| /* SPDX-License-Identifier: GPL-2.0 */ |
| |
| #ifdef CONFIG_SCHEDSTATS |
| |
| extern struct static_key_false sched_schedstats; |
| |
| /* |
| * Expects runqueue lock to be held for atomicity of update |
| */ |
| static inline void |
| rq_sched_info_arrive(struct rq *rq, unsigned long long delta) |
| { |
| if (rq) { |
| rq->rq_sched_info.run_delay += delta; |
| rq->rq_sched_info.pcount++; |
| } |
| } |
| |
| /* |
| * Expects runqueue lock to be held for atomicity of update |
| */ |
| static inline void |
| rq_sched_info_depart(struct rq *rq, unsigned long long delta) |
| { |
| if (rq) |
| rq->rq_cpu_time += delta; |
| } |
| |
| static inline void |
| rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) |
| { |
| if (rq) |
| rq->rq_sched_info.run_delay += delta; |
| } |
| #define schedstat_enabled() static_branch_unlikely(&sched_schedstats) |
| #define __schedstat_inc(var) do { var++; } while (0) |
| #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0) |
| #define __schedstat_add(var, amt) do { var += (amt); } while (0) |
| #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0) |
| #define __schedstat_set(var, val) do { var = (val); } while (0) |
| #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0) |
| #define schedstat_val(var) (var) |
| #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0) |
| |
| void __update_stats_wait_start(struct rq *rq, struct task_struct *p, |
| struct sched_statistics *stats); |
| |
| void __update_stats_wait_end(struct rq *rq, struct task_struct *p, |
| struct sched_statistics *stats); |
| void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p, |
| struct sched_statistics *stats); |
| |
| static inline void |
| check_schedstat_required(void) |
| { |
| if (schedstat_enabled()) |
| return; |
| |
| /* Force schedstat enabled if a dependent tracepoint is active */ |
| if (trace_sched_stat_wait_enabled() || |
| trace_sched_stat_sleep_enabled() || |
| trace_sched_stat_iowait_enabled() || |
| trace_sched_stat_blocked_enabled() || |
| trace_sched_stat_runtime_enabled()) |
| printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n"); |
| } |
| |
| #else /* !CONFIG_SCHEDSTATS: */ |
| |
| static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { } |
| static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { } |
| static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { } |
| # define schedstat_enabled() 0 |
| # define __schedstat_inc(var) do { } while (0) |
| # define schedstat_inc(var) do { } while (0) |
| # define __schedstat_add(var, amt) do { } while (0) |
| # define schedstat_add(var, amt) do { } while (0) |
| # define __schedstat_set(var, val) do { } while (0) |
| # define schedstat_set(var, val) do { } while (0) |
| # define schedstat_val(var) 0 |
| # define schedstat_val_or_zero(var) 0 |
| |
| # define __update_stats_wait_start(rq, p, stats) do { } while (0) |
| # define __update_stats_wait_end(rq, p, stats) do { } while (0) |
| # define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0) |
| # define check_schedstat_required() do { } while (0) |
| |
| #endif /* CONFIG_SCHEDSTATS */ |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| struct sched_entity_stats { |
| struct sched_entity se; |
| struct sched_statistics stats; |
| } __no_randomize_layout; |
| #endif |
| |
| static inline struct sched_statistics * |
| __schedstats_from_se(struct sched_entity *se) |
| { |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| if (!entity_is_task(se)) |
| return &container_of(se, struct sched_entity_stats, se)->stats; |
| #endif |
| return &task_of(se)->stats; |
| } |
| |
| #ifdef CONFIG_PSI |
| /* |
| * PSI tracks state that persists across sleeps, such as iowaits and |
| * memory stalls. As a result, it has to distinguish between sleeps, |
| * where a task's runnable state changes, and requeues, where a task |
| * and its state are being moved between CPUs and runqueues. |
| */ |
| static inline void psi_enqueue(struct task_struct *p, bool wakeup) |
| { |
| int clear = 0, set = TSK_RUNNING; |
| |
| if (static_branch_likely(&psi_disabled)) |
| return; |
| |
| if (p->in_memstall) |
| set |= TSK_MEMSTALL_RUNNING; |
| |
| if (!wakeup || p->sched_psi_wake_requeue) { |
| if (p->in_memstall) |
| set |= TSK_MEMSTALL; |
| if (p->sched_psi_wake_requeue) |
| p->sched_psi_wake_requeue = 0; |
| } else { |
| if (p->in_iowait) |
| clear |= TSK_IOWAIT; |
| } |
| |
| psi_task_change(p, clear, set); |
| } |
| |
| static inline void psi_dequeue(struct task_struct *p, bool sleep) |
| { |
| int clear = TSK_RUNNING; |
| |
| if (static_branch_likely(&psi_disabled)) |
| return; |
| |
| /* |
| * A voluntary sleep is a dequeue followed by a task switch. To |
| * avoid walking all ancestors twice, psi_task_switch() handles |
| * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU. |
| * Do nothing here. |
| */ |
| if (sleep) |
| return; |
| |
| if (p->in_memstall) |
| clear |= (TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); |
| |
| psi_task_change(p, clear, 0); |
| } |
| |
| static inline void psi_ttwu_dequeue(struct task_struct *p) |
| { |
| if (static_branch_likely(&psi_disabled)) |
| return; |
| /* |
| * Is the task being migrated during a wakeup? Make sure to |
| * deregister its sleep-persistent psi states from the old |
| * queue, and let psi_enqueue() know it has to requeue. |
| */ |
| if (unlikely(p->in_iowait || p->in_memstall)) { |
| struct rq_flags rf; |
| struct rq *rq; |
| int clear = 0; |
| |
| if (p->in_iowait) |
| clear |= TSK_IOWAIT; |
| if (p->in_memstall) |
| clear |= TSK_MEMSTALL; |
| |
| rq = __task_rq_lock(p, &rf); |
| psi_task_change(p, clear, 0); |
| p->sched_psi_wake_requeue = 1; |
| __task_rq_unlock(rq, &rf); |
| } |
| } |
| |
| static inline void psi_sched_switch(struct task_struct *prev, |
| struct task_struct *next, |
| bool sleep) |
| { |
| if (static_branch_likely(&psi_disabled)) |
| return; |
| |
| psi_task_switch(prev, next, sleep); |
| } |
| |
| #else /* CONFIG_PSI */ |
| static inline void psi_enqueue(struct task_struct *p, bool wakeup) {} |
| static inline void psi_dequeue(struct task_struct *p, bool sleep) {} |
| static inline void psi_ttwu_dequeue(struct task_struct *p) {} |
| static inline void psi_sched_switch(struct task_struct *prev, |
| struct task_struct *next, |
| bool sleep) {} |
| #endif /* CONFIG_PSI */ |
| |
| #ifdef CONFIG_SCHED_INFO |
| /* |
| * We are interested in knowing how long it was from the *first* time a |
| * task was queued to the time that it finally hit a CPU, we call this routine |
| * from dequeue_task() to account for possible rq->clock skew across CPUs. The |
| * delta taken on each CPU would annul the skew. |
| */ |
| static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t) |
| { |
| unsigned long long delta = 0; |
| |
| if (!t->sched_info.last_queued) |
| return; |
| |
| delta = rq_clock(rq) - t->sched_info.last_queued; |
| t->sched_info.last_queued = 0; |
| t->sched_info.run_delay += delta; |
| |
| rq_sched_info_dequeue(rq, delta); |
| } |
| |
| /* |
| * Called when a task finally hits the CPU. We can now calculate how |
| * long it was waiting to run. We also note when it began so that we |
| * can keep stats on how long its timeslice is. |
| */ |
| static void sched_info_arrive(struct rq *rq, struct task_struct *t) |
| { |
| unsigned long long now, delta = 0; |
| |
| if (!t->sched_info.last_queued) |
| return; |
| |
| now = rq_clock(rq); |
| delta = now - t->sched_info.last_queued; |
| t->sched_info.last_queued = 0; |
| t->sched_info.run_delay += delta; |
| t->sched_info.last_arrival = now; |
| t->sched_info.pcount++; |
| |
| rq_sched_info_arrive(rq, delta); |
| } |
| |
| /* |
| * This function is only called from enqueue_task(), but also only updates |
| * the timestamp if it is already not set. It's assumed that |
| * sched_info_dequeue() will clear that stamp when appropriate. |
| */ |
| static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t) |
| { |
| if (!t->sched_info.last_queued) |
| t->sched_info.last_queued = rq_clock(rq); |
| } |
| |
| /* |
| * Called when a process ceases being the active-running process involuntarily |
| * due, typically, to expiring its time slice (this may also be called when |
| * switching to the idle task). Now we can calculate how long we ran. |
| * Also, if the process is still in the TASK_RUNNING state, call |
| * sched_info_enqueue() to mark that it has now again started waiting on |
| * the runqueue. |
| */ |
| static inline void sched_info_depart(struct rq *rq, struct task_struct *t) |
| { |
| unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; |
| |
| rq_sched_info_depart(rq, delta); |
| |
| if (task_is_running(t)) |
| sched_info_enqueue(rq, t); |
| } |
| |
| /* |
| * Called when tasks are switched involuntarily due, typically, to expiring |
| * their time slice. (This may also be called when switching to or from |
| * the idle task.) We are only called when prev != next. |
| */ |
| static inline void |
| sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) |
| { |
| /* |
| * prev now departs the CPU. It's not interesting to record |
| * stats about how efficient we were at scheduling the idle |
| * process, however. |
| */ |
| if (prev != rq->idle) |
| sched_info_depart(rq, prev); |
| |
| if (next != rq->idle) |
| sched_info_arrive(rq, next); |
| } |
| |
| #else /* !CONFIG_SCHED_INFO: */ |
| # define sched_info_enqueue(rq, t) do { } while (0) |
| # define sched_info_dequeue(rq, t) do { } while (0) |
| # define sched_info_switch(rq, t, next) do { } while (0) |
| #endif /* CONFIG_SCHED_INFO */ |