| /* |
| * Intel specific MCE features. |
| * Copyright 2004 Zwane Mwaikambo <zwane@linuxpower.ca> |
| * Copyright (C) 2008, 2009 Intel Corporation |
| * Author: Andi Kleen |
| */ |
| |
| #include <linux/gfp.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/percpu.h> |
| #include <linux/sched.h> |
| #include <asm/apic.h> |
| #include <asm/processor.h> |
| #include <asm/msr.h> |
| #include <asm/mce.h> |
| |
| /* |
| * Support for Intel Correct Machine Check Interrupts. This allows |
| * the CPU to raise an interrupt when a corrected machine check happened. |
| * Normally we pick those up using a regular polling timer. |
| * Also supports reliable discovery of shared banks. |
| */ |
| |
| static DEFINE_PER_CPU(mce_banks_t, mce_banks_owned); |
| |
| /* |
| * cmci_discover_lock protects against parallel discovery attempts |
| * which could race against each other. |
| */ |
| static DEFINE_SPINLOCK(cmci_discover_lock); |
| |
| #define CMCI_THRESHOLD 1 |
| |
| static int cmci_supported(int *banks) |
| { |
| u64 cap; |
| |
| if (mce_cmci_disabled || mce_ignore_ce) |
| return 0; |
| |
| /* |
| * Vendor check is not strictly needed, but the initial |
| * initialization is vendor keyed and this |
| * makes sure none of the backdoors are entered otherwise. |
| */ |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| return 0; |
| if (!cpu_has_apic || lapic_get_maxlvt() < 6) |
| return 0; |
| rdmsrl(MSR_IA32_MCG_CAP, cap); |
| *banks = min_t(unsigned, MAX_NR_BANKS, cap & 0xff); |
| return !!(cap & MCG_CMCI_P); |
| } |
| |
| /* |
| * The interrupt handler. This is called on every event. |
| * Just call the poller directly to log any events. |
| * This could in theory increase the threshold under high load, |
| * but doesn't for now. |
| */ |
| static void intel_threshold_interrupt(void) |
| { |
| machine_check_poll(MCP_TIMESTAMP, &__get_cpu_var(mce_banks_owned)); |
| mce_notify_irq(); |
| } |
| |
| static void print_update(char *type, int *hdr, int num) |
| { |
| if (*hdr == 0) |
| printk(KERN_INFO "CPU %d MCA banks", smp_processor_id()); |
| *hdr = 1; |
| printk(KERN_CONT " %s:%d", type, num); |
| } |
| |
| /* |
| * Enable CMCI (Corrected Machine Check Interrupt) for available MCE banks |
| * on this CPU. Use the algorithm recommended in the SDM to discover shared |
| * banks. |
| */ |
| static void cmci_discover(int banks, int boot) |
| { |
| unsigned long *owned = (void *)&__get_cpu_var(mce_banks_owned); |
| unsigned long flags; |
| int hdr = 0; |
| int i; |
| |
| spin_lock_irqsave(&cmci_discover_lock, flags); |
| for (i = 0; i < banks; i++) { |
| u64 val; |
| |
| if (test_bit(i, owned)) |
| continue; |
| |
| rdmsrl(MSR_IA32_MCx_CTL2(i), val); |
| |
| /* Already owned by someone else? */ |
| if (val & CMCI_EN) { |
| if (test_and_clear_bit(i, owned) && !boot) |
| print_update("SHD", &hdr, i); |
| __clear_bit(i, __get_cpu_var(mce_poll_banks)); |
| continue; |
| } |
| |
| val |= CMCI_EN | CMCI_THRESHOLD; |
| wrmsrl(MSR_IA32_MCx_CTL2(i), val); |
| rdmsrl(MSR_IA32_MCx_CTL2(i), val); |
| |
| /* Did the enable bit stick? -- the bank supports CMCI */ |
| if (val & CMCI_EN) { |
| if (!test_and_set_bit(i, owned) && !boot) |
| print_update("CMCI", &hdr, i); |
| __clear_bit(i, __get_cpu_var(mce_poll_banks)); |
| } else { |
| WARN_ON(!test_bit(i, __get_cpu_var(mce_poll_banks))); |
| } |
| } |
| spin_unlock_irqrestore(&cmci_discover_lock, flags); |
| if (hdr) |
| printk(KERN_CONT "\n"); |
| } |
| |
| /* |
| * Just in case we missed an event during initialization check |
| * all the CMCI owned banks. |
| */ |
| void cmci_recheck(void) |
| { |
| unsigned long flags; |
| int banks; |
| |
| if (!mce_available(¤t_cpu_data) || !cmci_supported(&banks)) |
| return; |
| local_irq_save(flags); |
| machine_check_poll(MCP_TIMESTAMP, &__get_cpu_var(mce_banks_owned)); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Disable CMCI on this CPU for all banks it owns when it goes down. |
| * This allows other CPUs to claim the banks on rediscovery. |
| */ |
| void cmci_clear(void) |
| { |
| unsigned long flags; |
| int i; |
| int banks; |
| u64 val; |
| |
| if (!cmci_supported(&banks)) |
| return; |
| spin_lock_irqsave(&cmci_discover_lock, flags); |
| for (i = 0; i < banks; i++) { |
| if (!test_bit(i, __get_cpu_var(mce_banks_owned))) |
| continue; |
| /* Disable CMCI */ |
| rdmsrl(MSR_IA32_MCx_CTL2(i), val); |
| val &= ~(CMCI_EN|CMCI_THRESHOLD_MASK); |
| wrmsrl(MSR_IA32_MCx_CTL2(i), val); |
| __clear_bit(i, __get_cpu_var(mce_banks_owned)); |
| } |
| spin_unlock_irqrestore(&cmci_discover_lock, flags); |
| } |
| |
| /* |
| * After a CPU went down cycle through all the others and rediscover |
| * Must run in process context. |
| */ |
| void cmci_rediscover(int dying) |
| { |
| int banks; |
| int cpu; |
| cpumask_var_t old; |
| |
| if (!cmci_supported(&banks)) |
| return; |
| if (!alloc_cpumask_var(&old, GFP_KERNEL)) |
| return; |
| cpumask_copy(old, ¤t->cpus_allowed); |
| |
| for_each_online_cpu(cpu) { |
| if (cpu == dying) |
| continue; |
| if (set_cpus_allowed_ptr(current, cpumask_of(cpu))) |
| continue; |
| /* Recheck banks in case CPUs don't all have the same */ |
| if (cmci_supported(&banks)) |
| cmci_discover(banks, 0); |
| } |
| |
| set_cpus_allowed_ptr(current, old); |
| free_cpumask_var(old); |
| } |
| |
| /* |
| * Reenable CMCI on this CPU in case a CPU down failed. |
| */ |
| void cmci_reenable(void) |
| { |
| int banks; |
| if (cmci_supported(&banks)) |
| cmci_discover(banks, 0); |
| } |
| |
| static void intel_init_cmci(void) |
| { |
| int banks; |
| |
| if (!cmci_supported(&banks)) |
| return; |
| |
| mce_threshold_vector = intel_threshold_interrupt; |
| cmci_discover(banks, 1); |
| /* |
| * For CPU #0 this runs with still disabled APIC, but that's |
| * ok because only the vector is set up. We still do another |
| * check for the banks later for CPU #0 just to make sure |
| * to not miss any events. |
| */ |
| apic_write(APIC_LVTCMCI, THRESHOLD_APIC_VECTOR|APIC_DM_FIXED); |
| cmci_recheck(); |
| } |
| |
| void mce_intel_feature_init(struct cpuinfo_x86 *c) |
| { |
| intel_init_thermal(c); |
| intel_init_cmci(); |
| } |