| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/f2fs/data.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/backing-dev.h> |
| #include <linux/pagevec.h> |
| #include <linux/blkdev.h> |
| #include <linux/bio.h> |
| #include <linux/blk-crypto.h> |
| #include <linux/swap.h> |
| #include <linux/prefetch.h> |
| #include <linux/uio.h> |
| #include <linux/cleancache.h> |
| #include <linux/sched/signal.h> |
| #include <linux/fiemap.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include <trace/events/f2fs.h> |
| |
| #define NUM_PREALLOC_POST_READ_CTXS 128 |
| |
| static struct kmem_cache *bio_post_read_ctx_cache; |
| static struct kmem_cache *bio_entry_slab; |
| static mempool_t *bio_post_read_ctx_pool; |
| static struct bio_set f2fs_bioset; |
| |
| #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE |
| |
| int __init f2fs_init_bioset(void) |
| { |
| if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, |
| 0, BIOSET_NEED_BVECS)) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void f2fs_destroy_bioset(void) |
| { |
| bioset_exit(&f2fs_bioset); |
| } |
| |
| static bool __is_cp_guaranteed(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| struct inode *inode; |
| struct f2fs_sb_info *sbi; |
| |
| if (!mapping) |
| return false; |
| |
| if (f2fs_is_compressed_page(page)) |
| return false; |
| |
| inode = mapping->host; |
| sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino == F2FS_META_INO(sbi) || |
| inode->i_ino == F2FS_NODE_INO(sbi) || |
| S_ISDIR(inode->i_mode) || |
| (S_ISREG(inode->i_mode) && |
| (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || |
| is_cold_data(page)) |
| return true; |
| return false; |
| } |
| |
| static enum count_type __read_io_type(struct page *page) |
| { |
| struct address_space *mapping = page_file_mapping(page); |
| |
| if (mapping) { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino == F2FS_META_INO(sbi)) |
| return F2FS_RD_META; |
| |
| if (inode->i_ino == F2FS_NODE_INO(sbi)) |
| return F2FS_RD_NODE; |
| } |
| return F2FS_RD_DATA; |
| } |
| |
| /* postprocessing steps for read bios */ |
| enum bio_post_read_step { |
| #ifdef CONFIG_FS_ENCRYPTION |
| STEP_DECRYPT = 1 << 0, |
| #else |
| STEP_DECRYPT = 0, /* compile out the decryption-related code */ |
| #endif |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| STEP_DECOMPRESS = 1 << 1, |
| #else |
| STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ |
| #endif |
| #ifdef CONFIG_FS_VERITY |
| STEP_VERITY = 1 << 2, |
| #else |
| STEP_VERITY = 0, /* compile out the verity-related code */ |
| #endif |
| }; |
| |
| struct bio_post_read_ctx { |
| struct bio *bio; |
| struct f2fs_sb_info *sbi; |
| struct work_struct work; |
| unsigned int enabled_steps; |
| }; |
| |
| static void f2fs_finish_read_bio(struct bio *bio) |
| { |
| struct bio_vec *bv; |
| struct bvec_iter_all iter_all; |
| |
| /* |
| * Update and unlock the bio's pagecache pages, and put the |
| * decompression context for any compressed pages. |
| */ |
| bio_for_each_segment_all(bv, bio, iter_all) { |
| struct page *page = bv->bv_page; |
| |
| if (f2fs_is_compressed_page(page)) { |
| if (bio->bi_status) |
| f2fs_end_read_compressed_page(page, true); |
| f2fs_put_page_dic(page); |
| continue; |
| } |
| |
| /* PG_error was set if decryption or verity failed. */ |
| if (bio->bi_status || PageError(page)) { |
| ClearPageUptodate(page); |
| /* will re-read again later */ |
| ClearPageError(page); |
| } else { |
| SetPageUptodate(page); |
| } |
| dec_page_count(F2FS_P_SB(page), __read_io_type(page)); |
| unlock_page(page); |
| } |
| |
| if (bio->bi_private) |
| mempool_free(bio->bi_private, bio_post_read_ctx_pool); |
| bio_put(bio); |
| } |
| |
| static void f2fs_verify_bio(struct work_struct *work) |
| { |
| struct bio_post_read_ctx *ctx = |
| container_of(work, struct bio_post_read_ctx, work); |
| struct bio *bio = ctx->bio; |
| bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); |
| |
| /* |
| * fsverity_verify_bio() may call readpages() again, and while verity |
| * will be disabled for this, decryption and/or decompression may still |
| * be needed, resulting in another bio_post_read_ctx being allocated. |
| * So to prevent deadlocks we need to release the current ctx to the |
| * mempool first. This assumes that verity is the last post-read step. |
| */ |
| mempool_free(ctx, bio_post_read_ctx_pool); |
| bio->bi_private = NULL; |
| |
| /* |
| * Verify the bio's pages with fs-verity. Exclude compressed pages, |
| * as those were handled separately by f2fs_end_read_compressed_page(). |
| */ |
| if (may_have_compressed_pages) { |
| struct bio_vec *bv; |
| struct bvec_iter_all iter_all; |
| |
| bio_for_each_segment_all(bv, bio, iter_all) { |
| struct page *page = bv->bv_page; |
| |
| if (!f2fs_is_compressed_page(page) && |
| !PageError(page) && !fsverity_verify_page(page)) |
| SetPageError(page); |
| } |
| } else { |
| fsverity_verify_bio(bio); |
| } |
| |
| f2fs_finish_read_bio(bio); |
| } |
| |
| /* |
| * If the bio's data needs to be verified with fs-verity, then enqueue the |
| * verity work for the bio. Otherwise finish the bio now. |
| * |
| * Note that to avoid deadlocks, the verity work can't be done on the |
| * decryption/decompression workqueue. This is because verifying the data pages |
| * can involve reading verity metadata pages from the file, and these verity |
| * metadata pages may be encrypted and/or compressed. |
| */ |
| static void f2fs_verify_and_finish_bio(struct bio *bio) |
| { |
| struct bio_post_read_ctx *ctx = bio->bi_private; |
| |
| if (ctx && (ctx->enabled_steps & STEP_VERITY)) { |
| INIT_WORK(&ctx->work, f2fs_verify_bio); |
| fsverity_enqueue_verify_work(&ctx->work); |
| } else { |
| f2fs_finish_read_bio(bio); |
| } |
| } |
| |
| /* |
| * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last |
| * remaining page was read by @ctx->bio. |
| * |
| * Note that a bio may span clusters (even a mix of compressed and uncompressed |
| * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates |
| * that the bio includes at least one compressed page. The actual decompression |
| * is done on a per-cluster basis, not a per-bio basis. |
| */ |
| static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) |
| { |
| struct bio_vec *bv; |
| struct bvec_iter_all iter_all; |
| bool all_compressed = true; |
| |
| bio_for_each_segment_all(bv, ctx->bio, iter_all) { |
| struct page *page = bv->bv_page; |
| |
| /* PG_error was set if decryption failed. */ |
| if (f2fs_is_compressed_page(page)) |
| f2fs_end_read_compressed_page(page, PageError(page)); |
| else |
| all_compressed = false; |
| } |
| |
| /* |
| * Optimization: if all the bio's pages are compressed, then scheduling |
| * the per-bio verity work is unnecessary, as verity will be fully |
| * handled at the compression cluster level. |
| */ |
| if (all_compressed) |
| ctx->enabled_steps &= ~STEP_VERITY; |
| } |
| |
| static void f2fs_post_read_work(struct work_struct *work) |
| { |
| struct bio_post_read_ctx *ctx = |
| container_of(work, struct bio_post_read_ctx, work); |
| |
| if (ctx->enabled_steps & STEP_DECRYPT) |
| fscrypt_decrypt_bio(ctx->bio); |
| |
| if (ctx->enabled_steps & STEP_DECOMPRESS) |
| f2fs_handle_step_decompress(ctx); |
| |
| f2fs_verify_and_finish_bio(ctx->bio); |
| } |
| |
| static void f2fs_read_end_io(struct bio *bio) |
| { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); |
| struct bio_post_read_ctx *ctx = bio->bi_private; |
| |
| if (time_to_inject(sbi, FAULT_READ_IO)) { |
| f2fs_show_injection_info(sbi, FAULT_READ_IO); |
| bio->bi_status = BLK_STS_IOERR; |
| } |
| |
| if (bio->bi_status) { |
| f2fs_finish_read_bio(bio); |
| return; |
| } |
| |
| if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { |
| INIT_WORK(&ctx->work, f2fs_post_read_work); |
| queue_work(ctx->sbi->post_read_wq, &ctx->work); |
| } else { |
| f2fs_verify_and_finish_bio(bio); |
| } |
| } |
| |
| static void f2fs_write_end_io(struct bio *bio) |
| { |
| struct f2fs_sb_info *sbi = bio->bi_private; |
| struct bio_vec *bvec; |
| struct bvec_iter_all iter_all; |
| |
| if (time_to_inject(sbi, FAULT_WRITE_IO)) { |
| f2fs_show_injection_info(sbi, FAULT_WRITE_IO); |
| bio->bi_status = BLK_STS_IOERR; |
| } |
| |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| struct page *page = bvec->bv_page; |
| enum count_type type = WB_DATA_TYPE(page); |
| |
| if (IS_DUMMY_WRITTEN_PAGE(page)) { |
| set_page_private(page, (unsigned long)NULL); |
| ClearPagePrivate(page); |
| unlock_page(page); |
| mempool_free(page, sbi->write_io_dummy); |
| |
| if (unlikely(bio->bi_status)) |
| f2fs_stop_checkpoint(sbi, true); |
| continue; |
| } |
| |
| fscrypt_finalize_bounce_page(&page); |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_is_compressed_page(page)) { |
| f2fs_compress_write_end_io(bio, page); |
| continue; |
| } |
| #endif |
| |
| if (unlikely(bio->bi_status)) { |
| mapping_set_error(page->mapping, -EIO); |
| if (type == F2FS_WB_CP_DATA) |
| f2fs_stop_checkpoint(sbi, true); |
| } |
| |
| f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && |
| page->index != nid_of_node(page)); |
| |
| dec_page_count(sbi, type); |
| if (f2fs_in_warm_node_list(sbi, page)) |
| f2fs_del_fsync_node_entry(sbi, page); |
| clear_cold_data(page); |
| end_page_writeback(page); |
| } |
| if (!get_pages(sbi, F2FS_WB_CP_DATA) && |
| wq_has_sleeper(&sbi->cp_wait)) |
| wake_up(&sbi->cp_wait); |
| |
| bio_put(bio); |
| } |
| |
| struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, |
| block_t blk_addr, struct bio *bio) |
| { |
| struct block_device *bdev = sbi->sb->s_bdev; |
| int i; |
| |
| if (f2fs_is_multi_device(sbi)) { |
| for (i = 0; i < sbi->s_ndevs; i++) { |
| if (FDEV(i).start_blk <= blk_addr && |
| FDEV(i).end_blk >= blk_addr) { |
| blk_addr -= FDEV(i).start_blk; |
| bdev = FDEV(i).bdev; |
| break; |
| } |
| } |
| } |
| if (bio) { |
| bio_set_dev(bio, bdev); |
| bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); |
| } |
| return bdev; |
| } |
| |
| int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| int i; |
| |
| if (!f2fs_is_multi_device(sbi)) |
| return 0; |
| |
| for (i = 0; i < sbi->s_ndevs; i++) |
| if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) |
| return i; |
| return 0; |
| } |
| |
| static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| struct bio *bio; |
| |
| bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); |
| |
| f2fs_target_device(sbi, fio->new_blkaddr, bio); |
| if (is_read_io(fio->op)) { |
| bio->bi_end_io = f2fs_read_end_io; |
| bio->bi_private = NULL; |
| } else { |
| bio->bi_end_io = f2fs_write_end_io; |
| bio->bi_private = sbi; |
| bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, |
| fio->type, fio->temp); |
| } |
| if (fio->io_wbc) |
| wbc_init_bio(fio->io_wbc, bio); |
| |
| return bio; |
| } |
| |
| static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, |
| pgoff_t first_idx, |
| const struct f2fs_io_info *fio, |
| gfp_t gfp_mask) |
| { |
| /* |
| * The f2fs garbage collector sets ->encrypted_page when it wants to |
| * read/write raw data without encryption. |
| */ |
| if (!fio || !fio->encrypted_page) |
| fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); |
| } |
| |
| static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, |
| pgoff_t next_idx, |
| const struct f2fs_io_info *fio) |
| { |
| /* |
| * The f2fs garbage collector sets ->encrypted_page when it wants to |
| * read/write raw data without encryption. |
| */ |
| if (fio && fio->encrypted_page) |
| return !bio_has_crypt_ctx(bio); |
| |
| return fscrypt_mergeable_bio(bio, inode, next_idx); |
| } |
| |
| static inline void __submit_bio(struct f2fs_sb_info *sbi, |
| struct bio *bio, enum page_type type) |
| { |
| if (!is_read_io(bio_op(bio))) { |
| unsigned int start; |
| |
| if (type != DATA && type != NODE) |
| goto submit_io; |
| |
| if (f2fs_lfs_mode(sbi) && current->plug) |
| blk_finish_plug(current->plug); |
| |
| if (!F2FS_IO_ALIGNED(sbi)) |
| goto submit_io; |
| |
| start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; |
| start %= F2FS_IO_SIZE(sbi); |
| |
| if (start == 0) |
| goto submit_io; |
| |
| /* fill dummy pages */ |
| for (; start < F2FS_IO_SIZE(sbi); start++) { |
| struct page *page = |
| mempool_alloc(sbi->write_io_dummy, |
| GFP_NOIO | __GFP_NOFAIL); |
| f2fs_bug_on(sbi, !page); |
| |
| zero_user_segment(page, 0, PAGE_SIZE); |
| SetPagePrivate(page); |
| set_page_private(page, DUMMY_WRITTEN_PAGE); |
| lock_page(page); |
| if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) |
| f2fs_bug_on(sbi, 1); |
| } |
| /* |
| * In the NODE case, we lose next block address chain. So, we |
| * need to do checkpoint in f2fs_sync_file. |
| */ |
| if (type == NODE) |
| set_sbi_flag(sbi, SBI_NEED_CP); |
| } |
| submit_io: |
| if (is_read_io(bio_op(bio))) |
| trace_f2fs_submit_read_bio(sbi->sb, type, bio); |
| else |
| trace_f2fs_submit_write_bio(sbi->sb, type, bio); |
| submit_bio(bio); |
| } |
| |
| void f2fs_submit_bio(struct f2fs_sb_info *sbi, |
| struct bio *bio, enum page_type type) |
| { |
| __submit_bio(sbi, bio, type); |
| } |
| |
| static void __attach_io_flag(struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; |
| unsigned int io_flag, fua_flag, meta_flag; |
| |
| if (fio->type == DATA) |
| io_flag = sbi->data_io_flag; |
| else if (fio->type == NODE) |
| io_flag = sbi->node_io_flag; |
| else |
| return; |
| |
| fua_flag = io_flag & temp_mask; |
| meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; |
| |
| /* |
| * data/node io flag bits per temp: |
| * REQ_META | REQ_FUA | |
| * 5 | 4 | 3 | 2 | 1 | 0 | |
| * Cold | Warm | Hot | Cold | Warm | Hot | |
| */ |
| if ((1 << fio->temp) & meta_flag) |
| fio->op_flags |= REQ_META; |
| if ((1 << fio->temp) & fua_flag) |
| fio->op_flags |= REQ_FUA; |
| } |
| |
| static void __submit_merged_bio(struct f2fs_bio_info *io) |
| { |
| struct f2fs_io_info *fio = &io->fio; |
| |
| if (!io->bio) |
| return; |
| |
| __attach_io_flag(fio); |
| bio_set_op_attrs(io->bio, fio->op, fio->op_flags); |
| |
| if (is_read_io(fio->op)) |
| trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); |
| else |
| trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); |
| |
| __submit_bio(io->sbi, io->bio, fio->type); |
| io->bio = NULL; |
| } |
| |
| static bool __has_merged_page(struct bio *bio, struct inode *inode, |
| struct page *page, nid_t ino) |
| { |
| struct bio_vec *bvec; |
| struct bvec_iter_all iter_all; |
| |
| if (!bio) |
| return false; |
| |
| if (!inode && !page && !ino) |
| return true; |
| |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| struct page *target = bvec->bv_page; |
| |
| if (fscrypt_is_bounce_page(target)) { |
| target = fscrypt_pagecache_page(target); |
| if (IS_ERR(target)) |
| continue; |
| } |
| if (f2fs_is_compressed_page(target)) { |
| target = f2fs_compress_control_page(target); |
| if (IS_ERR(target)) |
| continue; |
| } |
| |
| if (inode && inode == target->mapping->host) |
| return true; |
| if (page && page == target) |
| return true; |
| if (ino && ino == ino_of_node(target)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, |
| enum page_type type, enum temp_type temp) |
| { |
| enum page_type btype = PAGE_TYPE_OF_BIO(type); |
| struct f2fs_bio_info *io = sbi->write_io[btype] + temp; |
| |
| down_write(&io->io_rwsem); |
| |
| /* change META to META_FLUSH in the checkpoint procedure */ |
| if (type >= META_FLUSH) { |
| io->fio.type = META_FLUSH; |
| io->fio.op = REQ_OP_WRITE; |
| io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; |
| if (!test_opt(sbi, NOBARRIER)) |
| io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; |
| } |
| __submit_merged_bio(io); |
| up_write(&io->io_rwsem); |
| } |
| |
| static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, |
| struct inode *inode, struct page *page, |
| nid_t ino, enum page_type type, bool force) |
| { |
| enum temp_type temp; |
| bool ret = true; |
| |
| for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { |
| if (!force) { |
| enum page_type btype = PAGE_TYPE_OF_BIO(type); |
| struct f2fs_bio_info *io = sbi->write_io[btype] + temp; |
| |
| down_read(&io->io_rwsem); |
| ret = __has_merged_page(io->bio, inode, page, ino); |
| up_read(&io->io_rwsem); |
| } |
| if (ret) |
| __f2fs_submit_merged_write(sbi, type, temp); |
| |
| /* TODO: use HOT temp only for meta pages now. */ |
| if (type >= META) |
| break; |
| } |
| } |
| |
| void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) |
| { |
| __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); |
| } |
| |
| void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, |
| struct inode *inode, struct page *page, |
| nid_t ino, enum page_type type) |
| { |
| __submit_merged_write_cond(sbi, inode, page, ino, type, false); |
| } |
| |
| void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) |
| { |
| f2fs_submit_merged_write(sbi, DATA); |
| f2fs_submit_merged_write(sbi, NODE); |
| f2fs_submit_merged_write(sbi, META); |
| } |
| |
| /* |
| * Fill the locked page with data located in the block address. |
| * A caller needs to unlock the page on failure. |
| */ |
| int f2fs_submit_page_bio(struct f2fs_io_info *fio) |
| { |
| struct bio *bio; |
| struct page *page = fio->encrypted_page ? |
| fio->encrypted_page : fio->page; |
| |
| if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, |
| fio->is_por ? META_POR : (__is_meta_io(fio) ? |
| META_GENERIC : DATA_GENERIC_ENHANCE))) |
| return -EFSCORRUPTED; |
| |
| trace_f2fs_submit_page_bio(page, fio); |
| |
| /* Allocate a new bio */ |
| bio = __bio_alloc(fio, 1); |
| |
| f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, |
| fio->page->index, fio, GFP_NOIO); |
| |
| if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { |
| bio_put(bio); |
| return -EFAULT; |
| } |
| |
| if (fio->io_wbc && !is_read_io(fio->op)) |
| wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); |
| |
| __attach_io_flag(fio); |
| bio_set_op_attrs(bio, fio->op, fio->op_flags); |
| |
| inc_page_count(fio->sbi, is_read_io(fio->op) ? |
| __read_io_type(page): WB_DATA_TYPE(fio->page)); |
| |
| __submit_bio(fio->sbi, bio, fio->type); |
| return 0; |
| } |
| |
| static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, |
| block_t last_blkaddr, block_t cur_blkaddr) |
| { |
| if (unlikely(sbi->max_io_bytes && |
| bio->bi_iter.bi_size >= sbi->max_io_bytes)) |
| return false; |
| if (last_blkaddr + 1 != cur_blkaddr) |
| return false; |
| return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); |
| } |
| |
| static bool io_type_is_mergeable(struct f2fs_bio_info *io, |
| struct f2fs_io_info *fio) |
| { |
| if (io->fio.op != fio->op) |
| return false; |
| return io->fio.op_flags == fio->op_flags; |
| } |
| |
| static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, |
| struct f2fs_bio_info *io, |
| struct f2fs_io_info *fio, |
| block_t last_blkaddr, |
| block_t cur_blkaddr) |
| { |
| if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { |
| unsigned int filled_blocks = |
| F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); |
| unsigned int io_size = F2FS_IO_SIZE(sbi); |
| unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; |
| |
| /* IOs in bio is aligned and left space of vectors is not enough */ |
| if (!(filled_blocks % io_size) && left_vecs < io_size) |
| return false; |
| } |
| if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) |
| return false; |
| return io_type_is_mergeable(io, fio); |
| } |
| |
| static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, |
| struct page *page, enum temp_type temp) |
| { |
| struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; |
| struct bio_entry *be; |
| |
| be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); |
| be->bio = bio; |
| bio_get(bio); |
| |
| if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) |
| f2fs_bug_on(sbi, 1); |
| |
| down_write(&io->bio_list_lock); |
| list_add_tail(&be->list, &io->bio_list); |
| up_write(&io->bio_list_lock); |
| } |
| |
| static void del_bio_entry(struct bio_entry *be) |
| { |
| list_del(&be->list); |
| kmem_cache_free(bio_entry_slab, be); |
| } |
| |
| static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, |
| struct page *page) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| enum temp_type temp; |
| bool found = false; |
| int ret = -EAGAIN; |
| |
| for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { |
| struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; |
| struct list_head *head = &io->bio_list; |
| struct bio_entry *be; |
| |
| down_write(&io->bio_list_lock); |
| list_for_each_entry(be, head, list) { |
| if (be->bio != *bio) |
| continue; |
| |
| found = true; |
| |
| f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, |
| *fio->last_block, |
| fio->new_blkaddr)); |
| if (f2fs_crypt_mergeable_bio(*bio, |
| fio->page->mapping->host, |
| fio->page->index, fio) && |
| bio_add_page(*bio, page, PAGE_SIZE, 0) == |
| PAGE_SIZE) { |
| ret = 0; |
| break; |
| } |
| |
| /* page can't be merged into bio; submit the bio */ |
| del_bio_entry(be); |
| __submit_bio(sbi, *bio, DATA); |
| break; |
| } |
| up_write(&io->bio_list_lock); |
| } |
| |
| if (ret) { |
| bio_put(*bio); |
| *bio = NULL; |
| } |
| |
| return ret; |
| } |
| |
| void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, |
| struct bio **bio, struct page *page) |
| { |
| enum temp_type temp; |
| bool found = false; |
| struct bio *target = bio ? *bio : NULL; |
| |
| for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { |
| struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; |
| struct list_head *head = &io->bio_list; |
| struct bio_entry *be; |
| |
| if (list_empty(head)) |
| continue; |
| |
| down_read(&io->bio_list_lock); |
| list_for_each_entry(be, head, list) { |
| if (target) |
| found = (target == be->bio); |
| else |
| found = __has_merged_page(be->bio, NULL, |
| page, 0); |
| if (found) |
| break; |
| } |
| up_read(&io->bio_list_lock); |
| |
| if (!found) |
| continue; |
| |
| found = false; |
| |
| down_write(&io->bio_list_lock); |
| list_for_each_entry(be, head, list) { |
| if (target) |
| found = (target == be->bio); |
| else |
| found = __has_merged_page(be->bio, NULL, |
| page, 0); |
| if (found) { |
| target = be->bio; |
| del_bio_entry(be); |
| break; |
| } |
| } |
| up_write(&io->bio_list_lock); |
| } |
| |
| if (found) |
| __submit_bio(sbi, target, DATA); |
| if (bio && *bio) { |
| bio_put(*bio); |
| *bio = NULL; |
| } |
| } |
| |
| int f2fs_merge_page_bio(struct f2fs_io_info *fio) |
| { |
| struct bio *bio = *fio->bio; |
| struct page *page = fio->encrypted_page ? |
| fio->encrypted_page : fio->page; |
| |
| if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, |
| __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) |
| return -EFSCORRUPTED; |
| |
| trace_f2fs_submit_page_bio(page, fio); |
| |
| if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, |
| fio->new_blkaddr)) |
| f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); |
| alloc_new: |
| if (!bio) { |
| bio = __bio_alloc(fio, BIO_MAX_PAGES); |
| __attach_io_flag(fio); |
| f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, |
| fio->page->index, fio, GFP_NOIO); |
| bio_set_op_attrs(bio, fio->op, fio->op_flags); |
| |
| add_bio_entry(fio->sbi, bio, page, fio->temp); |
| } else { |
| if (add_ipu_page(fio, &bio, page)) |
| goto alloc_new; |
| } |
| |
| if (fio->io_wbc) |
| wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); |
| |
| inc_page_count(fio->sbi, WB_DATA_TYPE(page)); |
| |
| *fio->last_block = fio->new_blkaddr; |
| *fio->bio = bio; |
| |
| return 0; |
| } |
| |
| void f2fs_submit_page_write(struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); |
| struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; |
| struct page *bio_page; |
| |
| f2fs_bug_on(sbi, is_read_io(fio->op)); |
| |
| down_write(&io->io_rwsem); |
| next: |
| if (fio->in_list) { |
| spin_lock(&io->io_lock); |
| if (list_empty(&io->io_list)) { |
| spin_unlock(&io->io_lock); |
| goto out; |
| } |
| fio = list_first_entry(&io->io_list, |
| struct f2fs_io_info, list); |
| list_del(&fio->list); |
| spin_unlock(&io->io_lock); |
| } |
| |
| verify_fio_blkaddr(fio); |
| |
| if (fio->encrypted_page) |
| bio_page = fio->encrypted_page; |
| else if (fio->compressed_page) |
| bio_page = fio->compressed_page; |
| else |
| bio_page = fio->page; |
| |
| /* set submitted = true as a return value */ |
| fio->submitted = true; |
| |
| inc_page_count(sbi, WB_DATA_TYPE(bio_page)); |
| |
| if (io->bio && |
| (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, |
| fio->new_blkaddr) || |
| !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, |
| bio_page->index, fio))) |
| __submit_merged_bio(io); |
| alloc_new: |
| if (io->bio == NULL) { |
| if (F2FS_IO_ALIGNED(sbi) && |
| (fio->type == DATA || fio->type == NODE) && |
| fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { |
| dec_page_count(sbi, WB_DATA_TYPE(bio_page)); |
| fio->retry = true; |
| goto skip; |
| } |
| io->bio = __bio_alloc(fio, BIO_MAX_PAGES); |
| f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, |
| bio_page->index, fio, GFP_NOIO); |
| io->fio = *fio; |
| } |
| |
| if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { |
| __submit_merged_bio(io); |
| goto alloc_new; |
| } |
| |
| if (fio->io_wbc) |
| wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); |
| |
| io->last_block_in_bio = fio->new_blkaddr; |
| |
| trace_f2fs_submit_page_write(fio->page, fio); |
| skip: |
| if (fio->in_list) |
| goto next; |
| out: |
| if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || |
| !f2fs_is_checkpoint_ready(sbi)) |
| __submit_merged_bio(io); |
| up_write(&io->io_rwsem); |
| } |
| |
| static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, |
| unsigned nr_pages, unsigned op_flag, |
| pgoff_t first_idx, bool for_write) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct bio *bio; |
| struct bio_post_read_ctx *ctx; |
| unsigned int post_read_steps = 0; |
| |
| bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, |
| bio_max_segs(nr_pages), &f2fs_bioset); |
| if (!bio) |
| return ERR_PTR(-ENOMEM); |
| |
| f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); |
| |
| f2fs_target_device(sbi, blkaddr, bio); |
| bio->bi_end_io = f2fs_read_end_io; |
| bio_set_op_attrs(bio, REQ_OP_READ, op_flag); |
| |
| if (fscrypt_inode_uses_fs_layer_crypto(inode)) |
| post_read_steps |= STEP_DECRYPT; |
| |
| if (f2fs_need_verity(inode, first_idx)) |
| post_read_steps |= STEP_VERITY; |
| |
| /* |
| * STEP_DECOMPRESS is handled specially, since a compressed file might |
| * contain both compressed and uncompressed clusters. We'll allocate a |
| * bio_post_read_ctx if the file is compressed, but the caller is |
| * responsible for enabling STEP_DECOMPRESS if it's actually needed. |
| */ |
| |
| if (post_read_steps || f2fs_compressed_file(inode)) { |
| /* Due to the mempool, this never fails. */ |
| ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); |
| ctx->bio = bio; |
| ctx->sbi = sbi; |
| ctx->enabled_steps = post_read_steps; |
| bio->bi_private = ctx; |
| } |
| |
| return bio; |
| } |
| |
| /* This can handle encryption stuffs */ |
| static int f2fs_submit_page_read(struct inode *inode, struct page *page, |
| block_t blkaddr, int op_flags, bool for_write) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct bio *bio; |
| |
| bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, |
| page->index, for_write); |
| if (IS_ERR(bio)) |
| return PTR_ERR(bio); |
| |
| /* wait for GCed page writeback via META_MAPPING */ |
| f2fs_wait_on_block_writeback(inode, blkaddr); |
| |
| if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { |
| bio_put(bio); |
| return -EFAULT; |
| } |
| ClearPageError(page); |
| inc_page_count(sbi, F2FS_RD_DATA); |
| f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); |
| __submit_bio(sbi, bio, DATA); |
| return 0; |
| } |
| |
| static void __set_data_blkaddr(struct dnode_of_data *dn) |
| { |
| struct f2fs_node *rn = F2FS_NODE(dn->node_page); |
| __le32 *addr_array; |
| int base = 0; |
| |
| if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) |
| base = get_extra_isize(dn->inode); |
| |
| /* Get physical address of data block */ |
| addr_array = blkaddr_in_node(rn); |
| addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); |
| } |
| |
| /* |
| * Lock ordering for the change of data block address: |
| * ->data_page |
| * ->node_page |
| * update block addresses in the node page |
| */ |
| void f2fs_set_data_blkaddr(struct dnode_of_data *dn) |
| { |
| f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); |
| __set_data_blkaddr(dn); |
| if (set_page_dirty(dn->node_page)) |
| dn->node_changed = true; |
| } |
| |
| void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) |
| { |
| dn->data_blkaddr = blkaddr; |
| f2fs_set_data_blkaddr(dn); |
| f2fs_update_extent_cache(dn); |
| } |
| |
| /* dn->ofs_in_node will be returned with up-to-date last block pointer */ |
| int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| int err; |
| |
| if (!count) |
| return 0; |
| |
| if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) |
| return -EPERM; |
| if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) |
| return err; |
| |
| trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, |
| dn->ofs_in_node, count); |
| |
| f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); |
| |
| for (; count > 0; dn->ofs_in_node++) { |
| block_t blkaddr = f2fs_data_blkaddr(dn); |
| if (blkaddr == NULL_ADDR) { |
| dn->data_blkaddr = NEW_ADDR; |
| __set_data_blkaddr(dn); |
| count--; |
| } |
| } |
| |
| if (set_page_dirty(dn->node_page)) |
| dn->node_changed = true; |
| return 0; |
| } |
| |
| /* Should keep dn->ofs_in_node unchanged */ |
| int f2fs_reserve_new_block(struct dnode_of_data *dn) |
| { |
| unsigned int ofs_in_node = dn->ofs_in_node; |
| int ret; |
| |
| ret = f2fs_reserve_new_blocks(dn, 1); |
| dn->ofs_in_node = ofs_in_node; |
| return ret; |
| } |
| |
| int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) |
| { |
| bool need_put = dn->inode_page ? false : true; |
| int err; |
| |
| err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); |
| if (err) |
| return err; |
| |
| if (dn->data_blkaddr == NULL_ADDR) |
| err = f2fs_reserve_new_block(dn); |
| if (err || need_put) |
| f2fs_put_dnode(dn); |
| return err; |
| } |
| |
| int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) |
| { |
| struct extent_info ei = {0, 0, 0}; |
| struct inode *inode = dn->inode; |
| |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn->data_blkaddr = ei.blk + index - ei.fofs; |
| return 0; |
| } |
| |
| return f2fs_reserve_block(dn, index); |
| } |
| |
| struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, |
| int op_flags, bool for_write) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct dnode_of_data dn; |
| struct page *page; |
| struct extent_info ei = {0,0,0}; |
| int err; |
| |
| page = f2fs_grab_cache_page(mapping, index, for_write); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn.data_blkaddr = ei.blk + index - ei.fofs; |
| if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, |
| DATA_GENERIC_ENHANCE_READ)) { |
| err = -EFSCORRUPTED; |
| goto put_err; |
| } |
| goto got_it; |
| } |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); |
| if (err) |
| goto put_err; |
| f2fs_put_dnode(&dn); |
| |
| if (unlikely(dn.data_blkaddr == NULL_ADDR)) { |
| err = -ENOENT; |
| goto put_err; |
| } |
| if (dn.data_blkaddr != NEW_ADDR && |
| !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), |
| dn.data_blkaddr, |
| DATA_GENERIC_ENHANCE)) { |
| err = -EFSCORRUPTED; |
| goto put_err; |
| } |
| got_it: |
| if (PageUptodate(page)) { |
| unlock_page(page); |
| return page; |
| } |
| |
| /* |
| * A new dentry page is allocated but not able to be written, since its |
| * new inode page couldn't be allocated due to -ENOSPC. |
| * In such the case, its blkaddr can be remained as NEW_ADDR. |
| * see, f2fs_add_link -> f2fs_get_new_data_page -> |
| * f2fs_init_inode_metadata. |
| */ |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| return page; |
| } |
| |
| err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, |
| op_flags, for_write); |
| if (err) |
| goto put_err; |
| return page; |
| |
| put_err: |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| |
| struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| |
| page = find_get_page(mapping, index); |
| if (page && PageUptodate(page)) |
| return page; |
| f2fs_put_page(page, 0); |
| |
| page = f2fs_get_read_data_page(inode, index, 0, false); |
| if (IS_ERR(page)) |
| return page; |
| |
| if (PageUptodate(page)) |
| return page; |
| |
| wait_on_page_locked(page); |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 0); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| /* |
| * If it tries to access a hole, return an error. |
| * Because, the callers, functions in dir.c and GC, should be able to know |
| * whether this page exists or not. |
| */ |
| struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, |
| bool for_write) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| repeat: |
| page = f2fs_get_read_data_page(inode, index, 0, for_write); |
| if (IS_ERR(page)) |
| return page; |
| |
| /* wait for read completion */ |
| lock_page(page); |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| /* |
| * Caller ensures that this data page is never allocated. |
| * A new zero-filled data page is allocated in the page cache. |
| * |
| * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and |
| * f2fs_unlock_op(). |
| * Note that, ipage is set only by make_empty_dir, and if any error occur, |
| * ipage should be released by this function. |
| */ |
| struct page *f2fs_get_new_data_page(struct inode *inode, |
| struct page *ipage, pgoff_t index, bool new_i_size) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| struct dnode_of_data dn; |
| int err; |
| |
| page = f2fs_grab_cache_page(mapping, index, true); |
| if (!page) { |
| /* |
| * before exiting, we should make sure ipage will be released |
| * if any error occur. |
| */ |
| f2fs_put_page(ipage, 1); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| set_new_dnode(&dn, inode, ipage, NULL, 0); |
| err = f2fs_reserve_block(&dn, index); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| if (!ipage) |
| f2fs_put_dnode(&dn); |
| |
| if (PageUptodate(page)) |
| goto got_it; |
| |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| } else { |
| f2fs_put_page(page, 1); |
| |
| /* if ipage exists, blkaddr should be NEW_ADDR */ |
| f2fs_bug_on(F2FS_I_SB(inode), ipage); |
| page = f2fs_get_lock_data_page(inode, index, true); |
| if (IS_ERR(page)) |
| return page; |
| } |
| got_it: |
| if (new_i_size && i_size_read(inode) < |
| ((loff_t)(index + 1) << PAGE_SHIFT)) |
| f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); |
| return page; |
| } |
| |
| static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| struct f2fs_summary sum; |
| struct node_info ni; |
| block_t old_blkaddr; |
| blkcnt_t count = 1; |
| int err; |
| |
| if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) |
| return -EPERM; |
| |
| err = f2fs_get_node_info(sbi, dn->nid, &ni); |
| if (err) |
| return err; |
| |
| dn->data_blkaddr = f2fs_data_blkaddr(dn); |
| if (dn->data_blkaddr != NULL_ADDR) |
| goto alloc; |
| |
| if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) |
| return err; |
| |
| alloc: |
| set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); |
| old_blkaddr = dn->data_blkaddr; |
| f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, |
| &sum, seg_type, NULL); |
| if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) |
| invalidate_mapping_pages(META_MAPPING(sbi), |
| old_blkaddr, old_blkaddr); |
| f2fs_update_data_blkaddr(dn, dn->data_blkaddr); |
| |
| /* |
| * i_size will be updated by direct_IO. Otherwise, we'll get stale |
| * data from unwritten block via dio_read. |
| */ |
| return 0; |
| } |
| |
| int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct f2fs_map_blocks map; |
| int flag; |
| int err = 0; |
| bool direct_io = iocb->ki_flags & IOCB_DIRECT; |
| |
| map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); |
| map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); |
| if (map.m_len > map.m_lblk) |
| map.m_len -= map.m_lblk; |
| else |
| map.m_len = 0; |
| |
| map.m_next_pgofs = NULL; |
| map.m_next_extent = NULL; |
| map.m_seg_type = NO_CHECK_TYPE; |
| map.m_may_create = true; |
| |
| if (direct_io) { |
| map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); |
| flag = f2fs_force_buffered_io(inode, iocb, from) ? |
| F2FS_GET_BLOCK_PRE_AIO : |
| F2FS_GET_BLOCK_PRE_DIO; |
| goto map_blocks; |
| } |
| if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| return err; |
| } |
| if (f2fs_has_inline_data(inode)) |
| return err; |
| |
| flag = F2FS_GET_BLOCK_PRE_AIO; |
| |
| map_blocks: |
| err = f2fs_map_blocks(inode, &map, 1, flag); |
| if (map.m_len > 0 && err == -ENOSPC) { |
| if (!direct_io) |
| set_inode_flag(inode, FI_NO_PREALLOC); |
| err = 0; |
| } |
| return err; |
| } |
| |
| void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) |
| { |
| if (flag == F2FS_GET_BLOCK_PRE_AIO) { |
| if (lock) |
| down_read(&sbi->node_change); |
| else |
| up_read(&sbi->node_change); |
| } else { |
| if (lock) |
| f2fs_lock_op(sbi); |
| else |
| f2fs_unlock_op(sbi); |
| } |
| } |
| |
| /* |
| * f2fs_map_blocks() tries to find or build mapping relationship which |
| * maps continuous logical blocks to physical blocks, and return such |
| * info via f2fs_map_blocks structure. |
| */ |
| int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, |
| int create, int flag) |
| { |
| unsigned int maxblocks = map->m_len; |
| struct dnode_of_data dn; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; |
| pgoff_t pgofs, end_offset, end; |
| int err = 0, ofs = 1; |
| unsigned int ofs_in_node, last_ofs_in_node; |
| blkcnt_t prealloc; |
| struct extent_info ei = {0,0,0}; |
| block_t blkaddr; |
| unsigned int start_pgofs; |
| |
| if (!maxblocks) |
| return 0; |
| |
| map->m_len = 0; |
| map->m_flags = 0; |
| |
| /* it only supports block size == page size */ |
| pgofs = (pgoff_t)map->m_lblk; |
| end = pgofs + maxblocks; |
| |
| if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { |
| if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && |
| map->m_may_create) |
| goto next_dnode; |
| |
| map->m_pblk = ei.blk + pgofs - ei.fofs; |
| map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); |
| map->m_flags = F2FS_MAP_MAPPED; |
| if (map->m_next_extent) |
| *map->m_next_extent = pgofs + map->m_len; |
| |
| /* for hardware encryption, but to avoid potential issue in future */ |
| if (flag == F2FS_GET_BLOCK_DIO) |
| f2fs_wait_on_block_writeback_range(inode, |
| map->m_pblk, map->m_len); |
| goto out; |
| } |
| |
| next_dnode: |
| if (map->m_may_create) |
| f2fs_do_map_lock(sbi, flag, true); |
| |
| /* When reading holes, we need its node page */ |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = f2fs_get_dnode_of_data(&dn, pgofs, mode); |
| if (err) { |
| if (flag == F2FS_GET_BLOCK_BMAP) |
| map->m_pblk = 0; |
| if (err == -ENOENT) { |
| err = 0; |
| if (map->m_next_pgofs) |
| *map->m_next_pgofs = |
| f2fs_get_next_page_offset(&dn, pgofs); |
| if (map->m_next_extent) |
| *map->m_next_extent = |
| f2fs_get_next_page_offset(&dn, pgofs); |
| } |
| goto unlock_out; |
| } |
| |
| start_pgofs = pgofs; |
| prealloc = 0; |
| last_ofs_in_node = ofs_in_node = dn.ofs_in_node; |
| end_offset = ADDRS_PER_PAGE(dn.node_page, inode); |
| |
| next_block: |
| blkaddr = f2fs_data_blkaddr(&dn); |
| |
| if (__is_valid_data_blkaddr(blkaddr) && |
| !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { |
| err = -EFSCORRUPTED; |
| goto sync_out; |
| } |
| |
| if (__is_valid_data_blkaddr(blkaddr)) { |
| /* use out-place-update for driect IO under LFS mode */ |
| if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && |
| map->m_may_create) { |
| err = __allocate_data_block(&dn, map->m_seg_type); |
| if (err) |
| goto sync_out; |
| blkaddr = dn.data_blkaddr; |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| } |
| } else { |
| if (create) { |
| if (unlikely(f2fs_cp_error(sbi))) { |
| err = -EIO; |
| goto sync_out; |
| } |
| if (flag == F2FS_GET_BLOCK_PRE_AIO) { |
| if (blkaddr == NULL_ADDR) { |
| prealloc++; |
| last_ofs_in_node = dn.ofs_in_node; |
| } |
| } else { |
| WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && |
| flag != F2FS_GET_BLOCK_DIO); |
| err = __allocate_data_block(&dn, |
| map->m_seg_type); |
| if (!err) |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| } |
| if (err) |
| goto sync_out; |
| map->m_flags |= F2FS_MAP_NEW; |
| blkaddr = dn.data_blkaddr; |
| } else { |
| if (flag == F2FS_GET_BLOCK_BMAP) { |
| map->m_pblk = 0; |
| goto sync_out; |
| } |
| if (flag == F2FS_GET_BLOCK_PRECACHE) |
| goto sync_out; |
| if (flag == F2FS_GET_BLOCK_FIEMAP && |
| blkaddr == NULL_ADDR) { |
| if (map->m_next_pgofs) |
| *map->m_next_pgofs = pgofs + 1; |
| goto sync_out; |
| } |
| if (flag != F2FS_GET_BLOCK_FIEMAP) { |
| /* for defragment case */ |
| if (map->m_next_pgofs) |
| *map->m_next_pgofs = pgofs + 1; |
| goto sync_out; |
| } |
| } |
| } |
| |
| if (flag == F2FS_GET_BLOCK_PRE_AIO) |
| goto skip; |
| |
| if (map->m_len == 0) { |
| /* preallocated unwritten block should be mapped for fiemap. */ |
| if (blkaddr == NEW_ADDR) |
| map->m_flags |= F2FS_MAP_UNWRITTEN; |
| map->m_flags |= F2FS_MAP_MAPPED; |
| |
| map->m_pblk = blkaddr; |
| map->m_len = 1; |
| } else if ((map->m_pblk != NEW_ADDR && |
| blkaddr == (map->m_pblk + ofs)) || |
| (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || |
| flag == F2FS_GET_BLOCK_PRE_DIO) { |
| ofs++; |
| map->m_len++; |
| } else { |
| goto sync_out; |
| } |
| |
| skip: |
| dn.ofs_in_node++; |
| pgofs++; |
| |
| /* preallocate blocks in batch for one dnode page */ |
| if (flag == F2FS_GET_BLOCK_PRE_AIO && |
| (pgofs == end || dn.ofs_in_node == end_offset)) { |
| |
| dn.ofs_in_node = ofs_in_node; |
| err = f2fs_reserve_new_blocks(&dn, prealloc); |
| if (err) |
| goto sync_out; |
| |
| map->m_len += dn.ofs_in_node - ofs_in_node; |
| if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { |
| err = -ENOSPC; |
| goto sync_out; |
| } |
| dn.ofs_in_node = end_offset; |
| } |
| |
| if (pgofs >= end) |
| goto sync_out; |
| else if (dn.ofs_in_node < end_offset) |
| goto next_block; |
| |
| if (flag == F2FS_GET_BLOCK_PRECACHE) { |
| if (map->m_flags & F2FS_MAP_MAPPED) { |
| unsigned int ofs = start_pgofs - map->m_lblk; |
| |
| f2fs_update_extent_cache_range(&dn, |
| start_pgofs, map->m_pblk + ofs, |
| map->m_len - ofs); |
| } |
| } |
| |
| f2fs_put_dnode(&dn); |
| |
| if (map->m_may_create) { |
| f2fs_do_map_lock(sbi, flag, false); |
| f2fs_balance_fs(sbi, dn.node_changed); |
| } |
| goto next_dnode; |
| |
| sync_out: |
| |
| /* for hardware encryption, but to avoid potential issue in future */ |
| if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) |
| f2fs_wait_on_block_writeback_range(inode, |
| map->m_pblk, map->m_len); |
| |
| if (flag == F2FS_GET_BLOCK_PRECACHE) { |
| if (map->m_flags & F2FS_MAP_MAPPED) { |
| unsigned int ofs = start_pgofs - map->m_lblk; |
| |
| f2fs_update_extent_cache_range(&dn, |
| start_pgofs, map->m_pblk + ofs, |
| map->m_len - ofs); |
| } |
| if (map->m_next_extent) |
| *map->m_next_extent = pgofs + 1; |
| } |
| f2fs_put_dnode(&dn); |
| unlock_out: |
| if (map->m_may_create) { |
| f2fs_do_map_lock(sbi, flag, false); |
| f2fs_balance_fs(sbi, dn.node_changed); |
| } |
| out: |
| trace_f2fs_map_blocks(inode, map, err); |
| return err; |
| } |
| |
| bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) |
| { |
| struct f2fs_map_blocks map; |
| block_t last_lblk; |
| int err; |
| |
| if (pos + len > i_size_read(inode)) |
| return false; |
| |
| map.m_lblk = F2FS_BYTES_TO_BLK(pos); |
| map.m_next_pgofs = NULL; |
| map.m_next_extent = NULL; |
| map.m_seg_type = NO_CHECK_TYPE; |
| map.m_may_create = false; |
| last_lblk = F2FS_BLK_ALIGN(pos + len); |
| |
| while (map.m_lblk < last_lblk) { |
| map.m_len = last_lblk - map.m_lblk; |
| err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); |
| if (err || map.m_len == 0) |
| return false; |
| map.m_lblk += map.m_len; |
| } |
| return true; |
| } |
| |
| static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) |
| { |
| return (bytes >> inode->i_blkbits); |
| } |
| |
| static inline u64 blks_to_bytes(struct inode *inode, u64 blks) |
| { |
| return (blks << inode->i_blkbits); |
| } |
| |
| static int __get_data_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh, int create, int flag, |
| pgoff_t *next_pgofs, int seg_type, bool may_write) |
| { |
| struct f2fs_map_blocks map; |
| int err; |
| |
| map.m_lblk = iblock; |
| map.m_len = bytes_to_blks(inode, bh->b_size); |
| map.m_next_pgofs = next_pgofs; |
| map.m_next_extent = NULL; |
| map.m_seg_type = seg_type; |
| map.m_may_create = may_write; |
| |
| err = f2fs_map_blocks(inode, &map, create, flag); |
| if (!err) { |
| map_bh(bh, inode->i_sb, map.m_pblk); |
| bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; |
| bh->b_size = blks_to_bytes(inode, map.m_len); |
| } |
| return err; |
| } |
| |
| static int get_data_block_dio_write(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| return __get_data_block(inode, iblock, bh_result, create, |
| F2FS_GET_BLOCK_DIO, NULL, |
| f2fs_rw_hint_to_seg_type(inode->i_write_hint), |
| IS_SWAPFILE(inode) ? false : true); |
| } |
| |
| static int get_data_block_dio(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| return __get_data_block(inode, iblock, bh_result, create, |
| F2FS_GET_BLOCK_DIO, NULL, |
| f2fs_rw_hint_to_seg_type(inode->i_write_hint), |
| false); |
| } |
| |
| static int f2fs_xattr_fiemap(struct inode *inode, |
| struct fiemap_extent_info *fieinfo) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct page *page; |
| struct node_info ni; |
| __u64 phys = 0, len; |
| __u32 flags; |
| nid_t xnid = F2FS_I(inode)->i_xattr_nid; |
| int err = 0; |
| |
| if (f2fs_has_inline_xattr(inode)) { |
| int offset; |
| |
| page = f2fs_grab_cache_page(NODE_MAPPING(sbi), |
| inode->i_ino, false); |
| if (!page) |
| return -ENOMEM; |
| |
| err = f2fs_get_node_info(sbi, inode->i_ino, &ni); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return err; |
| } |
| |
| phys = blks_to_bytes(inode, ni.blk_addr); |
| offset = offsetof(struct f2fs_inode, i_addr) + |
| sizeof(__le32) * (DEF_ADDRS_PER_INODE - |
| get_inline_xattr_addrs(inode)); |
| |
| phys += offset; |
| len = inline_xattr_size(inode); |
| |
| f2fs_put_page(page, 1); |
| |
| flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; |
| |
| if (!xnid) |
| flags |= FIEMAP_EXTENT_LAST; |
| |
| err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); |
| trace_f2fs_fiemap(inode, 0, phys, len, flags, err); |
| if (err || err == 1) |
| return err; |
| } |
| |
| if (xnid) { |
| page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); |
| if (!page) |
| return -ENOMEM; |
| |
| err = f2fs_get_node_info(sbi, xnid, &ni); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return err; |
| } |
| |
| phys = blks_to_bytes(inode, ni.blk_addr); |
| len = inode->i_sb->s_blocksize; |
| |
| f2fs_put_page(page, 1); |
| |
| flags = FIEMAP_EXTENT_LAST; |
| } |
| |
| if (phys) { |
| err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); |
| trace_f2fs_fiemap(inode, 0, phys, len, flags, err); |
| } |
| |
| return (err < 0 ? err : 0); |
| } |
| |
| static loff_t max_inode_blocks(struct inode *inode) |
| { |
| loff_t result = ADDRS_PER_INODE(inode); |
| loff_t leaf_count = ADDRS_PER_BLOCK(inode); |
| |
| /* two direct node blocks */ |
| result += (leaf_count * 2); |
| |
| /* two indirect node blocks */ |
| leaf_count *= NIDS_PER_BLOCK; |
| result += (leaf_count * 2); |
| |
| /* one double indirect node block */ |
| leaf_count *= NIDS_PER_BLOCK; |
| result += leaf_count; |
| |
| return result; |
| } |
| |
| int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| u64 start, u64 len) |
| { |
| struct f2fs_map_blocks map; |
| sector_t start_blk, last_blk; |
| pgoff_t next_pgofs; |
| u64 logical = 0, phys = 0, size = 0; |
| u32 flags = 0; |
| int ret = 0; |
| bool compr_cluster = false; |
| unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; |
| |
| if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { |
| ret = f2fs_precache_extents(inode); |
| if (ret) |
| return ret; |
| } |
| |
| ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); |
| if (ret) |
| return ret; |
| |
| inode_lock(inode); |
| |
| if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { |
| ret = f2fs_xattr_fiemap(inode, fieinfo); |
| goto out; |
| } |
| |
| if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { |
| ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); |
| if (ret != -EAGAIN) |
| goto out; |
| } |
| |
| if (bytes_to_blks(inode, len) == 0) |
| len = blks_to_bytes(inode, 1); |
| |
| start_blk = bytes_to_blks(inode, start); |
| last_blk = bytes_to_blks(inode, start + len - 1); |
| |
| next: |
| memset(&map, 0, sizeof(map)); |
| map.m_lblk = start_blk; |
| map.m_len = bytes_to_blks(inode, len); |
| map.m_next_pgofs = &next_pgofs; |
| map.m_seg_type = NO_CHECK_TYPE; |
| |
| if (compr_cluster) |
| map.m_len = cluster_size - 1; |
| |
| ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); |
| if (ret) |
| goto out; |
| |
| /* HOLE */ |
| if (!(map.m_flags & F2FS_MAP_FLAGS)) { |
| start_blk = next_pgofs; |
| |
| if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, |
| max_inode_blocks(inode))) |
| goto prep_next; |
| |
| flags |= FIEMAP_EXTENT_LAST; |
| } |
| |
| if (size) { |
| flags |= FIEMAP_EXTENT_MERGED; |
| if (IS_ENCRYPTED(inode)) |
| flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; |
| |
| ret = fiemap_fill_next_extent(fieinfo, logical, |
| phys, size, flags); |
| trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); |
| if (ret) |
| goto out; |
| size = 0; |
| } |
| |
| if (start_blk > last_blk) |
| goto out; |
| |
| if (compr_cluster) { |
| compr_cluster = false; |
| |
| |
| logical = blks_to_bytes(inode, start_blk - 1); |
| phys = blks_to_bytes(inode, map.m_pblk); |
| size = blks_to_bytes(inode, cluster_size); |
| |
| flags |= FIEMAP_EXTENT_ENCODED; |
| |
| start_blk += cluster_size - 1; |
| |
| if (start_blk > last_blk) |
| goto out; |
| |
| goto prep_next; |
| } |
| |
| if (map.m_pblk == COMPRESS_ADDR) { |
| compr_cluster = true; |
| start_blk++; |
| goto prep_next; |
| } |
| |
| logical = blks_to_bytes(inode, start_blk); |
| phys = blks_to_bytes(inode, map.m_pblk); |
| size = blks_to_bytes(inode, map.m_len); |
| flags = 0; |
| if (map.m_flags & F2FS_MAP_UNWRITTEN) |
| flags = FIEMAP_EXTENT_UNWRITTEN; |
| |
| start_blk += bytes_to_blks(inode, size); |
| |
| prep_next: |
| cond_resched(); |
| if (fatal_signal_pending(current)) |
| ret = -EINTR; |
| else |
| goto next; |
| out: |
| if (ret == 1) |
| ret = 0; |
| |
| inode_unlock(inode); |
| return ret; |
| } |
| |
| static inline loff_t f2fs_readpage_limit(struct inode *inode) |
| { |
| if (IS_ENABLED(CONFIG_FS_VERITY) && |
| (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) |
| return inode->i_sb->s_maxbytes; |
| |
| return i_size_read(inode); |
| } |
| |
| static int f2fs_read_single_page(struct inode *inode, struct page *page, |
| unsigned nr_pages, |
| struct f2fs_map_blocks *map, |
| struct bio **bio_ret, |
| sector_t *last_block_in_bio, |
| bool is_readahead) |
| { |
| struct bio *bio = *bio_ret; |
| const unsigned blocksize = blks_to_bytes(inode, 1); |
| sector_t block_in_file; |
| sector_t last_block; |
| sector_t last_block_in_file; |
| sector_t block_nr; |
| int ret = 0; |
| |
| block_in_file = (sector_t)page_index(page); |
| last_block = block_in_file + nr_pages; |
| last_block_in_file = bytes_to_blks(inode, |
| f2fs_readpage_limit(inode) + blocksize - 1); |
| if (last_block > last_block_in_file) |
| last_block = last_block_in_file; |
| |
| /* just zeroing out page which is beyond EOF */ |
| if (block_in_file >= last_block) |
| goto zero_out; |
| /* |
| * Map blocks using the previous result first. |
| */ |
| if ((map->m_flags & F2FS_MAP_MAPPED) && |
| block_in_file > map->m_lblk && |
| block_in_file < (map->m_lblk + map->m_len)) |
| goto got_it; |
| |
| /* |
| * Then do more f2fs_map_blocks() calls until we are |
| * done with this page. |
| */ |
| map->m_lblk = block_in_file; |
| map->m_len = last_block - block_in_file; |
| |
| ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); |
| if (ret) |
| goto out; |
| got_it: |
| if ((map->m_flags & F2FS_MAP_MAPPED)) { |
| block_nr = map->m_pblk + block_in_file - map->m_lblk; |
| SetPageMappedToDisk(page); |
| |
| if (!PageUptodate(page) && (!PageSwapCache(page) && |
| !cleancache_get_page(page))) { |
| SetPageUptodate(page); |
| goto confused; |
| } |
| |
| if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, |
| DATA_GENERIC_ENHANCE_READ)) { |
| ret = -EFSCORRUPTED; |
| goto out; |
| } |
| } else { |
| zero_out: |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (f2fs_need_verity(inode, page->index) && |
| !fsverity_verify_page(page)) { |
| ret = -EIO; |
| goto out; |
| } |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| goto out; |
| } |
| |
| /* |
| * This page will go to BIO. Do we need to send this |
| * BIO off first? |
| */ |
| if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, |
| *last_block_in_bio, block_nr) || |
| !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { |
| submit_and_realloc: |
| __submit_bio(F2FS_I_SB(inode), bio, DATA); |
| bio = NULL; |
| } |
| if (bio == NULL) { |
| bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, |
| is_readahead ? REQ_RAHEAD : 0, page->index, |
| false); |
| if (IS_ERR(bio)) { |
| ret = PTR_ERR(bio); |
| bio = NULL; |
| goto out; |
| } |
| } |
| |
| /* |
| * If the page is under writeback, we need to wait for |
| * its completion to see the correct decrypted data. |
| */ |
| f2fs_wait_on_block_writeback(inode, block_nr); |
| |
| if (bio_add_page(bio, page, blocksize, 0) < blocksize) |
| goto submit_and_realloc; |
| |
| inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); |
| f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); |
| ClearPageError(page); |
| *last_block_in_bio = block_nr; |
| goto out; |
| confused: |
| if (bio) { |
| __submit_bio(F2FS_I_SB(inode), bio, DATA); |
| bio = NULL; |
| } |
| unlock_page(page); |
| out: |
| *bio_ret = bio; |
| return ret; |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, |
| unsigned nr_pages, sector_t *last_block_in_bio, |
| bool is_readahead, bool for_write) |
| { |
| struct dnode_of_data dn; |
| struct inode *inode = cc->inode; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct bio *bio = *bio_ret; |
| unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; |
| sector_t last_block_in_file; |
| const unsigned blocksize = blks_to_bytes(inode, 1); |
| struct decompress_io_ctx *dic = NULL; |
| int i; |
| int ret = 0; |
| |
| f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); |
| |
| last_block_in_file = bytes_to_blks(inode, |
| f2fs_readpage_limit(inode) + blocksize - 1); |
| |
| /* get rid of pages beyond EOF */ |
| for (i = 0; i < cc->cluster_size; i++) { |
| struct page *page = cc->rpages[i]; |
| |
| if (!page) |
| continue; |
| if ((sector_t)page->index >= last_block_in_file) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| } else if (!PageUptodate(page)) { |
| continue; |
| } |
| unlock_page(page); |
| cc->rpages[i] = NULL; |
| cc->nr_rpages--; |
| } |
| |
| /* we are done since all pages are beyond EOF */ |
| if (f2fs_cluster_is_empty(cc)) |
| goto out; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); |
| if (ret) |
| goto out; |
| |
| f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); |
| |
| for (i = 1; i < cc->cluster_size; i++) { |
| block_t blkaddr; |
| |
| blkaddr = data_blkaddr(dn.inode, dn.node_page, |
| dn.ofs_in_node + i); |
| |
| if (!__is_valid_data_blkaddr(blkaddr)) |
| break; |
| |
| if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { |
| ret = -EFAULT; |
| goto out_put_dnode; |
| } |
| cc->nr_cpages++; |
| } |
| |
| /* nothing to decompress */ |
| if (cc->nr_cpages == 0) { |
| ret = 0; |
| goto out_put_dnode; |
| } |
| |
| dic = f2fs_alloc_dic(cc); |
| if (IS_ERR(dic)) { |
| ret = PTR_ERR(dic); |
| goto out_put_dnode; |
| } |
| |
| for (i = 0; i < dic->nr_cpages; i++) { |
| struct page *page = dic->cpages[i]; |
| block_t blkaddr; |
| struct bio_post_read_ctx *ctx; |
| |
| blkaddr = data_blkaddr(dn.inode, dn.node_page, |
| dn.ofs_in_node + i + 1); |
| |
| if (bio && (!page_is_mergeable(sbi, bio, |
| *last_block_in_bio, blkaddr) || |
| !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { |
| submit_and_realloc: |
| __submit_bio(sbi, bio, DATA); |
| bio = NULL; |
| } |
| |
| if (!bio) { |
| bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, |
| is_readahead ? REQ_RAHEAD : 0, |
| page->index, for_write); |
| if (IS_ERR(bio)) { |
| ret = PTR_ERR(bio); |
| f2fs_decompress_end_io(dic, ret); |
| f2fs_put_dnode(&dn); |
| *bio_ret = NULL; |
| return ret; |
| } |
| } |
| |
| f2fs_wait_on_block_writeback(inode, blkaddr); |
| |
| if (bio_add_page(bio, page, blocksize, 0) < blocksize) |
| goto submit_and_realloc; |
| |
| ctx = bio->bi_private; |
| ctx->enabled_steps |= STEP_DECOMPRESS; |
| refcount_inc(&dic->refcnt); |
| |
| inc_page_count(sbi, F2FS_RD_DATA); |
| f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); |
| f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); |
| ClearPageError(page); |
| *last_block_in_bio = blkaddr; |
| } |
| |
| f2fs_put_dnode(&dn); |
| |
| *bio_ret = bio; |
| return 0; |
| |
| out_put_dnode: |
| f2fs_put_dnode(&dn); |
| out: |
| for (i = 0; i < cc->cluster_size; i++) { |
| if (cc->rpages[i]) { |
| ClearPageUptodate(cc->rpages[i]); |
| ClearPageError(cc->rpages[i]); |
| unlock_page(cc->rpages[i]); |
| } |
| } |
| *bio_ret = bio; |
| return ret; |
| } |
| #endif |
| |
| /* |
| * This function was originally taken from fs/mpage.c, and customized for f2fs. |
| * Major change was from block_size == page_size in f2fs by default. |
| */ |
| static int f2fs_mpage_readpages(struct inode *inode, |
| struct readahead_control *rac, struct page *page) |
| { |
| struct bio *bio = NULL; |
| sector_t last_block_in_bio = 0; |
| struct f2fs_map_blocks map; |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| struct compress_ctx cc = { |
| .inode = inode, |
| .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, |
| .cluster_size = F2FS_I(inode)->i_cluster_size, |
| .cluster_idx = NULL_CLUSTER, |
| .rpages = NULL, |
| .cpages = NULL, |
| .nr_rpages = 0, |
| .nr_cpages = 0, |
| }; |
| #endif |
| unsigned nr_pages = rac ? readahead_count(rac) : 1; |
| unsigned max_nr_pages = nr_pages; |
| int ret = 0; |
| |
| map.m_pblk = 0; |
| map.m_lblk = 0; |
| map.m_len = 0; |
| map.m_flags = 0; |
| map.m_next_pgofs = NULL; |
| map.m_next_extent = NULL; |
| map.m_seg_type = NO_CHECK_TYPE; |
| map.m_may_create = false; |
| |
| for (; nr_pages; nr_pages--) { |
| if (rac) { |
| page = readahead_page(rac); |
| prefetchw(&page->flags); |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_compressed_file(inode)) { |
| /* there are remained comressed pages, submit them */ |
| if (!f2fs_cluster_can_merge_page(&cc, page->index)) { |
| ret = f2fs_read_multi_pages(&cc, &bio, |
| max_nr_pages, |
| &last_block_in_bio, |
| rac != NULL, false); |
| f2fs_destroy_compress_ctx(&cc); |
| if (ret) |
| goto set_error_page; |
| } |
| ret = f2fs_is_compressed_cluster(inode, page->index); |
| if (ret < 0) |
| goto set_error_page; |
| else if (!ret) |
| goto read_single_page; |
| |
| ret = f2fs_init_compress_ctx(&cc); |
| if (ret) |
| goto set_error_page; |
| |
| f2fs_compress_ctx_add_page(&cc, page); |
| |
| goto next_page; |
| } |
| read_single_page: |
| #endif |
| |
| ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, |
| &bio, &last_block_in_bio, rac); |
| if (ret) { |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| set_error_page: |
| #endif |
| SetPageError(page); |
| zero_user_segment(page, 0, PAGE_SIZE); |
| unlock_page(page); |
| } |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| next_page: |
| #endif |
| if (rac) |
| put_page(page); |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_compressed_file(inode)) { |
| /* last page */ |
| if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { |
| ret = f2fs_read_multi_pages(&cc, &bio, |
| max_nr_pages, |
| &last_block_in_bio, |
| rac != NULL, false); |
| f2fs_destroy_compress_ctx(&cc); |
| } |
| } |
| #endif |
| } |
| if (bio) |
| __submit_bio(F2FS_I_SB(inode), bio, DATA); |
| return ret; |
| } |
| |
| static int f2fs_read_data_page(struct file *file, struct page *page) |
| { |
| struct inode *inode = page_file_mapping(page)->host; |
| int ret = -EAGAIN; |
| |
| trace_f2fs_readpage(page, DATA); |
| |
| if (!f2fs_is_compress_backend_ready(inode)) { |
| unlock_page(page); |
| return -EOPNOTSUPP; |
| } |
| |
| /* If the file has inline data, try to read it directly */ |
| if (f2fs_has_inline_data(inode)) |
| ret = f2fs_read_inline_data(inode, page); |
| if (ret == -EAGAIN) |
| ret = f2fs_mpage_readpages(inode, NULL, page); |
| return ret; |
| } |
| |
| static void f2fs_readahead(struct readahead_control *rac) |
| { |
| struct inode *inode = rac->mapping->host; |
| |
| trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); |
| |
| if (!f2fs_is_compress_backend_ready(inode)) |
| return; |
| |
| /* If the file has inline data, skip readpages */ |
| if (f2fs_has_inline_data(inode)) |
| return; |
| |
| f2fs_mpage_readpages(inode, rac, NULL); |
| } |
| |
| int f2fs_encrypt_one_page(struct f2fs_io_info *fio) |
| { |
| struct inode *inode = fio->page->mapping->host; |
| struct page *mpage, *page; |
| gfp_t gfp_flags = GFP_NOFS; |
| |
| if (!f2fs_encrypted_file(inode)) |
| return 0; |
| |
| page = fio->compressed_page ? fio->compressed_page : fio->page; |
| |
| /* wait for GCed page writeback via META_MAPPING */ |
| f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); |
| |
| if (fscrypt_inode_uses_inline_crypto(inode)) |
| return 0; |
| |
| retry_encrypt: |
| fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, |
| PAGE_SIZE, 0, gfp_flags); |
| if (IS_ERR(fio->encrypted_page)) { |
| /* flush pending IOs and wait for a while in the ENOMEM case */ |
| if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { |
| f2fs_flush_merged_writes(fio->sbi); |
| congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); |
| gfp_flags |= __GFP_NOFAIL; |
| goto retry_encrypt; |
| } |
| return PTR_ERR(fio->encrypted_page); |
| } |
| |
| mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); |
| if (mpage) { |
| if (PageUptodate(mpage)) |
| memcpy(page_address(mpage), |
| page_address(fio->encrypted_page), PAGE_SIZE); |
| f2fs_put_page(mpage, 1); |
| } |
| return 0; |
| } |
| |
| static inline bool check_inplace_update_policy(struct inode *inode, |
| struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| unsigned int policy = SM_I(sbi)->ipu_policy; |
| |
| if (policy & (0x1 << F2FS_IPU_FORCE)) |
| return true; |
| if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) |
| return true; |
| if (policy & (0x1 << F2FS_IPU_UTIL) && |
| utilization(sbi) > SM_I(sbi)->min_ipu_util) |
| return true; |
| if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && |
| utilization(sbi) > SM_I(sbi)->min_ipu_util) |
| return true; |
| |
| /* |
| * IPU for rewrite async pages |
| */ |
| if (policy & (0x1 << F2FS_IPU_ASYNC) && |
| fio && fio->op == REQ_OP_WRITE && |
| !(fio->op_flags & REQ_SYNC) && |
| !IS_ENCRYPTED(inode)) |
| return true; |
| |
| /* this is only set during fdatasync */ |
| if (policy & (0x1 << F2FS_IPU_FSYNC) && |
| is_inode_flag_set(inode, FI_NEED_IPU)) |
| return true; |
| |
| if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && |
| !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) |
| return true; |
| |
| return false; |
| } |
| |
| bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) |
| { |
| if (f2fs_is_pinned_file(inode)) |
| return true; |
| |
| /* if this is cold file, we should overwrite to avoid fragmentation */ |
| if (file_is_cold(inode)) |
| return true; |
| |
| return check_inplace_update_policy(inode, fio); |
| } |
| |
| bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (f2fs_lfs_mode(sbi)) |
| return true; |
| if (S_ISDIR(inode->i_mode)) |
| return true; |
| if (IS_NOQUOTA(inode)) |
| return true; |
| if (f2fs_is_atomic_file(inode)) |
| return true; |
| if (fio) { |
| if (is_cold_data(fio->page)) |
| return true; |
| if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) |
| return true; |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && |
| f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool need_inplace_update(struct f2fs_io_info *fio) |
| { |
| struct inode *inode = fio->page->mapping->host; |
| |
| if (f2fs_should_update_outplace(inode, fio)) |
| return false; |
| |
| return f2fs_should_update_inplace(inode, fio); |
| } |
| |
| int f2fs_do_write_data_page(struct f2fs_io_info *fio) |
| { |
| struct page *page = fio->page; |
| struct inode *inode = page->mapping->host; |
| struct dnode_of_data dn; |
| struct extent_info ei = {0,0,0}; |
| struct node_info ni; |
| bool ipu_force = false; |
| int err = 0; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| if (need_inplace_update(fio) && |
| f2fs_lookup_extent_cache(inode, page->index, &ei)) { |
| fio->old_blkaddr = ei.blk + page->index - ei.fofs; |
| |
| if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, |
| DATA_GENERIC_ENHANCE)) |
| return -EFSCORRUPTED; |
| |
| ipu_force = true; |
| fio->need_lock = LOCK_DONE; |
| goto got_it; |
| } |
| |
| /* Deadlock due to between page->lock and f2fs_lock_op */ |
| if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) |
| return -EAGAIN; |
| |
| err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); |
| if (err) |
| goto out; |
| |
| fio->old_blkaddr = dn.data_blkaddr; |
| |
| /* This page is already truncated */ |
| if (fio->old_blkaddr == NULL_ADDR) { |
| ClearPageUptodate(page); |
| clear_cold_data(page); |
| goto out_writepage; |
| } |
| got_it: |
| if (__is_valid_data_blkaddr(fio->old_blkaddr) && |
| !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, |
| DATA_GENERIC_ENHANCE)) { |
| err = -EFSCORRUPTED; |
| goto out_writepage; |
| } |
| /* |
| * If current allocation needs SSR, |
| * it had better in-place writes for updated data. |
| */ |
| if (ipu_force || |
| (__is_valid_data_blkaddr(fio->old_blkaddr) && |
| need_inplace_update(fio))) { |
| err = f2fs_encrypt_one_page(fio); |
| if (err) |
| goto out_writepage; |
| |
| set_page_writeback(page); |
| ClearPageError(page); |
| f2fs_put_dnode(&dn); |
| if (fio->need_lock == LOCK_REQ) |
| f2fs_unlock_op(fio->sbi); |
| err = f2fs_inplace_write_data(fio); |
| if (err) { |
| if (fscrypt_inode_uses_fs_layer_crypto(inode)) |
| fscrypt_finalize_bounce_page(&fio->encrypted_page); |
| if (PageWriteback(page)) |
| end_page_writeback(page); |
| } else { |
| set_inode_flag(inode, FI_UPDATE_WRITE); |
| } |
| trace_f2fs_do_write_data_page(fio->page, IPU); |
| return err; |
| } |
| |
| if (fio->need_lock == LOCK_RETRY) { |
| if (!f2fs_trylock_op(fio->sbi)) { |
| err = -EAGAIN; |
| goto out_writepage; |
| } |
| fio->need_lock = LOCK_REQ; |
| } |
| |
| err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); |
| if (err) |
| goto out_writepage; |
| |
| fio->version = ni.version; |
| |
| err = f2fs_encrypt_one_page(fio); |
| if (err) |
| goto out_writepage; |
| |
| set_page_writeback(page); |
| ClearPageError(page); |
| |
| if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) |
| f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); |
| |
| /* LFS mode write path */ |
| f2fs_outplace_write_data(&dn, fio); |
| trace_f2fs_do_write_data_page(page, OPU); |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| if (page->index == 0) |
| set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); |
| out_writepage: |
| f2fs_put_dnode(&dn); |
| out: |
| if (fio->need_lock == LOCK_REQ) |
| f2fs_unlock_op(fio->sbi); |
| return err; |
| } |
| |
| int f2fs_write_single_data_page(struct page *page, int *submitted, |
| struct bio **bio, |
| sector_t *last_block, |
| struct writeback_control *wbc, |
| enum iostat_type io_type, |
| int compr_blocks, |
| bool allow_balance) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| loff_t i_size = i_size_read(inode); |
| const pgoff_t end_index = ((unsigned long long)i_size) |
| >> PAGE_SHIFT; |
| loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; |
| unsigned offset = 0; |
| bool need_balance_fs = false; |
| int err = 0; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .ino = inode->i_ino, |
| .type = DATA, |
| .op = REQ_OP_WRITE, |
| .op_flags = wbc_to_write_flags(wbc), |
| .old_blkaddr = NULL_ADDR, |
| .page = page, |
| .encrypted_page = NULL, |
| .submitted = false, |
| .compr_blocks = compr_blocks, |
| .need_lock = LOCK_RETRY, |
| .io_type = io_type, |
| .io_wbc = wbc, |
| .bio = bio, |
| .last_block = last_block, |
| }; |
| |
| trace_f2fs_writepage(page, DATA); |
| |
| /* we should bypass data pages to proceed the kworkder jobs */ |
| if (unlikely(f2fs_cp_error(sbi))) { |
| mapping_set_error(page->mapping, -EIO); |
| /* |
| * don't drop any dirty dentry pages for keeping lastest |
| * directory structure. |
| */ |
| if (S_ISDIR(inode->i_mode)) |
| goto redirty_out; |
| goto out; |
| } |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto redirty_out; |
| |
| if (page->index < end_index || |
| f2fs_verity_in_progress(inode) || |
| compr_blocks) |
| goto write; |
| |
| /* |
| * If the offset is out-of-range of file size, |
| * this page does not have to be written to disk. |
| */ |
| offset = i_size & (PAGE_SIZE - 1); |
| if ((page->index >= end_index + 1) || !offset) |
| goto out; |
| |
| zero_user_segment(page, offset, PAGE_SIZE); |
| write: |
| if (f2fs_is_drop_cache(inode)) |
| goto out; |
| /* we should not write 0'th page having journal header */ |
| if (f2fs_is_volatile_file(inode) && (!page->index || |
| (!wbc->for_reclaim && |
| f2fs_available_free_memory(sbi, BASE_CHECK)))) |
| goto redirty_out; |
| |
| /* Dentry/quota blocks are controlled by checkpoint */ |
| if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { |
| /* |
| * We need to wait for node_write to avoid block allocation during |
| * checkpoint. This can only happen to quota writes which can cause |
| * the below discard race condition. |
| */ |
| if (IS_NOQUOTA(inode)) |
| down_read(&sbi->node_write); |
| |
| fio.need_lock = LOCK_DONE; |
| err = f2fs_do_write_data_page(&fio); |
| |
| if (IS_NOQUOTA(inode)) |
| up_read(&sbi->node_write); |
| |
| goto done; |
| } |
| |
| if (!wbc->for_reclaim) |
| need_balance_fs = true; |
| else if (has_not_enough_free_secs(sbi, 0, 0)) |
| goto redirty_out; |
| else |
| set_inode_flag(inode, FI_HOT_DATA); |
| |
| err = -EAGAIN; |
| if (f2fs_has_inline_data(inode)) { |
| err = f2fs_write_inline_data(inode, page); |
| if (!err) |
| goto out; |
| } |
| |
| if (err == -EAGAIN) { |
| err = f2fs_do_write_data_page(&fio); |
| if (err == -EAGAIN) { |
| fio.need_lock = LOCK_REQ; |
| err = f2fs_do_write_data_page(&fio); |
| } |
| } |
| |
| if (err) { |
| file_set_keep_isize(inode); |
| } else { |
| spin_lock(&F2FS_I(inode)->i_size_lock); |
| if (F2FS_I(inode)->last_disk_size < psize) |
| F2FS_I(inode)->last_disk_size = psize; |
| spin_unlock(&F2FS_I(inode)->i_size_lock); |
| } |
| |
| done: |
| if (err && err != -ENOENT) |
| goto redirty_out; |
| |
| out: |
| inode_dec_dirty_pages(inode); |
| if (err) { |
| ClearPageUptodate(page); |
| clear_cold_data(page); |
| } |
| |
| if (wbc->for_reclaim) { |
| f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); |
| clear_inode_flag(inode, FI_HOT_DATA); |
| f2fs_remove_dirty_inode(inode); |
| submitted = NULL; |
| } |
| unlock_page(page); |
| if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && |
| !F2FS_I(inode)->cp_task && allow_balance) |
| f2fs_balance_fs(sbi, need_balance_fs); |
| |
| if (unlikely(f2fs_cp_error(sbi))) { |
| f2fs_submit_merged_write(sbi, DATA); |
| f2fs_submit_merged_ipu_write(sbi, bio, NULL); |
| submitted = NULL; |
| } |
| |
| if (submitted) |
| *submitted = fio.submitted ? 1 : 0; |
| |
| return 0; |
| |
| redirty_out: |
| redirty_page_for_writepage(wbc, page); |
| /* |
| * pageout() in MM traslates EAGAIN, so calls handle_write_error() |
| * -> mapping_set_error() -> set_bit(AS_EIO, ...). |
| * file_write_and_wait_range() will see EIO error, which is critical |
| * to return value of fsync() followed by atomic_write failure to user. |
| */ |
| if (!err || wbc->for_reclaim) |
| return AOP_WRITEPAGE_ACTIVATE; |
| unlock_page(page); |
| return err; |
| } |
| |
| static int f2fs_write_data_page(struct page *page, |
| struct writeback_control *wbc) |
| { |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| struct inode *inode = page->mapping->host; |
| |
| if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) |
| goto out; |
| |
| if (f2fs_compressed_file(inode)) { |
| if (f2fs_is_compressed_cluster(inode, page->index)) { |
| redirty_page_for_writepage(wbc, page); |
| return AOP_WRITEPAGE_ACTIVATE; |
| } |
| } |
| out: |
| #endif |
| |
| return f2fs_write_single_data_page(page, NULL, NULL, NULL, |
| wbc, FS_DATA_IO, 0, true); |
| } |
| |
| /* |
| * This function was copied from write_cche_pages from mm/page-writeback.c. |
| * The major change is making write step of cold data page separately from |
| * warm/hot data page. |
| */ |
| static int f2fs_write_cache_pages(struct address_space *mapping, |
| struct writeback_control *wbc, |
| enum iostat_type io_type) |
| { |
| int ret = 0; |
| int done = 0, retry = 0; |
| struct pagevec pvec; |
| struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
| struct bio *bio = NULL; |
| sector_t last_block; |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| struct inode *inode = mapping->host; |
| struct compress_ctx cc = { |
| .inode = inode, |
| .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, |
| .cluster_size = F2FS_I(inode)->i_cluster_size, |
| .cluster_idx = NULL_CLUSTER, |
| .rpages = NULL, |
| .nr_rpages = 0, |
| .cpages = NULL, |
| .rbuf = NULL, |
| .cbuf = NULL, |
| .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, |
| .private = NULL, |
| }; |
| #endif |
| int nr_pages; |
| pgoff_t index; |
| pgoff_t end; /* Inclusive */ |
| pgoff_t done_index; |
| int range_whole = 0; |
| xa_mark_t tag; |
| int nwritten = 0; |
| int submitted = 0; |
| int i; |
| |
| pagevec_init(&pvec); |
| |
| if (get_dirty_pages(mapping->host) <= |
| SM_I(F2FS_M_SB(mapping))->min_hot_blocks) |
| set_inode_flag(mapping->host, FI_HOT_DATA); |
| else |
| clear_inode_flag(mapping->host, FI_HOT_DATA); |
| |
| if (wbc->range_cyclic) { |
| index = mapping->writeback_index; /* prev offset */ |
| end = -1; |
| } else { |
| index = wbc->range_start >> PAGE_SHIFT; |
| end = wbc->range_end >> PAGE_SHIFT; |
| if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
| range_whole = 1; |
| } |
| if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
| tag = PAGECACHE_TAG_TOWRITE; |
| else |
| tag = PAGECACHE_TAG_DIRTY; |
| retry: |
| retry = 0; |
| if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
| tag_pages_for_writeback(mapping, index, end); |
| done_index = index; |
| while (!done && !retry && (index <= end)) { |
| nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, |
| tag); |
| if (nr_pages == 0) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| bool need_readd; |
| readd: |
| need_readd = false; |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_compressed_file(inode)) { |
| ret = f2fs_init_compress_ctx(&cc); |
| if (ret) { |
| done = 1; |
| break; |
| } |
| |
| if (!f2fs_cluster_can_merge_page(&cc, |
| page->index)) { |
| ret = f2fs_write_multi_pages(&cc, |
| &submitted, wbc, io_type); |
| if (!ret) |
| need_readd = true; |
| goto result; |
| } |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| goto lock_page; |
| |
| if (f2fs_cluster_is_empty(&cc)) { |
| void *fsdata = NULL; |
| struct page *pagep; |
| int ret2; |
| |
| ret2 = f2fs_prepare_compress_overwrite( |
| inode, &pagep, |
| page->index, &fsdata); |
| if (ret2 < 0) { |
| ret = ret2; |
| done = 1; |
| break; |
| } else if (ret2 && |
| !f2fs_compress_write_end(inode, |
| fsdata, page->index, |
| 1)) { |
| retry = 1; |
| break; |
| } |
| } else { |
| goto lock_page; |
| } |
| } |
| #endif |
| /* give a priority to WB_SYNC threads */ |
| if (atomic_read(&sbi->wb_sync_req[DATA]) && |
| wbc->sync_mode == WB_SYNC_NONE) { |
| done = 1; |
| break; |
| } |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| lock_page: |
| #endif |
| done_index = page->index; |
| retry_write: |
| lock_page(page); |
| |
| if (unlikely(page->mapping != mapping)) { |
| continue_unlock: |
| unlock_page(page); |
| continue; |
| } |
| |
| if (!PageDirty(page)) { |
| /* someone wrote it for us */ |
| goto continue_unlock; |
| } |
| |
| if (PageWriteback(page)) { |
| if (wbc->sync_mode != WB_SYNC_NONE) |
| f2fs_wait_on_page_writeback(page, |
| DATA, true, true); |
| else |
| goto continue_unlock; |
| } |
| |
| if (!clear_page_dirty_for_io(page)) |
| goto continue_unlock; |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_compressed_file(inode)) { |
| get_page(page); |
| f2fs_compress_ctx_add_page(&cc, page); |
| continue; |
| } |
| #endif |
| ret = f2fs_write_single_data_page(page, &submitted, |
| &bio, &last_block, wbc, io_type, |
| 0, true); |
| if (ret == AOP_WRITEPAGE_ACTIVATE) |
| unlock_page(page); |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| result: |
| #endif |
| nwritten += submitted; |
| wbc->nr_to_write -= submitted; |
| |
| if (unlikely(ret)) { |
| /* |
| * keep nr_to_write, since vfs uses this to |
| * get # of written pages. |
| */ |
| if (ret == AOP_WRITEPAGE_ACTIVATE) { |
| ret = 0; |
| goto next; |
| } else if (ret == -EAGAIN) { |
| ret = 0; |
| if (wbc->sync_mode == WB_SYNC_ALL) { |
| cond_resched(); |
| congestion_wait(BLK_RW_ASYNC, |
| DEFAULT_IO_TIMEOUT); |
| goto retry_write; |
| } |
| goto next; |
| } |
| done_index = page->index + 1; |
| done = 1; |
| break; |
| } |
| |
| if (wbc->nr_to_write <= 0 && |
| wbc->sync_mode == WB_SYNC_NONE) { |
| done = 1; |
| break; |
| } |
| next: |
| if (need_readd) |
| goto readd; |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| /* flush remained pages in compress cluster */ |
| if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { |
| ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); |
| nwritten += submitted; |
| wbc->nr_to_write -= submitted; |
| if (ret) { |
| done = 1; |
| retry = 0; |
| } |
| } |
| if (f2fs_compressed_file(inode)) |
| f2fs_destroy_compress_ctx(&cc); |
| #endif |
| if (retry) { |
| index = 0; |
| end = -1; |
| goto retry; |
| } |
| if (wbc->range_cyclic && !done) |
| done_index = 0; |
| if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
| mapping->writeback_index = done_index; |
| |
| if (nwritten) |
| f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, |
| NULL, 0, DATA); |
| /* submit cached bio of IPU write */ |
| if (bio) |
| f2fs_submit_merged_ipu_write(sbi, &bio, NULL); |
| |
| return ret; |
| } |
| |
| static inline bool __should_serialize_io(struct inode *inode, |
| struct writeback_control *wbc) |
| { |
| /* to avoid deadlock in path of data flush */ |
| if (F2FS_I(inode)->cp_task) |
| return false; |
| |
| if (!S_ISREG(inode->i_mode)) |
| return false; |
| if (IS_NOQUOTA(inode)) |
| return false; |
| |
| if (f2fs_need_compress_data(inode)) |
| return true; |
| if (wbc->sync_mode != WB_SYNC_ALL) |
| return true; |
| if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) |
| return true; |
| return false; |
| } |
| |
| static int __f2fs_write_data_pages(struct address_space *mapping, |
| struct writeback_control *wbc, |
| enum iostat_type io_type) |
| { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct blk_plug plug; |
| int ret; |
| bool locked = false; |
| |
| /* deal with chardevs and other special file */ |
| if (!mapping->a_ops->writepage) |
| return 0; |
| |
| /* skip writing if there is no dirty page in this inode */ |
| if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) |
| return 0; |
| |
| /* during POR, we don't need to trigger writepage at all. */ |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto skip_write; |
| |
| if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && |
| wbc->sync_mode == WB_SYNC_NONE && |
| get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && |
| f2fs_available_free_memory(sbi, DIRTY_DENTS)) |
| goto skip_write; |
| |
| /* skip writing during file defragment */ |
| if (is_inode_flag_set(inode, FI_DO_DEFRAG)) |
| goto skip_write; |
| |
| trace_f2fs_writepages(mapping->host, wbc, DATA); |
| |
| /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ |
| if (wbc->sync_mode == WB_SYNC_ALL) |
| atomic_inc(&sbi->wb_sync_req[DATA]); |
| else if (atomic_read(&sbi->wb_sync_req[DATA])) |
| goto skip_write; |
| |
| if (__should_serialize_io(inode, wbc)) { |
| mutex_lock(&sbi->writepages); |
| locked = true; |
| } |
| |
| blk_start_plug(&plug); |
| ret = f2fs_write_cache_pages(mapping, wbc, io_type); |
| blk_finish_plug(&plug); |
| |
| if (locked) |
| mutex_unlock(&sbi->writepages); |
| |
| if (wbc->sync_mode == WB_SYNC_ALL) |
| atomic_dec(&sbi->wb_sync_req[DATA]); |
| /* |
| * if some pages were truncated, we cannot guarantee its mapping->host |
| * to detect pending bios. |
| */ |
| |
| f2fs_remove_dirty_inode(inode); |
| return ret; |
| |
| skip_write: |
| wbc->pages_skipped += get_dirty_pages(inode); |
| trace_f2fs_writepages(mapping->host, wbc, DATA); |
| return 0; |
| } |
| |
| static int f2fs_write_data_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = mapping->host; |
| |
| return __f2fs_write_data_pages(mapping, wbc, |
| F2FS_I(inode)->cp_task == current ? |
| FS_CP_DATA_IO : FS_DATA_IO); |
| } |
| |
| static void f2fs_write_failed(struct address_space *mapping, loff_t to) |
| { |
| struct inode *inode = mapping->host; |
| loff_t i_size = i_size_read(inode); |
| |
| if (IS_NOQUOTA(inode)) |
| return; |
| |
| /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ |
| if (to > i_size && !f2fs_verity_in_progress(inode)) { |
| down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); |
| down_write(&F2FS_I(inode)->i_mmap_sem); |
| |
| truncate_pagecache(inode, i_size); |
| f2fs_truncate_blocks(inode, i_size, true); |
| |
| up_write(&F2FS_I(inode)->i_mmap_sem); |
| up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); |
| } |
| } |
| |
| static int prepare_write_begin(struct f2fs_sb_info *sbi, |
| struct page *page, loff_t pos, unsigned len, |
| block_t *blk_addr, bool *node_changed) |
| { |
| struct inode *inode = page->mapping->host; |
| pgoff_t index = page->index; |
| struct dnode_of_data dn; |
| struct page *ipage; |
| bool locked = false; |
| struct extent_info ei = {0,0,0}; |
| int err = 0; |
| int flag; |
| |
| /* |
| * we already allocated all the blocks, so we don't need to get |
| * the block addresses when there is no need to fill the page. |
| */ |
| if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && |
| !is_inode_flag_set(inode, FI_NO_PREALLOC) && |
| !f2fs_verity_in_progress(inode)) |
| return 0; |
| |
| /* f2fs_lock_op avoids race between write CP and convert_inline_page */ |
| if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) |
| flag = F2FS_GET_BLOCK_DEFAULT; |
| else |
| flag = F2FS_GET_BLOCK_PRE_AIO; |
| |
| if (f2fs_has_inline_data(inode) || |
| (pos & PAGE_MASK) >= i_size_read(inode)) { |
| f2fs_do_map_lock(sbi, flag, true); |
| locked = true; |
| } |
| |
| restart: |
| /* check inline_data */ |
| ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) { |
| err = PTR_ERR(ipage); |
| goto unlock_out; |
| } |
| |
| set_new_dnode(&dn, inode, ipage, ipage, 0); |
| |
| if (f2fs_has_inline_data(inode)) { |
| if (pos + len <= MAX_INLINE_DATA(inode)) { |
| f2fs_do_read_inline_data(page, ipage); |
| set_inode_flag(inode, FI_DATA_EXIST); |
| if (inode->i_nlink) |
| set_inline_node(ipage); |
| } else { |
| err = f2fs_convert_inline_page(&dn, page); |
| if (err) |
| goto out; |
| if (dn.data_blkaddr == NULL_ADDR) |
| err = f2fs_get_block(&dn, index); |
| } |
| } else if (locked) { |
| err = f2fs_get_block(&dn, index); |
| } else { |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn.data_blkaddr = ei.blk + index - ei.fofs; |
| } else { |
| /* hole case */ |
| err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); |
| if (err || dn.data_blkaddr == NULL_ADDR) { |
| f2fs_put_dnode(&dn); |
| f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, |
| true); |
| WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); |
| locked = true; |
| goto restart; |
| } |
| } |
| } |
| |
| /* convert_inline_page can make node_changed */ |
| *blk_addr = dn.data_blkaddr; |
| *node_changed = dn.node_changed; |
| out: |
| f2fs_put_dnode(&dn); |
| unlock_out: |
| if (locked) |
| f2fs_do_map_lock(sbi, flag, false); |
| return err; |
| } |
| |
| static int f2fs_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata) |
| { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct page *page = NULL; |
| pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; |
| bool need_balance = false, drop_atomic = false; |
| block_t blkaddr = NULL_ADDR; |
| int err = 0; |
| |
| trace_f2fs_write_begin(inode, pos, len, flags); |
| |
| if (!f2fs_is_checkpoint_ready(sbi)) { |
| err = -ENOSPC; |
| goto fail; |
| } |
| |
| if ((f2fs_is_atomic_file(inode) && |
| !f2fs_available_free_memory(sbi, INMEM_PAGES)) || |
| is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { |
| err = -ENOMEM; |
| drop_atomic = true; |
| goto fail; |
| } |
| |
| /* |
| * We should check this at this moment to avoid deadlock on inode page |
| * and #0 page. The locking rule for inline_data conversion should be: |
| * lock_page(page #0) -> lock_page(inode_page) |
| */ |
| if (index != 0) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| goto fail; |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_compressed_file(inode)) { |
| int ret; |
| |
| *fsdata = NULL; |
| |
| ret = f2fs_prepare_compress_overwrite(inode, pagep, |
| index, fsdata); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } else if (ret) { |
| return 0; |
| } |
| } |
| #endif |
| |
| repeat: |
| /* |
| * Do not use grab_cache_page_write_begin() to avoid deadlock due to |
| * wait_for_stable_page. Will wait that below with our IO control. |
| */ |
| page = f2fs_pagecache_get_page(mapping, index, |
| FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); |
| if (!page) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| |
| /* TODO: cluster can be compressed due to race with .writepage */ |
| |
| *pagep = page; |
| |
| err = prepare_write_begin(sbi, page, pos, len, |
| &blkaddr, &need_balance); |
| if (err) |
| goto fail; |
| |
| if (need_balance && !IS_NOQUOTA(inode) && |
| has_not_enough_free_secs(sbi, 0, 0)) { |
| unlock_page(page); |
| f2fs_balance_fs(sbi, true); |
| lock_page(page); |
| if (page->mapping != mapping) { |
| /* The page got truncated from under us */ |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| } |
| |
| f2fs_wait_on_page_writeback(page, DATA, false, true); |
| |
| if (len == PAGE_SIZE || PageUptodate(page)) |
| return 0; |
| |
| if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && |
| !f2fs_verity_in_progress(inode)) { |
| zero_user_segment(page, len, PAGE_SIZE); |
| return 0; |
| } |
| |
| if (blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| SetPageUptodate(page); |
| } else { |
| if (!f2fs_is_valid_blkaddr(sbi, blkaddr, |
| DATA_GENERIC_ENHANCE_READ)) { |
| err = -EFSCORRUPTED; |
| goto fail; |
| } |
| err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); |
| if (err) |
| goto fail; |
| |
| lock_page(page); |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| if (unlikely(!PageUptodate(page))) { |
| err = -EIO; |
| goto fail; |
| } |
| } |
| return 0; |
| |
| fail: |
| f2fs_put_page(page, 1); |
| f2fs_write_failed(mapping, pos + len); |
| if (drop_atomic) |
| f2fs_drop_inmem_pages_all(sbi, false); |
| return err; |
| } |
| |
| static int f2fs_write_end(struct file *file, |
| struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct inode *inode = page->mapping->host; |
| |
| trace_f2fs_write_end(inode, pos, len, copied); |
| |
| /* |
| * This should be come from len == PAGE_SIZE, and we expect copied |
| * should be PAGE_SIZE. Otherwise, we treat it with zero copied and |
| * let generic_perform_write() try to copy data again through copied=0. |
| */ |
| if (!PageUptodate(page)) { |
| if (unlikely(copied != len)) |
| copied = 0; |
| else |
| SetPageUptodate(page); |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| /* overwrite compressed file */ |
| if (f2fs_compressed_file(inode) && fsdata) { |
| f2fs_compress_write_end(inode, fsdata, page->index, copied); |
| f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); |
| |
| if (pos + copied > i_size_read(inode) && |
| !f2fs_verity_in_progress(inode)) |
| f2fs_i_size_write(inode, pos + copied); |
| return copied; |
| } |
| #endif |
| |
| if (!copied) |
| goto unlock_out; |
| |
| set_page_dirty(page); |
| |
| if (pos + copied > i_size_read(inode) && |
| !f2fs_verity_in_progress(inode)) |
| f2fs_i_size_write(inode, pos + copied); |
| unlock_out: |
| f2fs_put_page(page, 1); |
| f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); |
| return copied; |
| } |
| |
| static int check_direct_IO(struct inode *inode, struct iov_iter *iter, |
| loff_t offset) |
| { |
| unsigned i_blkbits = READ_ONCE(inode->i_blkbits); |
| unsigned blkbits = i_blkbits; |
| unsigned blocksize_mask = (1 << blkbits) - 1; |
| unsigned long align = offset | iov_iter_alignment(iter); |
| struct block_device *bdev = inode->i_sb->s_bdev; |
| |
| if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) |
| return 1; |
| |
| if (align & blocksize_mask) { |
| if (bdev) |
| blkbits = blksize_bits(bdev_logical_block_size(bdev)); |
| blocksize_mask = (1 << blkbits) - 1; |
| if (align & blocksize_mask) |
| return -EINVAL; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void f2fs_dio_end_io(struct bio *bio) |
| { |
| struct f2fs_private_dio *dio = bio->bi_private; |
| |
| dec_page_count(F2FS_I_SB(dio->inode), |
| dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); |
| |
| bio->bi_private = dio->orig_private; |
| bio->bi_end_io = dio->orig_end_io; |
| |
| kfree(dio); |
| |
| bio_endio(bio); |
| } |
| |
| static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, |
| loff_t file_offset) |
| { |
| struct f2fs_private_dio *dio; |
| bool write = (bio_op(bio) == REQ_OP_WRITE); |
| |
| dio = f2fs_kzalloc(F2FS_I_SB(inode), |
| sizeof(struct f2fs_private_dio), GFP_NOFS); |
| if (!dio) |
| goto out; |
| |
| dio->inode = inode; |
| dio->orig_end_io = bio->bi_end_io; |
| dio->orig_private = bio->bi_private; |
| dio->write = write; |
| |
| bio->bi_end_io = f2fs_dio_end_io; |
| bio->bi_private = dio; |
| |
| inc_page_count(F2FS_I_SB(inode), |
| write ? F2FS_DIO_WRITE : F2FS_DIO_READ); |
| |
| submit_bio(bio); |
| return; |
| out: |
| bio->bi_status = BLK_STS_IOERR; |
| bio_endio(bio); |
| } |
| |
| static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct address_space *mapping = iocb->ki_filp->f_mapping; |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| size_t count = iov_iter_count(iter); |
| loff_t offset = iocb->ki_pos; |
| int rw = iov_iter_rw(iter); |
| int err; |
| enum rw_hint hint = iocb->ki_hint; |
| int whint_mode = F2FS_OPTION(sbi).whint_mode; |
| bool do_opu; |
| |
| err = check_direct_IO(inode, iter, offset); |
| if (err) |
| return err < 0 ? err : 0; |
| |
| if (f2fs_force_buffered_io(inode, iocb, iter)) |
| return 0; |
| |
| do_opu = allow_outplace_dio(inode, iocb, iter); |
| |
| trace_f2fs_direct_IO_enter(inode, offset, count, rw); |
| |
| if (rw == WRITE && whint_mode == WHINT_MODE_OFF) |
| iocb->ki_hint = WRITE_LIFE_NOT_SET; |
| |
| if (iocb->ki_flags & IOCB_NOWAIT) { |
| if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { |
| iocb->ki_hint = hint; |
| err = -EAGAIN; |
| goto out; |
| } |
| if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { |
| up_read(&fi->i_gc_rwsem[rw]); |
| iocb->ki_hint = hint; |
| err = -EAGAIN; |
| goto out; |
| } |
| } else { |
| down_read(&fi->i_gc_rwsem[rw]); |
| if (do_opu) |
| down_read(&fi->i_gc_rwsem[READ]); |
| } |
| |
| err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, |
| iter, rw == WRITE ? get_data_block_dio_write : |
| get_data_block_dio, NULL, f2fs_dio_submit_bio, |
| rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : |
| DIO_SKIP_HOLES); |
| |
| if (do_opu) |
| up_read(&fi->i_gc_rwsem[READ]); |
| |
| up_read(&fi->i_gc_rwsem[rw]); |
| |
| if (rw == WRITE) { |
| if (whint_mode == WHINT_MODE_OFF) |
| iocb->ki_hint = hint; |
| if (err > 0) { |
| f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, |
| err); |
| if (!do_opu) |
| set_inode_flag(inode, FI_UPDATE_WRITE); |
| } else if (err == -EIOCBQUEUED) { |
| f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, |
| count - iov_iter_count(iter)); |
| } else if (err < 0) { |
| f2fs_write_failed(mapping, offset + count); |
| } |
| } else { |
| if (err > 0) |
| f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); |
| else if (err == -EIOCBQUEUED) |
| f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, |
| count - iov_iter_count(iter)); |
| } |
| |
| out: |
| trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); |
| |
| return err; |
| } |
| |
| void f2fs_invalidate_page(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino >= F2FS_ROOT_INO(sbi) && |
| (offset % PAGE_SIZE || length != PAGE_SIZE)) |
| return; |
| |
| if (PageDirty(page)) { |
| if (inode->i_ino == F2FS_META_INO(sbi)) { |
| dec_page_count(sbi, F2FS_DIRTY_META); |
| } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { |
| dec_page_count(sbi, F2FS_DIRTY_NODES); |
| } else { |
| inode_dec_dirty_pages(inode); |
| f2fs_remove_dirty_inode(inode); |
| } |
| } |
| |
| clear_cold_data(page); |
| |
| if (IS_ATOMIC_WRITTEN_PAGE(page)) |
| return f2fs_drop_inmem_page(inode, page); |
| |
| f2fs_clear_page_private(page); |
| } |
| |
| int f2fs_release_page(struct page *page, gfp_t wait) |
| { |
| /* If this is dirty page, keep PagePrivate */ |
| if (PageDirty(page)) |
| return 0; |
| |
| /* This is atomic written page, keep Private */ |
| if (IS_ATOMIC_WRITTEN_PAGE(page)) |
| return 0; |
| |
| clear_cold_data(page); |
| f2fs_clear_page_private(page); |
| return 1; |
| } |
| |
| static int f2fs_set_data_page_dirty(struct page *page) |
| { |
| struct inode *inode = page_file_mapping(page)->host; |
| |
| trace_f2fs_set_page_dirty(page, DATA); |
| |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| if (PageSwapCache(page)) |
| return __set_page_dirty_nobuffers(page); |
| |
| if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { |
| if (!IS_ATOMIC_WRITTEN_PAGE(page)) { |
| f2fs_register_inmem_page(inode, page); |
| return 1; |
| } |
| /* |
| * Previously, this page has been registered, we just |
| * return here. |
| */ |
| return 0; |
| } |
| |
| if (!PageDirty(page)) { |
| __set_page_dirty_nobuffers(page); |
| f2fs_update_dirty_page(inode, page); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) |
| { |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| struct dnode_of_data dn; |
| sector_t start_idx, blknr = 0; |
| int ret; |
| |
| start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); |
| if (ret) |
| return 0; |
| |
| if (dn.data_blkaddr != COMPRESS_ADDR) { |
| dn.ofs_in_node += block - start_idx; |
| blknr = f2fs_data_blkaddr(&dn); |
| if (!__is_valid_data_blkaddr(blknr)) |
| blknr = 0; |
| } |
| |
| f2fs_put_dnode(&dn); |
| return blknr; |
| #else |
| return 0; |
| #endif |
| } |
| |
| |
| static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) |
| { |
| struct inode *inode = mapping->host; |
| sector_t blknr = 0; |
| |
| if (f2fs_has_inline_data(inode)) |
| goto out; |
| |
| /* make sure allocating whole blocks */ |
| if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) |
| filemap_write_and_wait(mapping); |
| |
| /* Block number less than F2FS MAX BLOCKS */ |
| if (unlikely(block >= max_file_blocks(inode))) |
| goto out; |
| |
| if (f2fs_compressed_file(inode)) { |
| blknr = f2fs_bmap_compress(inode, block); |
| } else { |
| struct f2fs_map_blocks map; |
| |
| memset(&map, 0, sizeof(map)); |
| map.m_lblk = block; |
| map.m_len = 1; |
| map.m_next_pgofs = NULL; |
| map.m_seg_type = NO_CHECK_TYPE; |
| |
| if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) |
| blknr = map.m_pblk; |
| } |
| out: |
| trace_f2fs_bmap(inode, block, blknr); |
| return blknr; |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| #include <linux/migrate.h> |
| |
| int f2fs_migrate_page(struct address_space *mapping, |
| struct page *newpage, struct page *page, enum migrate_mode mode) |
| { |
| int rc, extra_count; |
| struct f2fs_inode_info *fi = F2FS_I(mapping->host); |
| bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); |
| |
| BUG_ON(PageWriteback(page)); |
| |
| /* migrating an atomic written page is safe with the inmem_lock hold */ |
| if (atomic_written) { |
| if (mode != MIGRATE_SYNC) |
| return -EBUSY; |
| if (!mutex_trylock(&fi->inmem_lock)) |
| return -EAGAIN; |
| } |
| |
| /* one extra reference was held for atomic_write page */ |
| extra_count = atomic_written ? 1 : 0; |
| rc = migrate_page_move_mapping(mapping, newpage, |
| page, extra_count); |
| if (rc != MIGRATEPAGE_SUCCESS) { |
| if (atomic_written) |
| mutex_unlock(&fi->inmem_lock); |
| return rc; |
| } |
| |
| if (atomic_written) { |
| struct inmem_pages *cur; |
| list_for_each_entry(cur, &fi->inmem_pages, list) |
| if (cur->page == page) { |
| cur->page = newpage; |
| break; |
| } |
| mutex_unlock(&fi->inmem_lock); |
| put_page(page); |
| get_page(newpage); |
| } |
| |
| if (PagePrivate(page)) { |
| f2fs_set_page_private(newpage, page_private(page)); |
| f2fs_clear_page_private(page); |
| } |
| |
| if (mode != MIGRATE_SYNC_NO_COPY) |
| migrate_page_copy(newpage, page); |
| else |
| migrate_page_states(newpage, page); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| #endif |
| |
| #ifdef CONFIG_SWAP |
| static int check_swap_activate_fast(struct swap_info_struct *sis, |
| struct file *swap_file, sector_t *span) |
| { |
| struct address_space *mapping = swap_file->f_mapping; |
| struct inode *inode = mapping->host; |
| sector_t cur_lblock; |
| sector_t last_lblock; |
| sector_t pblock; |
| sector_t lowest_pblock = -1; |
| sector_t highest_pblock = 0; |
| int nr_extents = 0; |
| unsigned long nr_pblocks; |
| u64 len; |
| int ret; |
| |
| /* |
| * Map all the blocks into the extent list. This code doesn't try |
| * to be very smart. |
| */ |
| cur_lblock = 0; |
| last_lblock = bytes_to_blks(inode, i_size_read(inode)); |
| len = i_size_read(inode); |
| |
| while (cur_lblock <= last_lblock && cur_lblock < sis->max) { |
| struct f2fs_map_blocks map; |
| pgoff_t next_pgofs; |
| |
| cond_resched(); |
| |
| memset(&map, 0, sizeof(map)); |
| map.m_lblk = cur_lblock; |
| map.m_len = bytes_to_blks(inode, len) - cur_lblock; |
| map.m_next_pgofs = &next_pgofs; |
| map.m_seg_type = NO_CHECK_TYPE; |
| |
| ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); |
| if (ret) |
| goto err_out; |
| |
| /* hole */ |
| if (!(map.m_flags & F2FS_MAP_FLAGS)) |
| goto err_out; |
| |
| pblock = map.m_pblk; |
| nr_pblocks = map.m_len; |
| |
| if (cur_lblock + nr_pblocks >= sis->max) |
| nr_pblocks = sis->max - cur_lblock; |
| |
| if (cur_lblock) { /* exclude the header page */ |
| if (pblock < lowest_pblock) |
| lowest_pblock = pblock; |
| if (pblock + nr_pblocks - 1 > highest_pblock) |
| highest_pblock = pblock + nr_pblocks - 1; |
| } |
| |
| /* |
| * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks |
| */ |
| ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); |
| if (ret < 0) |
| goto out; |
| nr_extents += ret; |
| cur_lblock += nr_pblocks; |
| } |
| ret = nr_extents; |
| *span = 1 + highest_pblock - lowest_pblock; |
| if (cur_lblock == 0) |
| cur_lblock = 1; /* force Empty message */ |
| sis->max = cur_lblock; |
| sis->pages = cur_lblock - 1; |
| sis->highest_bit = cur_lblock - 1; |
| out: |
| return ret; |
| err_out: |
| pr_err("swapon: swapfile has holes\n"); |
| return -EINVAL; |
| } |
| |
| /* Copied from generic_swapfile_activate() to check any holes */ |
| static int check_swap_activate(struct swap_info_struct *sis, |
| struct file *swap_file, sector_t *span) |
| { |
| struct address_space *mapping = swap_file->f_mapping; |
| struct inode *inode = mapping->host; |
| unsigned blocks_per_page; |
| unsigned long page_no; |
| sector_t probe_block; |
| sector_t last_block; |
| sector_t lowest_block = -1; |
| sector_t highest_block = 0; |
| int nr_extents = 0; |
| int ret; |
| |
| if (PAGE_SIZE == F2FS_BLKSIZE) |
| return check_swap_activate_fast(sis, swap_file, span); |
| |
| blocks_per_page = bytes_to_blks(inode, PAGE_SIZE); |
| |
| /* |
| * Map all the blocks into the extent list. This code doesn't try |
| * to be very smart. |
| */ |
| probe_block = 0; |
| page_no = 0; |
| last_block = bytes_to_blks(inode, i_size_read(inode)); |
| while ((probe_block + blocks_per_page) <= last_block && |
| page_no < sis->max) { |
| unsigned block_in_page; |
| sector_t first_block; |
| sector_t block = 0; |
| int err = 0; |
| |
| cond_resched(); |
| |
| block = probe_block; |
| err = bmap(inode, &block); |
| if (err || !block) |
| goto bad_bmap; |
| first_block = block; |
| |
| /* |
| * It must be PAGE_SIZE aligned on-disk |
| */ |
| if (first_block & (blocks_per_page - 1)) { |
| probe_block++; |
| goto reprobe; |
| } |
| |
| for (block_in_page = 1; block_in_page < blocks_per_page; |
| block_in_page++) { |
| |
| block = probe_block + block_in_page; |
| err = bmap(inode, &block); |
| |
| if (err || !block) |
| goto bad_bmap; |
| |
| if (block != first_block + block_in_page) { |
| /* Discontiguity */ |
| probe_block++; |
| goto reprobe; |
| } |
| } |
| |
| first_block >>= (PAGE_SHIFT - inode->i_blkbits); |
| if (page_no) { /* exclude the header page */ |
| if (first_block < lowest_block) |
| lowest_block = first_block; |
| if (first_block > highest_block) |
| highest_block = first_block; |
| } |
| |
| /* |
| * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks |
| */ |
| ret = add_swap_extent(sis, page_no, 1, first_block); |
| if (ret < 0) |
| goto out; |
| nr_extents += ret; |
| page_no++; |
| probe_block += blocks_per_page; |
| reprobe: |
| continue; |
| } |
| ret = nr_extents; |
| *span = 1 + highest_block - lowest_block; |
| if (page_no == 0) |
| page_no = 1; /* force Empty message */ |
| sis->max = page_no; |
| sis->pages = page_no - 1; |
| sis->highest_bit = page_no - 1; |
| out: |
| return ret; |
| bad_bmap: |
| pr_err("swapon: swapfile has holes\n"); |
| return -EINVAL; |
| } |
| |
| static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, |
| sector_t *span) |
| { |
| struct inode *inode = file_inode(file); |
| int ret; |
| |
| if (!S_ISREG(inode->i_mode)) |
| return -EINVAL; |
| |
| if (f2fs_readonly(F2FS_I_SB(inode)->sb)) |
| return -EROFS; |
| |
| ret = f2fs_convert_inline_inode(inode); |
| if (ret) |
| return ret; |
| |
| if (!f2fs_disable_compressed_file(inode)) |
| return -EINVAL; |
| |
| f2fs_precache_extents(inode); |
| |
| ret = check_swap_activate(sis, file, span); |
| if (ret < 0) |
| return ret; |
| |
| set_inode_flag(inode, FI_PIN_FILE); |
| f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); |
| return ret; |
| } |
| |
| static void f2fs_swap_deactivate(struct file *file) |
| { |
| struct inode *inode = file_inode(file); |
| |
| clear_inode_flag(inode, FI_PIN_FILE); |
| } |
| #else |
| static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, |
| sector_t *span) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static void f2fs_swap_deactivate(struct file *file) |
| { |
| } |
| #endif |
| |
| const struct address_space_operations f2fs_dblock_aops = { |
| .readpage = f2fs_read_data_page, |
| .readahead = f2fs_readahead, |
| .writepage = f2fs_write_data_page, |
| .writepages = f2fs_write_data_pages, |
| .write_begin = f2fs_write_begin, |
| .write_end = f2fs_write_end, |
| .set_page_dirty = f2fs_set_data_page_dirty, |
| .invalidatepage = f2fs_invalidate_page, |
| .releasepage = f2fs_release_page, |
| .direct_IO = f2fs_direct_IO, |
| .bmap = f2fs_bmap, |
| .swap_activate = f2fs_swap_activate, |
| .swap_deactivate = f2fs_swap_deactivate, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = f2fs_migrate_page, |
| #endif |
| }; |
| |
| void f2fs_clear_page_cache_dirty_tag(struct page *page) |
| { |
| struct address_space *mapping = page_mapping(page); |
| unsigned long flags; |
| |
| xa_lock_irqsave(&mapping->i_pages, flags); |
| __xa_clear_mark(&mapping->i_pages, page_index(page), |
| PAGECACHE_TAG_DIRTY); |
| xa_unlock_irqrestore(&mapping->i_pages, flags); |
| } |
| |
| int __init f2fs_init_post_read_processing(void) |
| { |
| bio_post_read_ctx_cache = |
| kmem_cache_create("f2fs_bio_post_read_ctx", |
| sizeof(struct bio_post_read_ctx), 0, 0, NULL); |
| if (!bio_post_read_ctx_cache) |
| goto fail; |
| bio_post_read_ctx_pool = |
| mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, |
| bio_post_read_ctx_cache); |
| if (!bio_post_read_ctx_pool) |
| goto fail_free_cache; |
| return 0; |
| |
| fail_free_cache: |
| kmem_cache_destroy(bio_post_read_ctx_cache); |
| fail: |
| return -ENOMEM; |
| } |
| |
| void f2fs_destroy_post_read_processing(void) |
| { |
| mempool_destroy(bio_post_read_ctx_pool); |
| kmem_cache_destroy(bio_post_read_ctx_cache); |
| } |
| |
| int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) |
| { |
| if (!f2fs_sb_has_encrypt(sbi) && |
| !f2fs_sb_has_verity(sbi) && |
| !f2fs_sb_has_compression(sbi)) |
| return 0; |
| |
| sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", |
| WQ_UNBOUND | WQ_HIGHPRI, |
| num_online_cpus()); |
| if (!sbi->post_read_wq) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) |
| { |
| if (sbi->post_read_wq) |
| destroy_workqueue(sbi->post_read_wq); |
| } |
| |
| int __init f2fs_init_bio_entry_cache(void) |
| { |
| bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", |
| sizeof(struct bio_entry)); |
| if (!bio_entry_slab) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void f2fs_destroy_bio_entry_cache(void) |
| { |
| kmem_cache_destroy(bio_entry_slab); |
| } |