blob: ffe4600fd95bbcbe414cd98ebde9664a829a696d [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
// Copyright(c) 2015-17 Intel Corporation.
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/mod_devicetable.h>
#include <linux/pm_runtime.h>
#include <linux/soundwire/sdw_registers.h>
#include <linux/soundwire/sdw.h>
#include "bus.h"
#include "sysfs_local.h"
static DEFINE_IDA(sdw_ida);
static int sdw_get_id(struct sdw_bus *bus)
{
int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
if (rc < 0)
return rc;
bus->id = rc;
return 0;
}
/**
* sdw_bus_master_add() - add a bus Master instance
* @bus: bus instance
* @parent: parent device
* @fwnode: firmware node handle
*
* Initializes the bus instance, read properties and create child
* devices.
*/
int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
struct fwnode_handle *fwnode)
{
struct sdw_master_prop *prop = NULL;
int ret;
if (!parent) {
pr_err("SoundWire parent device is not set\n");
return -ENODEV;
}
ret = sdw_get_id(bus);
if (ret) {
dev_err(parent, "Failed to get bus id\n");
return ret;
}
ret = sdw_master_device_add(bus, parent, fwnode);
if (ret) {
dev_err(parent, "Failed to add master device at link %d\n",
bus->link_id);
return ret;
}
if (!bus->ops) {
dev_err(bus->dev, "SoundWire Bus ops are not set\n");
return -EINVAL;
}
if (!bus->compute_params) {
dev_err(bus->dev,
"Bandwidth allocation not configured, compute_params no set\n");
return -EINVAL;
}
mutex_init(&bus->msg_lock);
mutex_init(&bus->bus_lock);
INIT_LIST_HEAD(&bus->slaves);
INIT_LIST_HEAD(&bus->m_rt_list);
/*
* Initialize multi_link flag
* TODO: populate this flag by reading property from FW node
*/
bus->multi_link = false;
if (bus->ops->read_prop) {
ret = bus->ops->read_prop(bus);
if (ret < 0) {
dev_err(bus->dev,
"Bus read properties failed:%d\n", ret);
return ret;
}
}
sdw_bus_debugfs_init(bus);
/*
* Device numbers in SoundWire are 0 through 15. Enumeration device
* number (0), Broadcast device number (15), Group numbers (12 and
* 13) and Master device number (14) are not used for assignment so
* mask these and other higher bits.
*/
/* Set higher order bits */
*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
/* Set enumuration device number and broadcast device number */
set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
/* Set group device numbers and master device number */
set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
/*
* SDW is an enumerable bus, but devices can be powered off. So,
* they won't be able to report as present.
*
* Create Slave devices based on Slaves described in
* the respective firmware (ACPI/DT)
*/
if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
ret = sdw_acpi_find_slaves(bus);
else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
ret = sdw_of_find_slaves(bus);
else
ret = -ENOTSUPP; /* No ACPI/DT so error out */
if (ret) {
dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
return ret;
}
/*
* Initialize clock values based on Master properties. The max
* frequency is read from max_clk_freq property. Current assumption
* is that the bus will start at highest clock frequency when
* powered on.
*
* Default active bank will be 0 as out of reset the Slaves have
* to start with bank 0 (Table 40 of Spec)
*/
prop = &bus->prop;
bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
bus->params.curr_dr_freq = bus->params.max_dr_freq;
bus->params.curr_bank = SDW_BANK0;
bus->params.next_bank = SDW_BANK1;
return 0;
}
EXPORT_SYMBOL(sdw_bus_master_add);
static int sdw_delete_slave(struct device *dev, void *data)
{
struct sdw_slave *slave = dev_to_sdw_dev(dev);
struct sdw_bus *bus = slave->bus;
pm_runtime_disable(dev);
sdw_slave_debugfs_exit(slave);
mutex_lock(&bus->bus_lock);
if (slave->dev_num) /* clear dev_num if assigned */
clear_bit(slave->dev_num, bus->assigned);
list_del_init(&slave->node);
mutex_unlock(&bus->bus_lock);
device_unregister(dev);
return 0;
}
/**
* sdw_bus_master_delete() - delete the bus master instance
* @bus: bus to be deleted
*
* Remove the instance, delete the child devices.
*/
void sdw_bus_master_delete(struct sdw_bus *bus)
{
device_for_each_child(bus->dev, NULL, sdw_delete_slave);
sdw_master_device_del(bus);
sdw_bus_debugfs_exit(bus);
ida_free(&sdw_ida, bus->id);
}
EXPORT_SYMBOL(sdw_bus_master_delete);
/*
* SDW IO Calls
*/
static inline int find_response_code(enum sdw_command_response resp)
{
switch (resp) {
case SDW_CMD_OK:
return 0;
case SDW_CMD_IGNORED:
return -ENODATA;
case SDW_CMD_TIMEOUT:
return -ETIMEDOUT;
default:
return -EIO;
}
}
static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
{
int retry = bus->prop.err_threshold;
enum sdw_command_response resp;
int ret = 0, i;
for (i = 0; i <= retry; i++) {
resp = bus->ops->xfer_msg(bus, msg);
ret = find_response_code(resp);
/* if cmd is ok or ignored return */
if (ret == 0 || ret == -ENODATA)
return ret;
}
return ret;
}
static inline int do_transfer_defer(struct sdw_bus *bus,
struct sdw_msg *msg,
struct sdw_defer *defer)
{
int retry = bus->prop.err_threshold;
enum sdw_command_response resp;
int ret = 0, i;
defer->msg = msg;
defer->length = msg->len;
init_completion(&defer->complete);
for (i = 0; i <= retry; i++) {
resp = bus->ops->xfer_msg_defer(bus, msg, defer);
ret = find_response_code(resp);
/* if cmd is ok or ignored return */
if (ret == 0 || ret == -ENODATA)
return ret;
}
return ret;
}
static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
{
int retry = bus->prop.err_threshold;
enum sdw_command_response resp;
int ret = 0, i;
for (i = 0; i <= retry; i++) {
resp = bus->ops->reset_page_addr(bus, dev_num);
ret = find_response_code(resp);
/* if cmd is ok or ignored return */
if (ret == 0 || ret == -ENODATA)
return ret;
}
return ret;
}
static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
{
int ret;
ret = do_transfer(bus, msg);
if (ret != 0 && ret != -ENODATA)
dev_err(bus->dev, "trf on Slave %d failed:%d\n",
msg->dev_num, ret);
if (msg->page)
sdw_reset_page(bus, msg->dev_num);
return ret;
}
/**
* sdw_transfer() - Synchronous transfer message to a SDW Slave device
* @bus: SDW bus
* @msg: SDW message to be xfered
*/
int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
{
int ret;
mutex_lock(&bus->msg_lock);
ret = sdw_transfer_unlocked(bus, msg);
mutex_unlock(&bus->msg_lock);
return ret;
}
/**
* sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
* @bus: SDW bus
* @msg: SDW message to be xfered
* @defer: Defer block for signal completion
*
* Caller needs to hold the msg_lock lock while calling this
*/
int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
struct sdw_defer *defer)
{
int ret;
if (!bus->ops->xfer_msg_defer)
return -ENOTSUPP;
ret = do_transfer_defer(bus, msg, defer);
if (ret != 0 && ret != -ENODATA)
dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
msg->dev_num, ret);
if (msg->page)
sdw_reset_page(bus, msg->dev_num);
return ret;
}
int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
{
memset(msg, 0, sizeof(*msg));
msg->addr = addr; /* addr is 16 bit and truncated here */
msg->len = count;
msg->dev_num = dev_num;
msg->flags = flags;
msg->buf = buf;
if (addr < SDW_REG_NO_PAGE) /* no paging area */
return 0;
if (addr >= SDW_REG_MAX) { /* illegal addr */
pr_err("SDW: Invalid address %x passed\n", addr);
return -EINVAL;
}
if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
if (slave && !slave->prop.paging_support)
return 0;
/* no need for else as that will fall-through to paging */
}
/* paging mandatory */
if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
pr_err("SDW: Invalid device for paging :%d\n", dev_num);
return -EINVAL;
}
if (!slave) {
pr_err("SDW: No slave for paging addr\n");
return -EINVAL;
}
if (!slave->prop.paging_support) {
dev_err(&slave->dev,
"address %x needs paging but no support\n", addr);
return -EINVAL;
}
msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
msg->addr |= BIT(15);
msg->page = true;
return 0;
}
/*
* Read/Write IO functions.
* no_pm versions can only be called by the bus, e.g. while enumerating or
* handling suspend-resume sequences.
* all clients need to use the pm versions
*/
static int
sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
{
struct sdw_msg msg;
int ret;
ret = sdw_fill_msg(&msg, slave, addr, count,
slave->dev_num, SDW_MSG_FLAG_READ, val);
if (ret < 0)
return ret;
return sdw_transfer(slave->bus, &msg);
}
static int
sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
{
struct sdw_msg msg;
int ret;
ret = sdw_fill_msg(&msg, slave, addr, count,
slave->dev_num, SDW_MSG_FLAG_WRITE, val);
if (ret < 0)
return ret;
return sdw_transfer(slave->bus, &msg);
}
static int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
{
return sdw_nwrite_no_pm(slave, addr, 1, &value);
}
static int
sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
{
struct sdw_msg msg;
u8 buf;
int ret;
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
SDW_MSG_FLAG_READ, &buf);
if (ret)
return ret;
ret = sdw_transfer(bus, &msg);
if (ret < 0)
return ret;
return buf;
}
static int
sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
{
struct sdw_msg msg;
int ret;
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
SDW_MSG_FLAG_WRITE, &value);
if (ret)
return ret;
return sdw_transfer(bus, &msg);
}
int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
{
struct sdw_msg msg;
u8 buf;
int ret;
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
SDW_MSG_FLAG_READ, &buf);
if (ret)
return ret;
ret = sdw_transfer_unlocked(bus, &msg);
if (ret < 0)
return ret;
return buf;
}
EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
{
struct sdw_msg msg;
int ret;
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
SDW_MSG_FLAG_WRITE, &value);
if (ret)
return ret;
return sdw_transfer_unlocked(bus, &msg);
}
EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
static int
sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
{
u8 buf;
int ret;
ret = sdw_nread_no_pm(slave, addr, 1, &buf);
if (ret < 0)
return ret;
else
return buf;
}
/**
* sdw_nread() - Read "n" contiguous SDW Slave registers
* @slave: SDW Slave
* @addr: Register address
* @count: length
* @val: Buffer for values to be read
*/
int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
{
int ret;
ret = pm_runtime_get_sync(slave->bus->dev);
if (ret < 0 && ret != -EACCES) {
pm_runtime_put_noidle(slave->bus->dev);
return ret;
}
ret = sdw_nread_no_pm(slave, addr, count, val);
pm_runtime_mark_last_busy(slave->bus->dev);
pm_runtime_put(slave->bus->dev);
return ret;
}
EXPORT_SYMBOL(sdw_nread);
/**
* sdw_nwrite() - Write "n" contiguous SDW Slave registers
* @slave: SDW Slave
* @addr: Register address
* @count: length
* @val: Buffer for values to be read
*/
int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
{
int ret;
ret = pm_runtime_get_sync(slave->bus->dev);
if (ret < 0 && ret != -EACCES) {
pm_runtime_put_noidle(slave->bus->dev);
return ret;
}
ret = sdw_nwrite_no_pm(slave, addr, count, val);
pm_runtime_mark_last_busy(slave->bus->dev);
pm_runtime_put(slave->bus->dev);
return ret;
}
EXPORT_SYMBOL(sdw_nwrite);
/**
* sdw_read() - Read a SDW Slave register
* @slave: SDW Slave
* @addr: Register address
*/
int sdw_read(struct sdw_slave *slave, u32 addr)
{
u8 buf;
int ret;
ret = sdw_nread(slave, addr, 1, &buf);
if (ret < 0)
return ret;
return buf;
}
EXPORT_SYMBOL(sdw_read);
/**
* sdw_write() - Write a SDW Slave register
* @slave: SDW Slave
* @addr: Register address
* @value: Register value
*/
int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
{
return sdw_nwrite(slave, addr, 1, &value);
}
EXPORT_SYMBOL(sdw_write);
/*
* SDW alert handling
*/
/* called with bus_lock held */
static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
{
struct sdw_slave *slave = NULL;
list_for_each_entry(slave, &bus->slaves, node) {
if (slave->dev_num == i)
return slave;
}
return NULL;
}
static int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
{
if (slave->id.mfg_id != id.mfg_id ||
slave->id.part_id != id.part_id ||
slave->id.class_id != id.class_id ||
(slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
slave->id.unique_id != id.unique_id))
return -ENODEV;
return 0;
}
/* called with bus_lock held */
static int sdw_get_device_num(struct sdw_slave *slave)
{
int bit;
bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
if (bit == SDW_MAX_DEVICES) {
bit = -ENODEV;
goto err;
}
/*
* Do not update dev_num in Slave data structure here,
* Update once program dev_num is successful
*/
set_bit(bit, slave->bus->assigned);
err:
return bit;
}
static int sdw_assign_device_num(struct sdw_slave *slave)
{
int ret, dev_num;
bool new_device = false;
/* check first if device number is assigned, if so reuse that */
if (!slave->dev_num) {
if (!slave->dev_num_sticky) {
mutex_lock(&slave->bus->bus_lock);
dev_num = sdw_get_device_num(slave);
mutex_unlock(&slave->bus->bus_lock);
if (dev_num < 0) {
dev_err(slave->bus->dev, "Get dev_num failed: %d\n",
dev_num);
return dev_num;
}
slave->dev_num = dev_num;
slave->dev_num_sticky = dev_num;
new_device = true;
} else {
slave->dev_num = slave->dev_num_sticky;
}
}
if (!new_device)
dev_dbg(slave->bus->dev,
"Slave already registered, reusing dev_num:%d\n",
slave->dev_num);
/* Clear the slave->dev_num to transfer message on device 0 */
dev_num = slave->dev_num;
slave->dev_num = 0;
ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
if (ret < 0) {
dev_err(&slave->dev, "Program device_num %d failed: %d\n",
dev_num, ret);
return ret;
}
/* After xfer of msg, restore dev_num */
slave->dev_num = slave->dev_num_sticky;
return 0;
}
void sdw_extract_slave_id(struct sdw_bus *bus,
u64 addr, struct sdw_slave_id *id)
{
dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
id->sdw_version = SDW_VERSION(addr);
id->unique_id = SDW_UNIQUE_ID(addr);
id->mfg_id = SDW_MFG_ID(addr);
id->part_id = SDW_PART_ID(addr);
id->class_id = SDW_CLASS_ID(addr);
dev_dbg(bus->dev,
"SDW Slave class_id %x, part_id %x, mfg_id %x, unique_id %x, version %x\n",
id->class_id, id->part_id, id->mfg_id,
id->unique_id, id->sdw_version);
}
static int sdw_program_device_num(struct sdw_bus *bus)
{
u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
struct sdw_slave *slave, *_s;
struct sdw_slave_id id;
struct sdw_msg msg;
bool found = false;
int count = 0, ret;
u64 addr;
/* No Slave, so use raw xfer api */
ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
if (ret < 0)
return ret;
do {
ret = sdw_transfer(bus, &msg);
if (ret == -ENODATA) { /* end of device id reads */
dev_dbg(bus->dev, "No more devices to enumerate\n");
ret = 0;
break;
}
if (ret < 0) {
dev_err(bus->dev, "DEVID read fail:%d\n", ret);
break;
}
/*
* Construct the addr and extract. Cast the higher shift
* bits to avoid truncation due to size limit.
*/
addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
((u64)buf[0] << 40);
sdw_extract_slave_id(bus, addr, &id);
/* Now compare with entries */
list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
if (sdw_compare_devid(slave, id) == 0) {
found = true;
/*
* Assign a new dev_num to this Slave and
* not mark it present. It will be marked
* present after it reports ATTACHED on new
* dev_num
*/
ret = sdw_assign_device_num(slave);
if (ret) {
dev_err(slave->bus->dev,
"Assign dev_num failed:%d\n",
ret);
return ret;
}
break;
}
}
if (!found) {
/* TODO: Park this device in Group 13 */
/*
* add Slave device even if there is no platform
* firmware description. There will be no driver probe
* but the user/integration will be able to see the
* device, enumeration status and device number in sysfs
*/
sdw_slave_add(bus, &id, NULL);
dev_err(bus->dev, "Slave Entry not found\n");
}
count++;
/*
* Check till error out or retry (count) exhausts.
* Device can drop off and rejoin during enumeration
* so count till twice the bound.
*/
} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
return ret;
}
static void sdw_modify_slave_status(struct sdw_slave *slave,
enum sdw_slave_status status)
{
mutex_lock(&slave->bus->bus_lock);
dev_vdbg(&slave->dev,
"%s: changing status slave %d status %d new status %d\n",
__func__, slave->dev_num, slave->status, status);
if (status == SDW_SLAVE_UNATTACHED) {
dev_dbg(&slave->dev,
"%s: initializing completion for Slave %d\n",
__func__, slave->dev_num);
init_completion(&slave->enumeration_complete);
init_completion(&slave->initialization_complete);
} else if ((status == SDW_SLAVE_ATTACHED) &&
(slave->status == SDW_SLAVE_UNATTACHED)) {
dev_dbg(&slave->dev,
"%s: signaling completion for Slave %d\n",
__func__, slave->dev_num);
complete(&slave->enumeration_complete);
}
slave->status = status;
mutex_unlock(&slave->bus->bus_lock);
}
static enum sdw_clk_stop_mode sdw_get_clk_stop_mode(struct sdw_slave *slave)
{
enum sdw_clk_stop_mode mode;
/*
* Query for clock stop mode if Slave implements
* ops->get_clk_stop_mode, else read from property.
*/
if (slave->ops && slave->ops->get_clk_stop_mode) {
mode = slave->ops->get_clk_stop_mode(slave);
} else {
if (slave->prop.clk_stop_mode1)
mode = SDW_CLK_STOP_MODE1;
else
mode = SDW_CLK_STOP_MODE0;
}
return mode;
}
static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
enum sdw_clk_stop_mode mode,
enum sdw_clk_stop_type type)
{
int ret;
if (slave->ops && slave->ops->clk_stop) {
ret = slave->ops->clk_stop(slave, mode, type);
if (ret < 0) {
dev_err(&slave->dev,
"Clk Stop type =%d failed: %d\n", type, ret);
return ret;
}
}
return 0;
}
static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
enum sdw_clk_stop_mode mode,
bool prepare)
{
bool wake_en;
u32 val = 0;
int ret;
wake_en = slave->prop.wake_capable;
if (prepare) {
val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
if (mode == SDW_CLK_STOP_MODE1)
val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
if (wake_en)
val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
} else {
val = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
}
ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
if (ret != 0)
dev_err(&slave->dev,
"Clock Stop prepare failed for slave: %d", ret);
return ret;
}
static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
{
int retry = bus->clk_stop_timeout;
int val;
do {
val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT) &
SDW_SCP_STAT_CLK_STP_NF;
if (!val) {
dev_info(bus->dev, "clock stop prep/de-prep done slave:%d",
dev_num);
return 0;
}
usleep_range(1000, 1500);
retry--;
} while (retry);
dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d",
dev_num);
return -ETIMEDOUT;
}
/**
* sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
*
* @bus: SDW bus instance
*
* Query Slave for clock stop mode and prepare for that mode.
*/
int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
{
enum sdw_clk_stop_mode slave_mode;
bool simple_clk_stop = true;
struct sdw_slave *slave;
bool is_slave = false;
int ret = 0;
/*
* In order to save on transition time, prepare
* each Slave and then wait for all Slave(s) to be
* prepared for clock stop.
*/
list_for_each_entry(slave, &bus->slaves, node) {
if (!slave->dev_num)
continue;
if (slave->status != SDW_SLAVE_ATTACHED &&
slave->status != SDW_SLAVE_ALERT)
continue;
/* Identify if Slave(s) are available on Bus */
is_slave = true;
slave_mode = sdw_get_clk_stop_mode(slave);
slave->curr_clk_stop_mode = slave_mode;
ret = sdw_slave_clk_stop_callback(slave, slave_mode,
SDW_CLK_PRE_PREPARE);
if (ret < 0) {
dev_err(&slave->dev,
"pre-prepare failed:%d", ret);
return ret;
}
ret = sdw_slave_clk_stop_prepare(slave,
slave_mode, true);
if (ret < 0) {
dev_err(&slave->dev,
"pre-prepare failed:%d", ret);
return ret;
}
if (slave_mode == SDW_CLK_STOP_MODE1)
simple_clk_stop = false;
}
if (is_slave && !simple_clk_stop) {
ret = sdw_bus_wait_for_clk_prep_deprep(bus,
SDW_BROADCAST_DEV_NUM);
if (ret < 0)
return ret;
}
/* Don't need to inform slaves if there is no slave attached */
if (!is_slave)
return ret;
/* Inform slaves that prep is done */
list_for_each_entry(slave, &bus->slaves, node) {
if (!slave->dev_num)
continue;
if (slave->status != SDW_SLAVE_ATTACHED &&
slave->status != SDW_SLAVE_ALERT)
continue;
slave_mode = slave->curr_clk_stop_mode;
if (slave_mode == SDW_CLK_STOP_MODE1) {
ret = sdw_slave_clk_stop_callback(slave,
slave_mode,
SDW_CLK_POST_PREPARE);
if (ret < 0) {
dev_err(&slave->dev,
"post-prepare failed:%d", ret);
}
}
}
return ret;
}
EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
/**
* sdw_bus_clk_stop: stop bus clock
*
* @bus: SDW bus instance
*
* After preparing the Slaves for clock stop, stop the clock by broadcasting
* write to SCP_CTRL register.
*/
int sdw_bus_clk_stop(struct sdw_bus *bus)
{
int ret;
/*
* broadcast clock stop now, attached Slaves will ACK this,
* unattached will ignore
*/
ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
if (ret < 0) {
if (ret == -ENODATA)
dev_dbg(bus->dev,
"ClockStopNow Broadcast msg ignored %d", ret);
else
dev_err(bus->dev,
"ClockStopNow Broadcast msg failed %d", ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL(sdw_bus_clk_stop);
/**
* sdw_bus_exit_clk_stop: Exit clock stop mode
*
* @bus: SDW bus instance
*
* This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
* exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
* back.
*/
int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
{
enum sdw_clk_stop_mode mode;
bool simple_clk_stop = true;
struct sdw_slave *slave;
bool is_slave = false;
int ret;
/*
* In order to save on transition time, de-prepare
* each Slave and then wait for all Slave(s) to be
* de-prepared after clock resume.
*/
list_for_each_entry(slave, &bus->slaves, node) {
if (!slave->dev_num)
continue;
if (slave->status != SDW_SLAVE_ATTACHED &&
slave->status != SDW_SLAVE_ALERT)
continue;
/* Identify if Slave(s) are available on Bus */
is_slave = true;
mode = slave->curr_clk_stop_mode;
if (mode == SDW_CLK_STOP_MODE1) {
simple_clk_stop = false;
continue;
}
ret = sdw_slave_clk_stop_callback(slave, mode,
SDW_CLK_PRE_DEPREPARE);
if (ret < 0)
dev_warn(&slave->dev,
"clk stop deprep failed:%d", ret);
ret = sdw_slave_clk_stop_prepare(slave, mode,
false);
if (ret < 0)
dev_warn(&slave->dev,
"clk stop deprep failed:%d", ret);
}
if (is_slave && !simple_clk_stop)
sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
/*
* Don't need to call slave callback function if there is no slave
* attached
*/
if (!is_slave)
return 0;
list_for_each_entry(slave, &bus->slaves, node) {
if (!slave->dev_num)
continue;
if (slave->status != SDW_SLAVE_ATTACHED &&
slave->status != SDW_SLAVE_ALERT)
continue;
mode = slave->curr_clk_stop_mode;
sdw_slave_clk_stop_callback(slave, mode,
SDW_CLK_POST_DEPREPARE);
}
return 0;
}
EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
int sdw_configure_dpn_intr(struct sdw_slave *slave,
int port, bool enable, int mask)
{
u32 addr;
int ret;
u8 val = 0;
if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
enable ? "on" : "off");
mask |= SDW_DPN_INT_TEST_FAIL;
}
addr = SDW_DPN_INTMASK(port);
/* Set/Clear port ready interrupt mask */
if (enable) {
val |= mask;
val |= SDW_DPN_INT_PORT_READY;
} else {
val &= ~(mask);
val &= ~SDW_DPN_INT_PORT_READY;
}
ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
if (ret < 0)
dev_err(slave->bus->dev,
"SDW_DPN_INTMASK write failed:%d\n", val);
return ret;
}
static int sdw_slave_set_frequency(struct sdw_slave *slave)
{
u32 mclk_freq = slave->bus->prop.mclk_freq;
u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
unsigned int scale;
u8 scale_index;
u8 base;
int ret;
/*
* frequency base and scale registers are required for SDCA
* devices. They may also be used for 1.2+/non-SDCA devices,
* but we will need a DisCo property to cover this case
*/
if (!slave->id.class_id)
return 0;
if (!mclk_freq) {
dev_err(&slave->dev,
"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
return -EINVAL;
}
/*
* map base frequency using Table 89 of SoundWire 1.2 spec.
* The order of the tests just follows the specification, this
* is not a selection between possible values or a search for
* the best value but just a mapping. Only one case per platform
* is relevant.
* Some BIOS have inconsistent values for mclk_freq but a
* correct root so we force the mclk_freq to avoid variations.
*/
if (!(19200000 % mclk_freq)) {
mclk_freq = 19200000;
base = SDW_SCP_BASE_CLOCK_19200000_HZ;
} else if (!(24000000 % mclk_freq)) {
mclk_freq = 24000000;
base = SDW_SCP_BASE_CLOCK_24000000_HZ;
} else if (!(24576000 % mclk_freq)) {
mclk_freq = 24576000;
base = SDW_SCP_BASE_CLOCK_24576000_HZ;
} else if (!(22579200 % mclk_freq)) {
mclk_freq = 22579200;
base = SDW_SCP_BASE_CLOCK_22579200_HZ;
} else if (!(32000000 % mclk_freq)) {
mclk_freq = 32000000;
base = SDW_SCP_BASE_CLOCK_32000000_HZ;
} else {
dev_err(&slave->dev,
"Unsupported clock base, mclk %d\n",
mclk_freq);
return -EINVAL;
}
if (mclk_freq % curr_freq) {
dev_err(&slave->dev,
"mclk %d is not multiple of bus curr_freq %d\n",
mclk_freq, curr_freq);
return -EINVAL;
}
scale = mclk_freq / curr_freq;
/*
* map scale to Table 90 of SoundWire 1.2 spec - and check
* that the scale is a power of two and maximum 64
*/
scale_index = ilog2(scale);
if (BIT(scale_index) != scale || scale_index > 6) {
dev_err(&slave->dev,
"No match found for scale %d, bus mclk %d curr_freq %d\n",
scale, mclk_freq, curr_freq);
return -EINVAL;
}
scale_index++;
ret = sdw_write(slave, SDW_SCP_BUS_CLOCK_BASE, base);
if (ret < 0) {
dev_err(&slave->dev,
"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
return ret;
}
/* initialize scale for both banks */
ret = sdw_write(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
if (ret < 0) {
dev_err(&slave->dev,
"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
return ret;
}
ret = sdw_write(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
if (ret < 0)
dev_err(&slave->dev,
"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
dev_dbg(&slave->dev,
"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
base, scale_index, mclk_freq, curr_freq);
return ret;
}
static int sdw_initialize_slave(struct sdw_slave *slave)
{
struct sdw_slave_prop *prop = &slave->prop;
int ret;
u8 val;
ret = sdw_slave_set_frequency(slave);
if (ret < 0)
return ret;
/*
* Set SCP_INT1_MASK register, typically bus clash and
* implementation-defined interrupt mask. The Parity detection
* may not always be correct on startup so its use is
* device-dependent, it might e.g. only be enabled in
* steady-state after a couple of frames.
*/
val = slave->prop.scp_int1_mask;
/* Enable SCP interrupts */
ret = sdw_update(slave, SDW_SCP_INTMASK1, val, val);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_SCP_INTMASK1 write failed:%d\n", ret);
return ret;
}
/* No need to continue if DP0 is not present */
if (!slave->prop.dp0_prop)
return 0;
/* Enable DP0 interrupts */
val = prop->dp0_prop->imp_def_interrupts;
val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
ret = sdw_update(slave, SDW_DP0_INTMASK, val, val);
if (ret < 0)
dev_err(slave->bus->dev,
"SDW_DP0_INTMASK read failed:%d\n", ret);
return ret;
}
static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
{
u8 clear = 0, impl_int_mask;
int status, status2, ret, count = 0;
status = sdw_read(slave, SDW_DP0_INT);
if (status < 0) {
dev_err(slave->bus->dev,
"SDW_DP0_INT read failed:%d\n", status);
return status;
}
do {
if (status & SDW_DP0_INT_TEST_FAIL) {
dev_err(&slave->dev, "Test fail for port 0\n");
clear |= SDW_DP0_INT_TEST_FAIL;
}
/*
* Assumption: PORT_READY interrupt will be received only for
* ports implementing Channel Prepare state machine (CP_SM)
*/
if (status & SDW_DP0_INT_PORT_READY) {
complete(&slave->port_ready[0]);
clear |= SDW_DP0_INT_PORT_READY;
}
if (status & SDW_DP0_INT_BRA_FAILURE) {
dev_err(&slave->dev, "BRA failed\n");
clear |= SDW_DP0_INT_BRA_FAILURE;
}
impl_int_mask = SDW_DP0_INT_IMPDEF1 |
SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
if (status & impl_int_mask) {
clear |= impl_int_mask;
*slave_status = clear;
}
/* clear the interrupt */
ret = sdw_write(slave, SDW_DP0_INT, clear);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_DP0_INT write failed:%d\n", ret);
return ret;
}
/* Read DP0 interrupt again */
status2 = sdw_read(slave, SDW_DP0_INT);
if (status2 < 0) {
dev_err(slave->bus->dev,
"SDW_DP0_INT read failed:%d\n", status2);
return status2;
}
status &= status2;
count++;
/* we can get alerts while processing so keep retrying */
} while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
if (count == SDW_READ_INTR_CLEAR_RETRY)
dev_warn(slave->bus->dev, "Reached MAX_RETRY on DP0 read\n");
return ret;
}
static int sdw_handle_port_interrupt(struct sdw_slave *slave,
int port, u8 *slave_status)
{
u8 clear = 0, impl_int_mask;
int status, status2, ret, count = 0;
u32 addr;
if (port == 0)
return sdw_handle_dp0_interrupt(slave, slave_status);
addr = SDW_DPN_INT(port);
status = sdw_read(slave, addr);
if (status < 0) {
dev_err(slave->bus->dev,
"SDW_DPN_INT read failed:%d\n", status);
return status;
}
do {
if (status & SDW_DPN_INT_TEST_FAIL) {
dev_err(&slave->dev, "Test fail for port:%d\n", port);
clear |= SDW_DPN_INT_TEST_FAIL;
}
/*
* Assumption: PORT_READY interrupt will be received only
* for ports implementing CP_SM.
*/
if (status & SDW_DPN_INT_PORT_READY) {
complete(&slave->port_ready[port]);
clear |= SDW_DPN_INT_PORT_READY;
}
impl_int_mask = SDW_DPN_INT_IMPDEF1 |
SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
if (status & impl_int_mask) {
clear |= impl_int_mask;
*slave_status = clear;
}
/* clear the interrupt */
ret = sdw_write(slave, addr, clear);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_DPN_INT write failed:%d\n", ret);
return ret;
}
/* Read DPN interrupt again */
status2 = sdw_read(slave, addr);
if (status2 < 0) {
dev_err(slave->bus->dev,
"SDW_DPN_INT read failed:%d\n", status2);
return status2;
}
status &= status2;
count++;
/* we can get alerts while processing so keep retrying */
} while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
if (count == SDW_READ_INTR_CLEAR_RETRY)
dev_warn(slave->bus->dev, "Reached MAX_RETRY on port read");
return ret;
}
static int sdw_handle_slave_alerts(struct sdw_slave *slave)
{
struct sdw_slave_intr_status slave_intr;
u8 clear = 0, bit, port_status[15] = {0};
int port_num, stat, ret, count = 0;
unsigned long port;
bool slave_notify = false;
u8 sdca_cascade = 0;
u8 buf, buf2[2], _buf, _buf2[2];
bool parity_check;
bool parity_quirk;
sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
ret = pm_runtime_get_sync(&slave->dev);
if (ret < 0 && ret != -EACCES) {
dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
pm_runtime_put_noidle(slave->bus->dev);
return ret;
}
/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
ret = sdw_read(slave, SDW_SCP_INT1);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_SCP_INT1 read failed:%d\n", ret);
goto io_err;
}
buf = ret;
ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, buf2);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_SCP_INT2/3 read failed:%d\n", ret);
goto io_err;
}
if (slave->prop.is_sdca) {
ret = sdw_read(slave, SDW_DP0_INT);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_DP0_INT read failed:%d\n", ret);
goto io_err;
}
sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
}
do {
/*
* Check parity, bus clash and Slave (impl defined)
* interrupt
*/
if (buf & SDW_SCP_INT1_PARITY) {
parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
parity_quirk = !slave->first_interrupt_done &&
(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
if (parity_check && !parity_quirk)
dev_err(&slave->dev, "Parity error detected\n");
clear |= SDW_SCP_INT1_PARITY;
}
if (buf & SDW_SCP_INT1_BUS_CLASH) {
if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
dev_err(&slave->dev, "Bus clash detected\n");
clear |= SDW_SCP_INT1_BUS_CLASH;
}
/*
* When bus clash or parity errors are detected, such errors
* are unlikely to be recoverable errors.
* TODO: In such scenario, reset bus. Make this configurable
* via sysfs property with bus reset being the default.
*/
if (buf & SDW_SCP_INT1_IMPL_DEF) {
if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
slave_notify = true;
}
clear |= SDW_SCP_INT1_IMPL_DEF;
}
/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
if (sdca_cascade)
slave_notify = true;
/* Check port 0 - 3 interrupts */
port = buf & SDW_SCP_INT1_PORT0_3;
/* To get port number corresponding to bits, shift it */
port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
for_each_set_bit(bit, &port, 8) {
sdw_handle_port_interrupt(slave, bit,
&port_status[bit]);
}
/* Check if cascade 2 interrupt is present */
if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
for_each_set_bit(bit, &port, 8) {
/* scp2 ports start from 4 */
port_num = bit + 3;
sdw_handle_port_interrupt(slave,
port_num,
&port_status[port_num]);
}
}
/* now check last cascade */
if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
for_each_set_bit(bit, &port, 8) {
/* scp3 ports start from 11 */
port_num = bit + 10;
sdw_handle_port_interrupt(slave,
port_num,
&port_status[port_num]);
}
}
/* Update the Slave driver */
if (slave_notify && slave->ops &&
slave->ops->interrupt_callback) {
slave_intr.sdca_cascade = sdca_cascade;
slave_intr.control_port = clear;
memcpy(slave_intr.port, &port_status,
sizeof(slave_intr.port));
slave->ops->interrupt_callback(slave, &slave_intr);
}
/* Ack interrupt */
ret = sdw_write(slave, SDW_SCP_INT1, clear);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_SCP_INT1 write failed:%d\n", ret);
goto io_err;
}
/* at this point all initial interrupt sources were handled */
slave->first_interrupt_done = true;
/*
* Read status again to ensure no new interrupts arrived
* while servicing interrupts.
*/
ret = sdw_read(slave, SDW_SCP_INT1);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_SCP_INT1 read failed:%d\n", ret);
goto io_err;
}
_buf = ret;
ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, _buf2);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_SCP_INT2/3 read failed:%d\n", ret);
goto io_err;
}
if (slave->prop.is_sdca) {
ret = sdw_read(slave, SDW_DP0_INT);
if (ret < 0) {
dev_err(slave->bus->dev,
"SDW_DP0_INT read failed:%d\n", ret);
goto io_err;
}
sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
}
/* Make sure no interrupts are pending */
buf &= _buf;
buf2[0] &= _buf2[0];
buf2[1] &= _buf2[1];
stat = buf || buf2[0] || buf2[1] || sdca_cascade;
/*
* Exit loop if Slave is continuously in ALERT state even
* after servicing the interrupt multiple times.
*/
count++;
/* we can get alerts while processing so keep retrying */
} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
if (count == SDW_READ_INTR_CLEAR_RETRY)
dev_warn(slave->bus->dev, "Reached MAX_RETRY on alert read\n");
io_err:
pm_runtime_mark_last_busy(&slave->dev);
pm_runtime_put_autosuspend(&slave->dev);
return ret;
}
static int sdw_update_slave_status(struct sdw_slave *slave,
enum sdw_slave_status status)
{
unsigned long time;
if (!slave->probed) {
/*
* the slave status update is typically handled in an
* interrupt thread, which can race with the driver
* probe, e.g. when a module needs to be loaded.
*
* make sure the probe is complete before updating
* status.
*/
time = wait_for_completion_timeout(&slave->probe_complete,
msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
if (!time) {
dev_err(&slave->dev, "Probe not complete, timed out\n");
return -ETIMEDOUT;
}
}
if (!slave->ops || !slave->ops->update_status)
return 0;
return slave->ops->update_status(slave, status);
}
/**
* sdw_handle_slave_status() - Handle Slave status
* @bus: SDW bus instance
* @status: Status for all Slave(s)
*/
int sdw_handle_slave_status(struct sdw_bus *bus,
enum sdw_slave_status status[])
{
enum sdw_slave_status prev_status;
struct sdw_slave *slave;
bool attached_initializing;
int i, ret = 0;
/* first check if any Slaves fell off the bus */
for (i = 1; i <= SDW_MAX_DEVICES; i++) {
mutex_lock(&bus->bus_lock);
if (test_bit(i, bus->assigned) == false) {
mutex_unlock(&bus->bus_lock);
continue;
}
mutex_unlock(&bus->bus_lock);
slave = sdw_get_slave(bus, i);
if (!slave)
continue;
if (status[i] == SDW_SLAVE_UNATTACHED &&
slave->status != SDW_SLAVE_UNATTACHED)
sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
}
if (status[0] == SDW_SLAVE_ATTACHED) {
dev_dbg(bus->dev, "Slave attached, programming device number\n");
ret = sdw_program_device_num(bus);
if (ret)
dev_err(bus->dev, "Slave attach failed: %d\n", ret);
/*
* programming a device number will have side effects,
* so we deal with other devices at a later time
*/
return ret;
}
/* Continue to check other slave statuses */
for (i = 1; i <= SDW_MAX_DEVICES; i++) {
mutex_lock(&bus->bus_lock);
if (test_bit(i, bus->assigned) == false) {
mutex_unlock(&bus->bus_lock);
continue;
}
mutex_unlock(&bus->bus_lock);
slave = sdw_get_slave(bus, i);
if (!slave)
continue;
attached_initializing = false;
switch (status[i]) {
case SDW_SLAVE_UNATTACHED:
if (slave->status == SDW_SLAVE_UNATTACHED)
break;
sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
break;
case SDW_SLAVE_ALERT:
ret = sdw_handle_slave_alerts(slave);
if (ret)
dev_err(bus->dev,
"Slave %d alert handling failed: %d\n",
i, ret);
break;
case SDW_SLAVE_ATTACHED:
if (slave->status == SDW_SLAVE_ATTACHED)
break;
prev_status = slave->status;
sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
if (prev_status == SDW_SLAVE_ALERT)
break;
attached_initializing = true;
ret = sdw_initialize_slave(slave);
if (ret)
dev_err(bus->dev,
"Slave %d initialization failed: %d\n",
i, ret);
break;
default:
dev_err(bus->dev, "Invalid slave %d status:%d\n",
i, status[i]);
break;
}
ret = sdw_update_slave_status(slave, status[i]);
if (ret)
dev_err(slave->bus->dev,
"Update Slave status failed:%d\n", ret);
if (attached_initializing)
complete(&slave->initialization_complete);
}
return ret;
}
EXPORT_SYMBOL(sdw_handle_slave_status);
void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
{
struct sdw_slave *slave;
int i;
/* Check all non-zero devices */
for (i = 1; i <= SDW_MAX_DEVICES; i++) {
mutex_lock(&bus->bus_lock);
if (test_bit(i, bus->assigned) == false) {
mutex_unlock(&bus->bus_lock);
continue;
}
mutex_unlock(&bus->bus_lock);
slave = sdw_get_slave(bus, i);
if (!slave)
continue;
if (slave->status != SDW_SLAVE_UNATTACHED) {
sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
slave->first_interrupt_done = false;
}
/* keep track of request, used in pm_runtime resume */
slave->unattach_request = request;
}
}
EXPORT_SYMBOL(sdw_clear_slave_status);