buffer |
| * cache only works for a single path (by far the most common |
| * case and simpler to deal with), we can not use it if we |
| * have multiple leaves (which implies multiple paths). |
| * |
| * 2) level >= 0, a tree node/leaf: We can have a mix of direct |
| * and indirect references on a b+tree node/leaf, so we have |
| * to check multiple paths, and the extent buffer (the |
| * current bytenr) may be shared or not. One example is |
| * during relocation as we may get a shared tree block ref |
| * (direct ref) and a non-shared tree block ref (indirect |
| * ref) for the same node/leaf. |
| */ |
| if ((ctx->refs.nnodes - prev_ref_count) > 1) |
| ctx->use_path_cache = false; |
| |
| if (level >= 0) |
| store_backref_shared_cache(ctx, root, bytenr, |
| level, false); |
| node = ulist_next(&ctx->refs, &uiter); |
| if (!node) |
| break; |
| bytenr = node->val; |
| if (ctx->use_path_cache) { |
| bool is_shared; |
| bool cached; |
| |
| level++; |
| cached = lookup_backref_shared_cache(ctx, root, bytenr, |
| level, &is_shared); |
| if (cached) { |
| ret = (is_shared ? 1 : 0); |
| break; |
| } |
| } |
| shared.share_count = 0; |
| shared.have_delayed_delete_refs = false; |
| cond_resched(); |
| } |
| |
| /* |
| * If the path cache is disabled, then it means at some tree level we |
| * got multiple parents due to a mix of direct and indirect backrefs or |
| * multiple leaves with file extent items pointing to the same data |
| * extent. We have to invalidate the cache and cache only the sharedness |
| * result for the levels where we got only one node/reference. |
| */ |
| if (!ctx->use_path_cache) { |
| int i = 0; |
| |
| level--; |
| if (ret >= 0 && level >= 0) { |
| bytenr = ctx->path_cache_entries[level].bytenr; |
| ctx->use_path_cache = true; |
| store_backref_shared_cache(ctx, root, bytenr, level, ret); |
| i = level + 1; |
| } |
| |
| for ( ; i < BTRFS_MAX_LEVEL; i++) |
| ctx->path_cache_entries[i].bytenr = 0; |
| } |
| |
| /* |
| * Cache the sharedness result for the data extent if we know our inode |
| * has more than 1 file extent item that refers to the data extent. |
| */ |
| if (ret >= 0 && shared.self_ref_count > 1) { |
| int slot = ctx->prev_extents_cache_slot; |
| |
| ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; |
| ctx->prev_extents_cache[slot].is_shared = (ret == 1); |
| |
| slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; |
| ctx->prev_extents_cache_slot = slot; |
| } |
| |
| out_trans: |
| if (trans) { |
| btrfs_put_tree_mod_seq(fs_info, &elem); |
| btrfs_end_transaction(trans); |
| } else { |
| up_read(&fs_info->commit_root_sem); |
| } |
| out: |
| ulist_release(&ctx->refs); |
| ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; |
| |
| return ret; |
| } |
| |
| int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, |
| u64 start_off, struct btrfs_path *path, |
| struct btrfs_inode_extref **ret_extref, |
| u64 *found_off) |
| { |
| int ret, slot; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_inode_extref *extref; |
| const struct extent_buffer *leaf; |
| unsigned long ptr; |
| |
| key.objectid = inode_objectid; |
| key.type = BTRFS_INODE_EXTREF_KEY; |
| key.offset = start_off; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| while (1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| /* |
| * If the item at offset is not found, |
| * btrfs_search_slot will point us to the slot |
| * where it should be inserted. In our case |
| * that will be the slot directly before the |
| * next INODE_REF_KEY_V2 item. In the case |
| * that we're pointing to the last slot in a |
| * leaf, we must move one leaf over. |
| */ |
| ret = btrfs_next_leaf(root, path); |
| if (ret) { |
| if (ret >= 1) |
| ret = -ENOENT; |
| break; |
| } |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| /* |
| * Check that we're still looking at an extended ref key for |
| * this particular objectid. If we have different |
| * objectid or type then there are no more to be found |
| * in the tree and we can exit. |
| */ |
| ret = -ENOENT; |
| if (found_key.objectid != inode_objectid) |
| break; |
| if (found_key.type != BTRFS_INODE_EXTREF_KEY) |
| break; |
| |
| ret = 0; |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| extref = (struct btrfs_inode_extref *)ptr; |
| *ret_extref = extref; |
| if (found_off) |
| *found_off = found_key.offset; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * this iterates to turn a name (from iref/extref) into a full filesystem path. |
| * Elements of the path are separated by '/' and the path is guaranteed to be |
| * 0-terminated. the path is only given within the current file system. |
| * Therefore, it never starts with a '/'. the caller is responsible to provide |
| * "size" bytes in "dest". the dest buffer will be filled backwards. finally, |
| * the start point of the resulting string is returned. this pointer is within |
| * dest, normally. |
| * in case the path buffer would overflow, the pointer is decremented further |
| * as if output was written to the buffer, though no more output is actually |
| * generated. that way, the caller can determine how much space would be |
| * required for the path to fit into the buffer. in that case, the returned |
| * value will be smaller than dest. callers must check this! |
| */ |
| char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, |
| u32 name_len, unsigned long name_off, |
| struct extent_buffer *eb_in, u64 parent, |
| char *dest, u32 size) |
| { |
| int slot; |
| u64 next_inum; |
| int ret; |
| s64 bytes_left = ((s64)size) - 1; |
| struct extent_buffer *eb = eb_in; |
| struct btrfs_key found_key; |
| struct btrfs_inode_ref *iref; |
| |
| if (bytes_left >= 0) |
| dest[bytes_left] = '\0'; |
| |
| while (1) { |
| bytes_left -= name_len; |
| if (bytes_left >= 0) |
| read_extent_buffer(eb, dest + bytes_left, |
| name_off, name_len); |
| if (eb != eb_in) { |
| if (!path->skip_locking) |
| btrfs_tree_read_unlock(eb); |
| free_extent_buffer(eb); |
| } |
| ret = btrfs_find_item(fs_root, path, parent, 0, |
| BTRFS_INODE_REF_KEY, &found_key); |
| if (ret > 0) |
| ret = -ENOENT; |
| if (ret) |
| break; |
| |
| next_inum = found_key.offset; |
| |
| /* regular exit ahead */ |
| if (parent == next_inum) |
| break; |
| |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| /* make sure we can use eb after releasing the path */ |
| if (eb != eb_in) { |
| path->nodes[0] = NULL; |
| path->locks[0] = 0; |
| } |
| btrfs_release_path(path); |
| iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| |
| name_len = btrfs_inode_ref_name_len(eb, iref); |
| name_off = (unsigned long)(iref + 1); |
| |
| parent = next_inum; |
| --bytes_left; |
| if (bytes_left >= 0) |
| dest[bytes_left] = '/'; |
| } |
| |
| btrfs_release_path(path); |
| |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return dest + bytes_left; |
| } |
| |
| /* |
| * this makes the path point to (logical EXTENT_ITEM *) |
| * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for |
| * tree blocks and <0 on error. |
| */ |
| int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, |
| struct btrfs_path *path, struct btrfs_key *found_key, |
| u64 *flags_ret) |
| { |
| struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); |
| int ret; |
| u64 flags; |
| u64 size = 0; |
| u32 item_size; |
| const struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| |
| if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = logical; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| ret = btrfs_previous_extent_item(extent_root, path, 0); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| return ret; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); |
| if (found_key->type == BTRFS_METADATA_ITEM_KEY) |
| size = fs_info->nodesize; |
| else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) |
| size = found_key->offset; |
| |
| if (found_key->objectid > logical || |
| found_key->objectid + size <= logical) { |
| btrfs_debug(fs_info, |
| "logical %llu is not within any extent", logical); |
| return -ENOENT; |
| } |
| |
| eb = path->nodes[0]; |
| item_size = btrfs_item_size(eb, path->slots[0]); |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(eb, ei); |
| |
| btrfs_debug(fs_info, |
| "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", |
| logical, logical - found_key->objectid, found_key->objectid, |
| found_key->offset, flags, item_size); |
| |
| WARN_ON(!flags_ret); |
| if (flags_ret) { |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; |
| else if (flags & BTRFS_EXTENT_FLAG_DATA) |
| *flags_ret = BTRFS_EXTENT_FLAG_DATA; |
| else |
| BUG(); |
| return 0; |
| } |
| |
| return -EIO; |
| } |
| |
| /* |
| * helper function to iterate extent inline refs. ptr must point to a 0 value |
| * for the first call and may be modified. it is used to track state. |
| * if more refs exist, 0 is returned and the next call to |
| * get_extent_inline_ref must pass the modified ptr parameter to get the |
| * next ref. after the last ref was processed, 1 is returned. |
| * returns <0 on error |
| */ |
| static int get_extent_inline_ref(unsigned long *ptr, |
| const struct extent_buffer *eb, |
| const struct btrfs_key *key, |
| const struct btrfs_extent_item *ei, |
| u32 item_size, |
| struct btrfs_extent_inline_ref **out_eiref, |
| int *out_type) |
| { |
| unsigned long end; |
| u64 flags; |
| struct btrfs_tree_block_info *info; |
| |
| if (!*ptr) { |
| /* first call */ |
| flags = btrfs_extent_flags(eb, ei); |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| if (key->type == BTRFS_METADATA_ITEM_KEY) { |
| /* a skinny metadata extent */ |
| *out_eiref = |
| (struct btrfs_extent_inline_ref *)(ei + 1); |
| } else { |
| WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *out_eiref = |
| (struct btrfs_extent_inline_ref *)(info + 1); |
| } |
| } else { |
| *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| } |
| *ptr = (unsigned long)*out_eiref; |
| if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) |
| return -ENOENT; |
| } |
| |
| end = (unsigned long)ei + item_size; |
| *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); |
| *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, |
| BTRFS_REF_TYPE_ANY); |
| if (*out_type == BTRFS_REF_TYPE_INVALID) |
| return -EUCLEAN; |
| |
| *ptr += btrfs_extent_inline_ref_size(*out_type); |
| WARN_ON(*ptr > end); |
| if (*ptr == end) |
| return 1; /* last */ |
| |
| return 0; |
| } |
| |
| /* |
| * reads the tree block backref for an extent. tree level and root are returned |
| * through out_level and out_root. ptr must point to a 0 value for the first |
| * call and may be modified (see get_extent_inline_ref comment). |
| * returns 0 if data was provided, 1 if there was no more data to provide or |
| * <0 on error. |
| */ |
| int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, |
| struct btrfs_key *key, struct btrfs_extent_item *ei, |
| u32 item_size, u64 *out_root, u8 *out_level) |
| { |
| int ret; |
| int type; |
| struct btrfs_extent_inline_ref *eiref; |
| |
| if (*ptr == (unsigned long)-1) |
| return 1; |
| |
| while (1) { |
| ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, |
| &eiref, &type); |
| if (ret < 0) |
| return ret; |
| |
| if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_BLOCK_REF_KEY) |
| break; |
| |
| if (ret == 1) |
| return 1; |
| } |
| |
| /* we can treat both ref types equally here */ |
| *out_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| |
| if (key->type == BTRFS_EXTENT_ITEM_KEY) { |
| struct btrfs_tree_block_info *info; |
| |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *out_level = btrfs_tree_block_level(eb, info); |
| } else { |
| ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); |
| *out_level = (u8)key->offset; |
| } |
| |
| if (ret == 1) |
| *ptr = (unsigned long)-1; |
| |
| return 0; |
| } |
| |
| static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, |
| struct extent_inode_elem *inode_list, |
| u64 root, u64 extent_item_objectid, |
| iterate_extent_inodes_t *iterate, void *ctx) |
| { |
| struct extent_inode_elem *eie; |
| int ret = 0; |
| |
| for (eie = inode_list; eie; eie = eie->next) { |
| btrfs_debug(fs_info, |
| "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", |
| extent_item_objectid, eie->inum, |
| eie->offset, root); |
| ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); |
| if (ret) { |
| btrfs_debug(fs_info, |
| "stopping iteration for %llu due to ret=%d", |
| extent_item_objectid, ret); |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * calls iterate() for every inode that references the extent identified by |
| * the given parameters. |
| * when the iterator function returns a non-zero value, iteration stops. |
| */ |
| int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, |
| bool search_commit_root, |
| iterate_extent_inodes_t *iterate, void *user_ctx) |
| { |
| int ret; |
| struct ulist *refs; |
| struct ulist_node *ref_node; |
| struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); |
| struct ulist_iterator ref_uiter; |
| |
| btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", |
| ctx->bytenr); |
| |
| ASSERT(ctx->trans == NULL); |
| ASSERT(ctx->roots == NULL); |
| |
| if (!search_commit_root) { |
| struct btrfs_trans_handle *trans; |
| |
| trans = btrfs_attach_transaction(ctx->fs_info->tree_root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT && |
| PTR_ERR(trans) != -EROFS) |
| return PTR_ERR(trans); |
| trans = NULL; |
| } |
| ctx->trans = trans; |
| } |
| |
| if (ctx->trans) { |
| btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); |
| ctx->time_seq = seq_elem.seq; |
| } else { |
| down_read(&ctx->fs_info->commit_root_sem); |
| } |
| |
| ret = btrfs_find_all_leafs(ctx); |
| if (ret) |
| goto out; |
| refs = ctx->refs; |
| ctx->refs = NULL; |
| |
| ULIST_ITER_INIT(&ref_uiter); |
| while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { |
| const u64 leaf_bytenr = ref_node->val; |
| struct ulist_node *root_node; |
| struct ulist_iterator root_uiter; |
| struct extent_inode_elem *inode_list; |
| |
| inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; |
| |
| if (ctx->cache_lookup) { |
| const u64 *root_ids; |
| int root_count; |
| bool cached; |
| |
| cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, |
| &root_ids, &root_count); |
| if (cached) { |
| for (int i = 0; i < root_count; i++) { |
| ret = iterate_leaf_refs(ctx->fs_info, |
| inode_list, |
| root_ids[i], |
| leaf_bytenr, |
| iterate, |
| user_ctx); |
| if (ret) |
| break; |
| } |
| continue; |
| } |
| } |
| |
| if (!ctx->roots) { |
| ctx->roots = ulist_alloc(GFP_NOFS); |
| if (!ctx->roots) { |
| ret = -ENOMEM; |
| break; |
| } |
| } |
| |
| ctx->bytenr = leaf_bytenr; |
| ret = btrfs_find_all_roots_safe(ctx); |
| if (ret) |
| break; |
| |
| if (ctx->cache_store) |
| ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); |
| |
| ULIST_ITER_INIT(&root_uiter); |
| while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { |
| btrfs_debug(ctx->fs_info, |
| "root %llu references leaf %llu, data list %#llx", |
| root_node->val, ref_node->val, |
| ref_node->aux); |
| ret = iterate_leaf_refs(ctx->fs_info, inode_list, |
| root_node->val, ctx->bytenr, |
| iterate, user_ctx); |
| } |
| ulist_reinit(ctx->roots); |
| } |
| |
| free_leaf_list(refs); |
| out: |
| if (ctx->trans) { |
| btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); |
| btrfs_end_transaction(ctx->trans); |
| ctx->trans = NULL; |
| } else { |
| up_read(&ctx->fs_info->commit_root_sem); |
| } |
| |
| ulist_free(ctx->roots); |
| ctx->roots = NULL; |
| |
| if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) |
| { |
| struct btrfs_data_container *inodes = ctx; |
| const size_t c = 3 * sizeof(u64); |
| |
| if (inodes->bytes_left >= c) { |
| inodes->bytes_left -= c; |
| inodes->val[inodes->elem_cnt] = inum; |
| inodes->val[inodes->elem_cnt + 1] = offset; |
| inodes->val[inodes->elem_cnt + 2] = root; |
| inodes->elem_cnt += 3; |
| } else { |
| inodes->bytes_missing += c - inodes->bytes_left; |
| inodes->bytes_left = 0; |
| inodes->elem_missed += 3; |
| } |
| |
| return 0; |
| } |
| |
| int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| void *ctx, bool ignore_offset) |
| { |
| struct btrfs_backref_walk_ctx walk_ctx = { 0 }; |
| int ret; |
| u64 flags = 0; |
| struct btrfs_key found_key; |
| int search_commit_root = path->search_commit_root; |
| |
| ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); |
| btrfs_release_path(path); |
| if (ret < 0) |
| return ret; |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| return -EINVAL; |
| |
| walk_ctx.bytenr = found_key.objectid; |
| if (ignore_offset) |
| walk_ctx.ignore_extent_item_pos = true; |
| else |
| walk_ctx.extent_item_pos = logical - found_key.objectid; |
| walk_ctx.fs_info = fs_info; |
| |
| return iterate_extent_inodes(&walk_ctx, search_commit_root, |
| build_ino_list, ctx); |
| } |
| |
| static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, |
| struct extent_buffer *eb, struct inode_fs_paths *ipath); |
| |
| static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) |
| { |
| int ret = 0; |
| int slot; |
| u32 cur; |
| u32 len; |
| u32 name_len; |
| u64 parent = 0; |
| int found = 0; |
| struct btrfs_root *fs_root = ipath->fs_root; |
| struct btrfs_path *path = ipath->btrfs_path; |
| struct extent_buffer *eb; |
| struct btrfs_inode_ref *iref; |
| struct btrfs_key found_key; |
| |
| while (!ret) { |
| ret = btrfs_find_item(fs_root, path, inum, |
| parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, |
| &found_key); |
| |
| if (ret < 0) |
| break; |
| if (ret) { |
| ret = found ? 0 : -ENOENT; |
| break; |
| } |
| ++found; |
| |
| parent = found_key.offset; |
| slot = path->slots[0]; |
| eb = btrfs_clone_extent_buffer(path->nodes[0]); |
| if (!eb) { |
| ret = -ENOMEM; |
| break; |
| } |
| btrfs_release_path(path); |
| |
| iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| |
| for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { |
| name_len = btrfs_inode_ref_name_len(eb, iref); |
| /* path must be released before calling iterate()! */ |
| btrfs_debug(fs_root->fs_info, |
| "following ref at offset %u for inode %llu in tree %llu", |
| cur, found_key.objectid, |
| fs_root->root_key.objectid); |
| ret = inode_to_path(parent, name_len, |
| (unsigned long)(iref + 1), eb, ipath); |
| if (ret) |
| break; |
| len = sizeof(*iref) + name_len; |
| iref = (struct btrfs_inode_ref *)((char *)iref + len); |
| } |
| free_extent_buffer(eb); |
| } |
| |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) |
| { |
| int ret; |
| int slot; |
| u64 offset = 0; |
| u64 parent; |
| int found = 0; |
| struct btrfs_root *fs_root = ipath->fs_root; |
| struct btrfs_path *path = ipath->btrfs_path; |
| struct extent_buffer *eb; |
| struct btrfs_inode_extref *extref; |
| u32 item_size; |
| u32 cur_offset; |
| unsigned long ptr; |
| |
| while (1) { |
| ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, |
| &offset); |
| if (ret < 0) |
| break; |
| if (ret) { |
| ret = found ? 0 : -ENOENT; |
| break; |
| } |
| ++found; |
| |
| slot = path->slots[0]; |
| eb = btrfs_clone_extent_buffer(path->nodes[0]); |
| if (!eb) { |
| ret = -ENOMEM; |
| break; |
| } |
| btrfs_release_path(path); |
| |
| item_size = btrfs_item_size(eb, slot); |
| ptr = btrfs_item_ptr_offset(eb, slot); |
| cur_offset = 0; |
| |
| while (cur_offset < item_size) { |
| u32 name_len; |
| |
| extref = (struct btrfs_inode_extref *)(ptr + cur_offset); |
| parent = btrfs_inode_extref_parent(eb, extref); |
| name_len = btrfs_inode_extref_name_len(eb, extref); |
| ret = inode_to_path(parent, name_len, |
| (unsigned long)&extref->name, eb, ipath); |
| if (ret) |
| break; |
| |
| cur_offset += btrfs_inode_extref_name_len(eb, extref); |
| cur_offset += sizeof(*extref); |
| } |
| free_extent_buffer(eb); |
| |
| offset++; |
| } |
| |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| /* |
| * returns 0 if the path could be dumped (probably truncated) |
| * returns <0 in case of an error |
| */ |
| static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, |
| struct extent_buffer *eb, struct inode_fs_paths *ipath) |
| { |
| char *fspath; |
| char *fspath_min; |
| int i = ipath->fspath->elem_cnt; |
| const int s_ptr = sizeof(char *); |
| u32 bytes_left; |
| |
| bytes_left = ipath->fspath->bytes_left > s_ptr ? |
| ipath->fspath->bytes_left - s_ptr : 0; |
| |
| fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; |
| fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, |
| name_off, eb, inum, fspath_min, bytes_left); |
| if (IS_ERR(fspath)) |
| return PTR_ERR(fspath); |
| |
| if (fspath > fspath_min) { |
| ipath->fspath->val[i] = (u64)(unsigned long)fspath; |
| ++ipath->fspath->elem_cnt; |
| ipath->fspath->bytes_left = fspath - fspath_min; |
| } else { |
| ++ipath->fspath->elem_missed; |
| ipath->fspath->bytes_missing += fspath_min - fspath; |
| ipath->fspath->bytes_left = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * this dumps all file system paths to the inode into the ipath struct, provided |
| * is has been created large enough. each path is zero-terminated and accessed |
| * from ipath->fspath->val[i]. |
| * when it returns, there are ipath->fspath->elem_cnt number of paths available |
| * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the |
| * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, |
| * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would |
| * have been needed to return all paths. |
| */ |
| int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) |
| { |
| int ret; |
| int found_refs = 0; |
| |
| ret = iterate_inode_refs(inum, ipath); |
| if (!ret) |
| ++found_refs; |
| else if (ret != -ENOENT) |
| return ret; |
| |
| ret = iterate_inode_extrefs(inum, ipath); |
| if (ret == -ENOENT && found_refs) |
| return 0; |
| |
| return ret; |
| } |
| |
| struct btrfs_data_container *init_data_container(u32 total_bytes) |
| { |
| struct btrfs_data_container *data; |
| size_t alloc_bytes; |
| |
| alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); |
| data = kvmalloc(alloc_bytes, GFP_KERNEL); |
| if (!data) |
| return ERR_PTR(-ENOMEM); |
| |
| if (total_bytes >= sizeof(*data)) { |
| data->bytes_left = total_bytes - sizeof(*data); |
| data->bytes_missing = 0; |
| } else { |
| data->bytes_missing = sizeof(*data) - total_bytes; |
| data->bytes_left = 0; |
| } |
| |
| data->elem_cnt = 0; |
| data->elem_missed = 0; |
| |
| return data; |
| } |
| |
| /* |
| * allocates space to return multiple file system paths for an inode. |
| * total_bytes to allocate are passed, note that space usable for actual path |
| * information will be total_bytes - sizeof(struct inode_fs_paths). |
| * the returned pointer must be freed with free_ipath() in the end. |
| */ |
| struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, |
| struct btrfs_path *path) |
| { |
| struct inode_fs_paths *ifp; |
| struct btrfs_data_container *fspath; |
| |
| fspath = init_data_container(total_bytes); |
| if (IS_ERR(fspath)) |
| return ERR_CAST(fspath); |
| |
| ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); |
| if (!ifp) { |
| kvfree(fspath); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ifp->btrfs_path = path; |
| ifp->fspath = fspath; |
| ifp->fs_root = fs_root; |
| |
| return ifp; |
| } |
| |
| void free_ipath(struct inode_fs_paths *ipath) |
| { |
| if (!ipath) |
| return; |
| kvfree(ipath->fspath); |
| kfree(ipath); |
| } |
| |
| struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_backref_iter *ret; |
| |
| ret = kzalloc(sizeof(*ret), GFP_NOFS); |
| if (!ret) |
| return NULL; |
| |
| ret->path = btrfs_alloc_path(); |
| if (!ret->path) { |
| kfree(ret); |
| return NULL; |
| } |
| |
| /* Current backref iterator only supports iteration in commit root */ |
| ret->path->search_commit_root = 1; |
| ret->path->skip_locking = 1; |
| ret->fs_info = fs_info; |
| |
| return ret; |
| } |
| |
| int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) |
| { |
| struct btrfs_fs_info *fs_info = iter->fs_info; |
| struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); |
| struct btrfs_path *path = iter->path; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = (u64)-1; |
| iter->bytenr = bytenr; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| if (ret == 0) { |
| ret = -EUCLEAN; |
| goto release; |
| } |
| if (path->slots[0] == 0) { |
| WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| ret = -EUCLEAN; |
| goto release; |
| } |
| path->slots[0]--; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if ((key.type != BTRFS_EXTENT_ITEM_KEY && |
| key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { |
| ret = -ENOENT; |
| goto release; |
| } |
| memcpy(&iter->cur_key, &key, sizeof(key)); |
| iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| iter->end_ptr = (u32)(iter->item_ptr + |
| btrfs_item_size(path->nodes[0], path->slots[0])); |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_extent_item); |
| |
| /* |
| * Only support iteration on tree backref yet. |
| * |
| * This is an extra precaution for non skinny-metadata, where |
| * EXTENT_ITEM is also used for tree blocks, that we can only use |
| * extent flags to determine if it's a tree block. |
| */ |
| if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { |
| ret = -ENOTSUPP; |
| goto release; |
| } |
| iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); |
| |
| /* If there is no inline backref, go search for keyed backref */ |
| if (iter->cur_ptr >= iter->end_ptr) { |
| ret = btrfs_next_item(extent_root, path); |
| |
| /* No inline nor keyed ref */ |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto release; |
| } |
| if (ret < 0) |
| goto release; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, |
| path->slots[0]); |
| if (iter->cur_key.objectid != bytenr || |
| (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && |
| iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { |
| ret = -ENOENT; |
| goto release; |
| } |
| iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| iter->item_ptr = iter->cur_ptr; |
| iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( |
| path->nodes[0], path->slots[0])); |
| } |
| |
| return 0; |
| release: |
| btrfs_backref_iter_release(iter); |
| return ret; |
| } |
| |
| /* |
| * Go to the next backref item of current bytenr, can be either inlined or |
| * keyed. |
| * |
| * Caller needs to check whether it's inline ref or not by iter->cur_key. |
| * |
| * Return 0 if we get next backref without problem. |
| * Return >0 if there is no extra backref for this bytenr. |
| * Return <0 if there is something wrong happened. |
| */ |
| int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) |
| { |
| struct extent_buffer *eb = btrfs_backref_get_eb(iter); |
| struct btrfs_root *extent_root; |
| struct btrfs_path *path = iter->path; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| u32 size; |
| |
| if (btrfs_backref_iter_is_inline_ref(iter)) { |
| /* We're still inside the inline refs */ |
| ASSERT(iter->cur_ptr < iter->end_ptr); |
| |
| if (btrfs_backref_has_tree_block_info(iter)) { |
| /* First tree block info */ |
| size = sizeof(struct btrfs_tree_block_info); |
| } else { |
| /* Use inline ref type to determine the size */ |
| int type; |
| |
| iref = (struct btrfs_extent_inline_ref *) |
| ((unsigned long)iter->cur_ptr); |
| type = btrfs_extent_inline_ref_type(eb, iref); |
| |
| size = btrfs_extent_inline_ref_size(type); |
| } |
| iter->cur_ptr += size; |
| if (iter->cur_ptr < iter->end_ptr) |
| return 0; |
| |
| /* All inline items iterated, fall through */ |
| } |
| |
| /* We're at keyed items, there is no inline item, go to the next one */ |
| extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); |
| ret = btrfs_next_item(extent_root, iter->path); |
| if (ret) |
| return ret; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); |
| if (iter->cur_key.objectid != iter->bytenr || |
| (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && |
| iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) |
| return 1; |
| iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| iter->cur_ptr = iter->item_ptr; |
| iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], |
| path->slots[0]); |
| return 0; |
| } |
| |
| void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, |
| struct btrfs_backref_cache *cache, bool is_reloc) |
| { |
| int i; |
| |
| cache->rb_root = RB_ROOT; |
| for (i = 0; i < BTRFS_MAX_LEVEL; i++) |
| INIT_LIST_HEAD(&cache->pending[i]); |
| INIT_LIST_HEAD(&cache->changed); |
| INIT_LIST_HEAD(&cache->detached); |
| INIT_LIST_HEAD(&cache->leaves); |
| INIT_LIST_HEAD(&cache->pending_edge); |
| INIT_LIST_HEAD(&cache->useless_node); |
| cache->fs_info = fs_info; |
| cache->is_reloc = is_reloc; |
| } |
| |
| struct btrfs_backref_node *btrfs_backref_alloc_node( |
| struct btrfs_backref_cache *cache, u64 bytenr, int level) |
| { |
| struct btrfs_backref_node *node; |
| |
| ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); |
| node = kzalloc(sizeof(*node), GFP_NOFS); |
| if (!node) |
| return node; |
| |
| INIT_LIST_HEAD(&node->list); |
| INIT_LIST_HEAD(&node->upper); |
| INIT_LIST_HEAD(&node->lower); |
| RB_CLEAR_NODE(&node->rb_node); |
| cache->nr_nodes++; |
| node->level = level; |
| node->bytenr = bytenr; |
| |
| return node; |
| } |
| |
| struct btrfs_backref_edge *btrfs_backref_alloc_edge( |
| struct btrfs_backref_cache *cache) |
| { |
| struct btrfs_backref_edge *edge; |
| |
| edge = kzalloc(sizeof(*edge), GFP_NOFS); |
| if (edge) |
| cache->nr_edges++; |
| return edge; |
| } |
| |
| /* |
| * Drop the backref node from cache, also cleaning up all its |
| * upper edges and any uncached nodes in the path. |
| * |
| * This cleanup happens bottom up, thus the node should either |
| * be the lowest node in the cache or a detached node. |
| */ |
| void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, |
| struct btrfs_backref_node *node) |
| { |
| struct btrfs_backref_node *upper; |
| struct btrfs_backref_edge *edge; |
| |
| if (!node) |
| return; |
| |
| BUG_ON(!node->lowest && !node->detached); |
| while (!list_empty(&node->upper)) { |
| edge = list_entry(node->upper.next, struct btrfs_backref_edge, |
| list[LOWER]); |
| upper = edge->node[UPPER]; |
| list_del(&edge->list[LOWER]); |
| list_del(&edge->list[UPPER]); |
| btrfs_backref_free_edge(cache, edge); |
| |
| /* |
| * Add the node to leaf node list if no other child block |
| * cached. |
| */ |
| if (list_empty(&upper->lower)) { |
| list_add_tail(&upper->lower, &cache->leaves); |
| upper->lowest = 1; |
| } |
| } |
| |
| btrfs_backref_drop_node(cache, node); |
| } |
| |
| /* |
| * Release all nodes/edges from current cache |
| */ |
| void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) |
| { |
| struct btrfs_backref_node *node; |
| int i; |
| |
| while (!list_empty(&cache->detached)) { |
| node = list_entry(cache->detached.next, |
| struct btrfs_backref_node, list); |
| btrfs_backref_cleanup_node(cache, node); |
| } |
| |
| while (!list_empty(&cache->leaves)) { |
| node = list_entry(cache->leaves.next, |
| struct btrfs_backref_node, lower); |
| btrfs_backref_cleanup_node(cache, node); |
| } |
| |
| cache->last_trans = 0; |
| |
| for (i = 0; i < BTRFS_MAX_LEVEL; i++) |
| ASSERT(list_empty(&cache->pending[i])); |
| ASSERT(list_empty(&cache->pending_edge)); |
| ASSERT(list_empty(&cache->useless_node)); |
| ASSERT(list_empty(&cache->changed)); |
| ASSERT(list_empty(&cache->detached)); |
| ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); |
| ASSERT(!cache->nr_nodes); |
| ASSERT(!cache->nr_edges); |
| } |
| |
| /* |
| * Handle direct tree backref |
| * |
| * Direct tree backref means, the backref item shows its parent bytenr |
| * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). |
| * |
| * @ref_key: The converted backref key. |
| * For keyed backref, it's the item key. |
| * For inlined backref, objectid is the bytenr, |
| * type is btrfs_inline_ref_type, offset is |
| * btrfs_inline_ref_offset. |
| */ |
| static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, |
| struct btrfs_key *ref_key, |
| struct btrfs_backref_node *cur) |
| { |
| struct btrfs_backref_edge *edge; |
| struct btrfs_backref_node *upper; |
| struct rb_node *rb_node; |
| |
| ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); |
| |
| /* Only reloc root uses backref pointing to itself */ |
| if (ref_key->objectid == ref_key->offset) { |
| struct btrfs_root *root; |
| |
| cur->is_reloc_root = 1; |
| /* Only reloc backref cache cares about a specific root */ |
| if (cache->is_reloc) { |
| root = find_reloc_root(cache->fs_info, cur->bytenr); |
| if (!root) |
| return -ENOENT; |
| cur->root = root; |
| } else { |
| /* |
| * For generic purpose backref cache, reloc root node |
| * is useless. |
| */ |
| list_add(&cur->list, &cache->useless_node); |
| } |
| return 0; |
| } |
| |
| edge = btrfs_backref_alloc_edge(cache); |
| if (!edge) |
| return -ENOMEM; |
| |
| rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); |
| if (!rb_node) { |
| /* Parent node not yet cached */ |
| upper = btrfs_backref_alloc_node(cache, ref_key->offset, |
| cur->level + 1); |
| if (!upper) { |
| btrfs_backref_free_edge(cache, edge); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Backrefs for the upper level block isn't cached, add the |
| * block to pending list |
| */ |
| list_add_tail(&edge->list[UPPER], &cache->pending_edge); |
| } else { |
| /* Parent node already cached */ |
| upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); |
| ASSERT(upper->checked); |
| INIT_LIST_HEAD(&edge->list[UPPER]); |
| } |
| btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); |
| return 0; |
| } |
| |
| /* |
| * Handle indirect tree backref |
| * |
| * Indirect tree backref means, we only know which tree the node belongs to. |
| * We still need to do a tree search to find out the parents. This is for |
| * TREE_BLOCK_REF backref (keyed or inlined). |
| * |
| * @trans: Transaction handle. |
| * @ref_key: The same as @ref_key in handle_direct_tree_backref() |
| * @tree_key: The first key of this tree block. |
| * @path: A clean (released) path, to avoid allocating path every time |
| * the function get called. |
| */ |
| static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_backref_cache *cache, |
| struct btrfs_path *path, |
| struct btrfs_key *ref_key, |
| struct btrfs_key *tree_key, |
| struct btrfs_backref_node *cur) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_backref_node *upper; |
| struct btrfs_backref_node *lower; |
| struct btrfs_backref_edge *edge; |
| struct extent_buffer *eb; |
| struct btrfs_root *root; |
| struct rb_node *rb_node; |
| int level; |
| bool need_check = true; |
| int ret; |
| |
| root = btrfs_get_fs_root(fs_info, ref_key->offset, false); |
| if (IS_ERR(root)) |
| return PTR_ERR(root); |
| if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| cur->cowonly = 1; |
| |
| if (btrfs_root_level(&root->root_item) == cur->level) { |
| /* Tree root */ |
| ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); |
| /* |
| * For reloc backref cache, we may ignore reloc root. But for |
| * general purpose backref cache, we can't rely on |
| * btrfs_should_ignore_reloc_root() as it may conflict with |
| * current running relocation and lead to missing root. |
| * |
| * For general purpose backref cache, reloc root detection is |
| * completely relying on direct backref (key->offset is parent |
| * bytenr), thus only do such check for reloc cache. |
| */ |
| if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { |
| btrfs_put_root(root); |
| list_add(&cur->list, &cache->useless_node); |
| } else { |
| cur->root = root; |
| } |
| return 0; |
| } |
| |
| level = cur->level + 1; |
| |
| /* Search the tree to find parent blocks referring to the block */ |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); |
| path->lowest_level = 0; |
| if (ret < 0) { |
| btrfs_put_root(root); |
| return ret; |
| } |
| if (ret > 0 && path->slots[level] > 0) |
| path->slots[level]--; |
| |
| eb = path->nodes[level]; |
| if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { |
| btrfs_err(fs_info, |
| "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", |
| cur->bytenr, level - 1, root->root_key.objectid, |
| tree_key->objectid, tree_key->type, tree_key->offset); |
| btrfs_put_root(root); |
| ret = -ENOENT; |
| goto out; |
| } |
| lower = cur; |
| |
| /* Add all nodes and edges in the path */ |
| for (; level < BTRFS_MAX_LEVEL; level++) { |
| if (!path->nodes[level]) { |
| ASSERT(btrfs_root_bytenr(&root->root_item) == |
| lower->bytenr); |
| /* Same as previous should_ignore_reloc_root() call */ |
| if (btrfs_should_ignore_reloc_root(root) && |
| cache->is_reloc) { |
| btrfs_put_root(root); |
| list_add(&lower->list, &cache->useless_node); |
| } else { |
| lower->root = root; |
| } |
| break; |
| } |
| |
| edge = btrfs_backref_alloc_edge(cache); |
| if (!edge) { |
| btrfs_put_root(root); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| eb = path->nodes[level]; |
| rb_node = rb_simple_search(&cache->rb_root, eb->start); |
| if (!rb_node) { |
| upper = btrfs_backref_alloc_node(cache, eb->start, |
| lower->level + 1); |
| if (!upper) { |
| btrfs_put_root(root); |
| btrfs_backref_free_edge(cache, edge); |
| ret = -ENOMEM; |
| goto out; |
| } |
| upper->owner = btrfs_header_owner(eb); |
| if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| upper->cowonly = 1; |
| |
| /* |
| * If we know the block isn't shared we can avoid |
| * checking its backrefs. |
| */ |
| if (btrfs_block_can_be_shared(trans, root, eb)) |
| upper->checked = 0; |
| else |
| upper->checked = 1; |
| |
| /* |
| * Add the block to pending list if we need to check its |
| * backrefs, we only do this once while walking up a |
| * tree as we will catch anything else later on. |
| */ |
| if (!upper->checked && need_check) { |
| need_check = false; |
| list_add_tail(&edge->list[UPPER], |
| &cache->pending_edge); |
| } else { |
| if (upper->checked) |
| need_check = true; |
| INIT_LIST_HEAD(&edge->list[UPPER]); |
| } |
| } else { |
| upper = rb_entry(rb_node, struct btrfs_backref_node, |
| rb_node); |
| ASSERT(upper->checked); |
| INIT_LIST_HEAD(&edge->list[UPPER]); |
| if (!upper->owner) |
| upper->owner = btrfs_header_owner(eb); |
| } |
| btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); |
| |
| if (rb_node) { |
| btrfs_put_root(root); |
| break; |
| } |
| lower = upper; |
| upper = NULL; |
| } |
| out: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| /* |
| * Add backref node @cur into @cache. |
| * |
| * NOTE: Even if the function returned 0, @cur is not yet cached as its upper |
| * links aren't yet bi-directional. Needs to finish such links. |
| * Use btrfs_backref_finish_upper_links() to finish such linkage. |
| * |
| * @trans: Transaction handle. |
| * @path: Released path for indirect tree backref lookup |
| * @iter: Released backref iter for extent tree search |
| * @node_key: The first key of the tree block |
| */ |
| int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, |
| struct btrfs_backref_cache *cache, |
| struct btrfs_path *path, |
| struct btrfs_backref_iter *iter, |
| struct btrfs_key *node_key, |
| struct btrfs_backref_node *cur) |
| { |
| struct btrfs_backref_edge *edge; |
| struct btrfs_backref_node *exist; |
| int ret; |
| |
| ret = btrfs_backref_iter_start(iter, cur->bytenr); |
| if (ret < 0) |
| return ret; |
| /* |
| * We skip the first btrfs_tree_block_info, as we don't use the key |
| * stored in it, but fetch it from the tree block |
| */ |
| if (btrfs_backref_has_tree_block_info(iter)) { |
| ret = btrfs_backref_iter_next(iter); |
| if (ret < 0) |
| goto out; |
| /* No extra backref? This means the tree block is corrupted */ |
| if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| WARN_ON(cur->checked); |
| if (!list_empty(&cur->upper)) { |
| /* |
| * The backref was added previously when processing backref of |
| * type BTRFS_TREE_BLOCK_REF_KEY |
| */ |
| ASSERT(list_is_singular(&cur->upper)); |
| edge = list_entry(cur->upper.next, struct btrfs_backref_edge, |
| list[LOWER]); |
| ASSERT(list_empty(&edge->list[UPPER])); |
| exist = edge->node[UPPER]; |
| /* |
| * Add the upper level block to pending list if we need check |
| * its backrefs |
| */ |
| if (!exist->checked) |
| list_add_tail(&edge->list[UPPER], &cache->pending_edge); |
| } else { |
| exist = NULL; |
| } |
| |
| for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { |
| struct extent_buffer *eb; |
| struct btrfs_key key; |
| int type; |
| |
| cond_resched(); |
| eb = btrfs_backref_get_eb(iter); |
| |
| key.objectid = iter->bytenr; |
| if (btrfs_backref_iter_is_inline_ref(iter)) { |
| struct btrfs_extent_inline_ref *iref; |
| |
| /* Update key for inline backref */ |
| iref = (struct btrfs_extent_inline_ref *) |
| ((unsigned long)iter->cur_ptr); |
| type = btrfs_get_extent_inline_ref_type(eb, iref, |
| BTRFS_REF_TYPE_BLOCK); |
| if (type == BTRFS_REF_TYPE_INVALID) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| key.type = type; |
| key.offset = btrfs_extent_inline_ref_offset(eb, iref); |
| } else { |
| key.type = iter->cur_key.type; |
| key.offset = iter->cur_key.offset; |
| } |
| |
| /* |
| * Parent node found and matches current inline ref, no need to |
| * rebuild this node for this inline ref |
| */ |
| if (exist && |
| ((key.type == BTRFS_TREE_BLOCK_REF_KEY && |
| exist->owner == key.offset) || |
| (key.type == BTRFS_SHARED_BLOCK_REF_KEY && |
| exist->bytenr == key.offset))) { |
| exist = NULL; |
| continue; |
| } |
| |
| /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ |
| if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| ret = handle_direct_tree_backref(cache, &key, cur); |
| if (ret < 0) |
| goto out; |
| } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { |
| /* |
| * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref |
| * offset means the root objectid. We need to search |
| * the tree to get its parent bytenr. |
| */ |
| ret = handle_indirect_tree_backref(trans, cache, path, |
| &key, node_key, cur); |
| if (ret < 0) |
| goto out; |
| } |
| /* |
| * Unrecognized tree backref items (if it can pass tree-checker) |
| * would be ignored. |
| */ |
| } |
| ret = 0; |
| cur->checked = 1; |
| WARN_ON(exist); |
| out: |
| btrfs_backref_iter_release(iter); |
| return ret; |
| } |
| |
| /* |
| * Finish the upwards linkage created by btrfs_backref_add_tree_node() |
| */ |
| int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, |
| struct btrfs_backref_node *start) |
| { |
| struct list_head *useless_node = &cache->useless_node; |
| struct btrfs_backref_edge *edge; |
| struct rb_node *rb_node; |
| LIST_HEAD(pending_edge); |
| |
| ASSERT(start->checked); |
| |
| /* Insert this node to cache if it's not COW-only */ |
| if (!start->cowonly) { |
| rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, |
| &start->rb_node); |
| if (rb_node) |
| btrfs_backref_panic(cache->fs_info, start->bytenr, |
| -EEXIST); |
| list_add_tail(&start->lower, &cache->leaves); |
| } |
| |
| /* |
| * Use breadth first search to iterate all related edges. |
| * |
| * The starting points are all the edges of this node |
| */ |
| list_for_each_entry(edge, &start->upper, list[LOWER]) |
| list_add_tail(&edge->list[UPPER], &pending_edge); |
| |
| while (!list_empty(&pending_edge)) { |
| struct btrfs_backref_node *upper; |
| struct btrfs_backref_node *lower; |
| |
| edge = list_first_entry(&pending_edge, |
| struct btrfs_backref_edge, list[UPPER]); |
| list_del_init(&edge->list[UPPER]); |
| upper = edge->node[UPPER]; |
| lower = edge->node[LOWER]; |
| |
| /* Parent is detached, no need to keep any edges */ |
| if (upper->detached) { |
| list_del(&edge->list[LOWER]); |
| btrfs_backref_free_edge(cache, edge); |
| |
| /* Lower node is orphan, queue for cleanup */ |
| if (list_empty(&lower->upper)) |
| list_add(&lower->list, useless_node); |
| continue; |
| } |
| |
| /* |
| * All new nodes added in current build_backref_tree() haven't |
| * been linked to the cache rb tree. |
| * So if we have upper->rb_node populated, this means a cache |
| * hit. We only need to link the edge, as @upper and all its |
| * parents have already been linked. |
| */ |
| if (!RB_EMPTY_NODE(&upper->rb_node)) { |
| if (upper->lowest) { |
| list_del_init(&upper->lower); |
| upper->lowest = 0; |
| } |
| |
| list_add_tail(&edge->list[UPPER], &upper->lower); |
| continue; |
| } |
| |
| /* Sanity check, we shouldn't have any unchecked nodes */ |
| if (!upper->checked) { |
| ASSERT(0); |
| return -EUCLEAN; |
| } |
| |
| /* Sanity check, COW-only node has non-COW-only parent */ |
| if (start->cowonly != upper->cowonly) { |
| ASSERT(0); |
| return -EUCLEAN; |
| } |
| |
| /* Only cache non-COW-only (subvolume trees) tree blocks */ |
| if (!upper->cowonly) { |
| rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, |
| &upper->rb_node); |
| if (rb_node) { |
| btrfs_backref_panic(cache->fs_info, |
| upper->bytenr, -EEXIST); |
| return -EUCLEAN; |
| } |
| } |
| |
| list_add_tail(&edge->list[UPPER], &upper->lower); |
| |
| /* |
| * Also queue all the parent edges of this uncached node |
| * to finish the upper linkage |
| */ |
| list_for_each_entry(edge, &upper->upper, list[LOWER]) |
| list_add_tail(&edge->list[UPPER], &pending_edge); |
| } |
| return 0; |
| } |
| |
| void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, |
| struct btrfs_backref_node *node) |
| { |
| struct btrfs_backref_node *lower; |
| struct btrfs_backref_node *upper; |
| struct btrfs_backref_edge *edge; |
| |
| while (!list_empty(&cache->useless_node)) { |
| lower = list_first_entry(&cache->useless_node, |
| struct btrfs_backref_node, list); |
| list_del_init(&lower->list); |
| } |
| while (!list_empty(&cache->pending_edge)) { |
| edge = list_first_entry(&cache->pending_edge, |
| struct btrfs_backref_edge, list[UPPER]); |
| list_del(&edge->list[UPPER]); |
| list_del(&edge->list[LOWER]); |
| lower = edge->node[LOWER]; |
| upper = edge->node[UPPER]; |
| btrfs_backref_free_edge(cache, edge); |
| |
| /* |
| * Lower is no longer linked to any upper backref nodes and |
| * isn't in the cache, we can free it ourselves. |
| */ |
| if (list_empty(&lower->upper) && |
| RB_EMPTY_NODE(&lower->rb_node)) |
| list_add(&lower->list, &cache->useless_node); |
| |
| if (!RB_EMPTY_NODE(&upper->rb_node)) |
| continue; |
| |
| /* Add this guy's upper edges to the list to process */ |
| list_for_each_entry(edge, &upper->upper, list[LOWER]) |
| list_add_tail(&edge->list[UPPER], |
| &cache->pending_edge); |
| if (list_empty(&upper->upper)) |
| list_add(&upper->list, &cache->useless_node); |
| } |
| |
| while (!list_empty(&cache->useless_node)) { |
| lower = list_first_entry(&cache->useless_node, |
| struct btrfs_backref_node, list); |
| list_del_init(&lower->list); |
| if (lower == node) |
| node = NULL; |
| btrfs_backref_drop_node(cache, lower); |
| } |
| |
| btrfs_backref_cleanup_node(cache, node); |
| ASSERT(list_empty(&cache->useless_node) && |
| list_empty(&cache->pending_edge)); |
| } |