blob: 7f0dc48ffb40895a499208474536e300f2efab34 [file] [log] [blame]
/*
* blk-mq scheduling framework
*
* Copyright (C) 2016 Jens Axboe
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"
void blk_mq_sched_free_hctx_data(struct request_queue *q,
void (*exit)(struct blk_mq_hw_ctx *))
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (exit && hctx->sched_data)
exit(hctx);
kfree(hctx->sched_data);
hctx->sched_data = NULL;
}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
{
struct request_queue *q = rq->q;
struct io_context *ioc = rq_ioc(bio);
struct io_cq *icq;
spin_lock_irq(q->queue_lock);
icq = ioc_lookup_icq(ioc, q);
spin_unlock_irq(q->queue_lock);
if (!icq) {
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
if (!icq)
return;
}
get_io_context(icq->ioc);
rq->elv.icq = icq;
}
/*
* Mark a hardware queue as needing a restart. For shared queues, maintain
* a count of how many hardware queues are marked for restart.
*/
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
return;
if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
struct request_queue *q = hctx->queue;
if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
atomic_inc(&q->shared_hctx_restart);
} else
set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}
static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
return false;
if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
struct request_queue *q = hctx->queue;
if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
atomic_dec(&q->shared_hctx_restart);
} else
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
if (blk_mq_hctx_has_pending(hctx)) {
blk_mq_run_hw_queue(hctx, true);
return true;
}
return false;
}
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct elevator_queue *e = q->elevator;
const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
bool did_work = false;
LIST_HEAD(rq_list);
/* RCU or SRCU read lock is needed before checking quiesced flag */
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
return;
hctx->run++;
/*
* If we have previous entries on our dispatch list, grab them first for
* more fair dispatch.
*/
if (!list_empty_careful(&hctx->dispatch)) {
spin_lock(&hctx->lock);
if (!list_empty(&hctx->dispatch))
list_splice_init(&hctx->dispatch, &rq_list);
spin_unlock(&hctx->lock);
}
/*
* Only ask the scheduler for requests, if we didn't have residual
* requests from the dispatch list. This is to avoid the case where
* we only ever dispatch a fraction of the requests available because
* of low device queue depth. Once we pull requests out of the IO
* scheduler, we can no longer merge or sort them. So it's best to
* leave them there for as long as we can. Mark the hw queue as
* needing a restart in that case.
*/
if (!list_empty(&rq_list)) {
blk_mq_sched_mark_restart_hctx(hctx);
did_work = blk_mq_dispatch_rq_list(q, &rq_list);
} else if (!has_sched_dispatch) {
blk_mq_flush_busy_ctxs(hctx, &rq_list);
blk_mq_dispatch_rq_list(q, &rq_list);
}
/*
* We want to dispatch from the scheduler if we had no work left
* on the dispatch list, OR if we did have work but weren't able
* to make progress.
*/
if (!did_work && has_sched_dispatch) {
do {
struct request *rq;
rq = e->type->ops.mq.dispatch_request(hctx);
if (!rq)
break;
list_add(&rq->queuelist, &rq_list);
} while (blk_mq_dispatch_rq_list(q, &rq_list));
}
}
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
struct request **merged_request)
{
struct request *rq;
switch (elv_merge(q, &rq, bio)) {
case ELEVATOR_BACK_MERGE:
if (!blk_mq_sched_allow_merge(q, rq, bio))
return false;
if (!bio_attempt_back_merge(q, rq, bio))
return false;
*merged_request = attempt_back_merge(q, rq);
if (!*merged_request)
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
return true;
case ELEVATOR_FRONT_MERGE:
if (!blk_mq_sched_allow_merge(q, rq, bio))
return false;
if (!bio_attempt_front_merge(q, rq, bio))
return false;
*merged_request = attempt_front_merge(q, rq);
if (!*merged_request)
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
return true;
default:
return false;
}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
/*
* Reverse check our software queue for entries that we could potentially
* merge with. Currently includes a hand-wavy stop count of 8, to not spend
* too much time checking for merges.
*/
static bool blk_mq_attempt_merge(struct request_queue *q,
struct blk_mq_ctx *ctx, struct bio *bio)
{
struct request *rq;
int checked = 8;
lockdep_assert_held(&ctx->lock);
list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
bool merged = false;
if (!checked--)
break;
if (!blk_rq_merge_ok(rq, bio))
continue;
switch (blk_try_merge(rq, bio)) {
case ELEVATOR_BACK_MERGE:
if (blk_mq_sched_allow_merge(q, rq, bio))
merged = bio_attempt_back_merge(q, rq, bio);
break;
case ELEVATOR_FRONT_MERGE:
if (blk_mq_sched_allow_merge(q, rq, bio))
merged = bio_attempt_front_merge(q, rq, bio);
break;
case ELEVATOR_DISCARD_MERGE:
merged = bio_attempt_discard_merge(q, rq, bio);
break;
default:
continue;
}
if (merged)
ctx->rq_merged++;
return merged;
}
return false;
}
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
struct elevator_queue *e = q->elevator;
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
bool ret = false;
if (e && e->type->ops.mq.bio_merge) {
blk_mq_put_ctx(ctx);
return e->type->ops.mq.bio_merge(hctx, bio);
}
if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
/* default per sw-queue merge */
spin_lock(&ctx->lock);
ret = blk_mq_attempt_merge(q, ctx, bio);
spin_unlock(&ctx->lock);
}
blk_mq_put_ctx(ctx);
return ret;
}
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
void blk_mq_sched_request_inserted(struct request *rq)
{
trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
if (rq->tag == -1) {
rq->rq_flags |= RQF_SORTED;
return false;
}
/*
* If we already have a real request tag, send directly to
* the dispatch list.
*/
spin_lock(&hctx->lock);
list_add(&rq->queuelist, &hctx->dispatch);
spin_unlock(&hctx->lock);
return true;
}
/**
* list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
* @pos: loop cursor.
* @skip: the list element that will not be examined. Iteration starts at
* @skip->next.
* @head: head of the list to examine. This list must have at least one
* element, namely @skip.
* @member: name of the list_head structure within typeof(*pos).
*/
#define list_for_each_entry_rcu_rr(pos, skip, head, member) \
for ((pos) = (skip); \
(pos = (pos)->member.next != (head) ? list_entry_rcu( \
(pos)->member.next, typeof(*pos), member) : \
list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
(pos) != (skip); )
/*
* Called after a driver tag has been freed to check whether a hctx needs to
* be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
* queues in a round-robin fashion if the tag set of @hctx is shared with other
* hardware queues.
*/
void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
{
struct blk_mq_tags *const tags = hctx->tags;
struct blk_mq_tag_set *const set = hctx->queue->tag_set;
struct request_queue *const queue = hctx->queue, *q;
struct blk_mq_hw_ctx *hctx2;
unsigned int i, j;
if (set->flags & BLK_MQ_F_TAG_SHARED) {
/*
* If this is 0, then we know that no hardware queues
* have RESTART marked. We're done.
*/
if (!atomic_read(&queue->shared_hctx_restart))
return;
rcu_read_lock();
list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
tag_set_list) {
queue_for_each_hw_ctx(q, hctx2, i)
if (hctx2->tags == tags &&
blk_mq_sched_restart_hctx(hctx2))
goto done;
}
j = hctx->queue_num + 1;
for (i = 0; i < queue->nr_hw_queues; i++, j++) {
if (j == queue->nr_hw_queues)
j = 0;
hctx2 = queue->queue_hw_ctx[j];
if (hctx2->tags == tags &&
blk_mq_sched_restart_hctx(hctx2))
break;
}
done:
rcu_read_unlock();
} else {
blk_mq_sched_restart_hctx(hctx);
}
}
/*
* Add flush/fua to the queue. If we fail getting a driver tag, then
* punt to the requeue list. Requeue will re-invoke us from a context
* that's safe to block from.
*/
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
struct request *rq, bool can_block)
{
if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
blk_insert_flush(rq);
blk_mq_run_hw_queue(hctx, true);
} else
blk_mq_add_to_requeue_list(rq, false, true);
}
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
bool run_queue, bool async, bool can_block)
{
struct request_queue *q = rq->q;
struct elevator_queue *e = q->elevator;
struct blk_mq_ctx *ctx = rq->mq_ctx;
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
blk_mq_sched_insert_flush(hctx, rq, can_block);
return;
}
if (e && blk_mq_sched_bypass_insert(hctx, rq))
goto run;
if (e && e->type->ops.mq.insert_requests) {
LIST_HEAD(list);
list_add(&rq->queuelist, &list);
e->type->ops.mq.insert_requests(hctx, &list, at_head);
} else {
spin_lock(&ctx->lock);
__blk_mq_insert_request(hctx, rq, at_head);
spin_unlock(&ctx->lock);
}
run:
if (run_queue)
blk_mq_run_hw_queue(hctx, async);
}
void blk_mq_sched_insert_requests(struct request_queue *q,
struct blk_mq_ctx *ctx,
struct list_head *list, bool run_queue_async)
{
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
struct elevator_queue *e = hctx->queue->elevator;
if (e) {
struct request *rq, *next;
/*
* We bypass requests that already have a driver tag assigned,
* which should only be flushes. Flushes are only ever inserted
* as single requests, so we shouldn't ever hit the
* WARN_ON_ONCE() below (but let's handle it just in case).
*/
list_for_each_entry_safe(rq, next, list, queuelist) {
if (WARN_ON_ONCE(rq->tag != -1)) {
list_del_init(&rq->queuelist);
blk_mq_sched_bypass_insert(hctx, rq);
}
}
}
if (e && e->type->ops.mq.insert_requests)
e->type->ops.mq.insert_requests(hctx, list, false);
else
blk_mq_insert_requests(hctx, ctx, list);
blk_mq_run_hw_queue(hctx, run_queue_async);
}
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
if (hctx->sched_tags) {
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
blk_mq_free_rq_map(hctx->sched_tags);
hctx->sched_tags = NULL;
}
}
static int blk_mq_sched_alloc_tags(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
struct blk_mq_tag_set *set = q->tag_set;
int ret;
hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
set->reserved_tags);
if (!hctx->sched_tags)
return -ENOMEM;
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
if (ret)
blk_mq_sched_free_tags(set, hctx, hctx_idx);
return ret;
}
static void blk_mq_sched_tags_teardown(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_sched_free_tags(set, hctx, i);
}
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
struct elevator_queue *e = q->elevator;
int ret;
if (!e)
return 0;
ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
if (ret)
return ret;
if (e->type->ops.mq.init_hctx) {
ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
if (ret) {
blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
return ret;
}
}
blk_mq_debugfs_register_sched_hctx(q, hctx);
return 0;
}
void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
struct elevator_queue *e = q->elevator;
if (!e)
return;
blk_mq_debugfs_unregister_sched_hctx(hctx);
if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
e->type->ops.mq.exit_hctx(hctx, hctx_idx);
hctx->sched_data = NULL;
}
blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
struct blk_mq_hw_ctx *hctx;
struct elevator_queue *eq;
unsigned int i;
int ret;
if (!e) {
q->elevator = NULL;
return 0;
}
/*
* Default to 256, since we don't split into sync/async like the
* old code did. Additionally, this is a per-hw queue depth.
*/
q->nr_requests = 2 * BLKDEV_MAX_RQ;
queue_for_each_hw_ctx(q, hctx, i) {
ret = blk_mq_sched_alloc_tags(q, hctx, i);
if (ret)
goto err;
}
ret = e->ops.mq.init_sched(q, e);
if (ret)
goto err;
blk_mq_debugfs_register_sched(q);
queue_for_each_hw_ctx(q, hctx, i) {
if (e->ops.mq.init_hctx) {
ret = e->ops.mq.init_hctx(hctx, i);
if (ret) {
eq = q->elevator;
blk_mq_exit_sched(q, eq);
kobject_put(&eq->kobj);
return ret;
}
}
blk_mq_debugfs_register_sched_hctx(q, hctx);
}
return 0;
err:
blk_mq_sched_tags_teardown(q);
q->elevator = NULL;
return ret;
}
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
queue_for_each_hw_ctx(q, hctx, i) {
blk_mq_debugfs_unregister_sched_hctx(hctx);
if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
e->type->ops.mq.exit_hctx(hctx, i);
hctx->sched_data = NULL;
}
}
blk_mq_debugfs_unregister_sched(q);
if (e->type->ops.mq.exit_sched)
e->type->ops.mq.exit_sched(e);
blk_mq_sched_tags_teardown(q);
q->elevator = NULL;
}
int blk_mq_sched_init(struct request_queue *q)
{
int ret;
mutex_lock(&q->sysfs_lock);
ret = elevator_init(q, NULL);
mutex_unlock(&q->sysfs_lock);
return ret;
}