| /* |
| * Copyright (c) 2005 Voltaire Inc. All rights reserved. |
| * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. |
| * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. |
| * Copyright (c) 2005 Intel Corporation. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/mutex.h> |
| #include <linux/inetdevice.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/module.h> |
| #include <net/arp.h> |
| #include <net/neighbour.h> |
| #include <net/route.h> |
| #include <net/netevent.h> |
| #include <net/addrconf.h> |
| #include <net/ip6_route.h> |
| #include <rdma/ib_addr.h> |
| #include <rdma/ib.h> |
| #include <rdma/rdma_netlink.h> |
| #include <net/netlink.h> |
| |
| #include "core_priv.h" |
| |
| struct addr_req { |
| struct list_head list; |
| struct sockaddr_storage src_addr; |
| struct sockaddr_storage dst_addr; |
| struct rdma_dev_addr *addr; |
| struct rdma_addr_client *client; |
| void *context; |
| void (*callback)(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *addr, void *context); |
| unsigned long timeout; |
| struct delayed_work work; |
| int status; |
| u32 seq; |
| }; |
| |
| static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); |
| |
| static void process_req(struct work_struct *work); |
| |
| static DEFINE_MUTEX(lock); |
| static LIST_HEAD(req_list); |
| static DECLARE_DELAYED_WORK(work, process_req); |
| static struct workqueue_struct *addr_wq; |
| |
| static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { |
| [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, |
| .len = sizeof(struct rdma_nla_ls_gid)}, |
| }; |
| |
| static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) |
| { |
| struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; |
| int ret; |
| |
| if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) |
| return false; |
| |
| ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), |
| nlmsg_len(nlh), ib_nl_addr_policy, NULL); |
| if (ret) |
| return false; |
| |
| return true; |
| } |
| |
| static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) |
| { |
| const struct nlattr *head, *curr; |
| union ib_gid gid; |
| struct addr_req *req; |
| int len, rem; |
| int found = 0; |
| |
| head = (const struct nlattr *)nlmsg_data(nlh); |
| len = nlmsg_len(nlh); |
| |
| nla_for_each_attr(curr, head, len, rem) { |
| if (curr->nla_type == LS_NLA_TYPE_DGID) |
| memcpy(&gid, nla_data(curr), nla_len(curr)); |
| } |
| |
| mutex_lock(&lock); |
| list_for_each_entry(req, &req_list, list) { |
| if (nlh->nlmsg_seq != req->seq) |
| continue; |
| /* We set the DGID part, the rest was set earlier */ |
| rdma_addr_set_dgid(req->addr, &gid); |
| req->status = 0; |
| found = 1; |
| break; |
| } |
| mutex_unlock(&lock); |
| |
| if (!found) |
| pr_info("Couldn't find request waiting for DGID: %pI6\n", |
| &gid); |
| } |
| |
| int ib_nl_handle_ip_res_resp(struct sk_buff *skb, |
| struct nlmsghdr *nlh, |
| struct netlink_ext_ack *extack) |
| { |
| if ((nlh->nlmsg_flags & NLM_F_REQUEST) || |
| !(NETLINK_CB(skb).sk)) |
| return -EPERM; |
| |
| if (ib_nl_is_good_ip_resp(nlh)) |
| ib_nl_process_good_ip_rsep(nlh); |
| |
| return skb->len; |
| } |
| |
| static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, |
| const void *daddr, |
| u32 seq, u16 family) |
| { |
| struct sk_buff *skb = NULL; |
| struct nlmsghdr *nlh; |
| struct rdma_ls_ip_resolve_header *header; |
| void *data; |
| size_t size; |
| int attrtype; |
| int len; |
| |
| if (family == AF_INET) { |
| size = sizeof(struct in_addr); |
| attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; |
| } else { |
| size = sizeof(struct in6_addr); |
| attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; |
| } |
| |
| len = nla_total_size(sizeof(size)); |
| len += NLMSG_ALIGN(sizeof(*header)); |
| |
| skb = nlmsg_new(len, GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, |
| RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); |
| if (!data) { |
| nlmsg_free(skb); |
| return -ENODATA; |
| } |
| |
| /* Construct the family header first */ |
| header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); |
| header->ifindex = dev_addr->bound_dev_if; |
| nla_put(skb, attrtype, size, daddr); |
| |
| /* Repair the nlmsg header length */ |
| nlmsg_end(skb, nlh); |
| rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL); |
| |
| /* Make the request retry, so when we get the response from userspace |
| * we will have something. |
| */ |
| return -ENODATA; |
| } |
| |
| int rdma_addr_size(struct sockaddr *addr) |
| { |
| switch (addr->sa_family) { |
| case AF_INET: |
| return sizeof(struct sockaddr_in); |
| case AF_INET6: |
| return sizeof(struct sockaddr_in6); |
| case AF_IB: |
| return sizeof(struct sockaddr_ib); |
| default: |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL(rdma_addr_size); |
| |
| static struct rdma_addr_client self; |
| |
| void rdma_addr_register_client(struct rdma_addr_client *client) |
| { |
| atomic_set(&client->refcount, 1); |
| init_completion(&client->comp); |
| } |
| EXPORT_SYMBOL(rdma_addr_register_client); |
| |
| static inline void put_client(struct rdma_addr_client *client) |
| { |
| if (atomic_dec_and_test(&client->refcount)) |
| complete(&client->comp); |
| } |
| |
| void rdma_addr_unregister_client(struct rdma_addr_client *client) |
| { |
| put_client(client); |
| wait_for_completion(&client->comp); |
| } |
| EXPORT_SYMBOL(rdma_addr_unregister_client); |
| |
| void rdma_copy_addr(struct rdma_dev_addr *dev_addr, |
| const struct net_device *dev, |
| const unsigned char *dst_dev_addr) |
| { |
| dev_addr->dev_type = dev->type; |
| memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); |
| memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); |
| if (dst_dev_addr) |
| memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN); |
| dev_addr->bound_dev_if = dev->ifindex; |
| } |
| EXPORT_SYMBOL(rdma_copy_addr); |
| |
| int rdma_translate_ip(const struct sockaddr *addr, |
| struct rdma_dev_addr *dev_addr) |
| { |
| struct net_device *dev; |
| |
| if (dev_addr->bound_dev_if) { |
| dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); |
| if (!dev) |
| return -ENODEV; |
| rdma_copy_addr(dev_addr, dev, NULL); |
| dev_put(dev); |
| return 0; |
| } |
| |
| switch (addr->sa_family) { |
| case AF_INET: |
| dev = ip_dev_find(dev_addr->net, |
| ((const struct sockaddr_in *)addr)->sin_addr.s_addr); |
| |
| if (!dev) |
| return -EADDRNOTAVAIL; |
| |
| rdma_copy_addr(dev_addr, dev, NULL); |
| dev_put(dev); |
| break; |
| #if IS_ENABLED(CONFIG_IPV6) |
| case AF_INET6: |
| rcu_read_lock(); |
| for_each_netdev_rcu(dev_addr->net, dev) { |
| if (ipv6_chk_addr(dev_addr->net, |
| &((const struct sockaddr_in6 *)addr)->sin6_addr, |
| dev, 1)) { |
| rdma_copy_addr(dev_addr, dev, NULL); |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| break; |
| #endif |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(rdma_translate_ip); |
| |
| static void set_timeout(struct delayed_work *delayed_work, unsigned long time) |
| { |
| unsigned long delay; |
| |
| delay = time - jiffies; |
| if ((long)delay < 0) |
| delay = 0; |
| |
| mod_delayed_work(addr_wq, delayed_work, delay); |
| } |
| |
| static void queue_req(struct addr_req *req) |
| { |
| struct addr_req *temp_req; |
| |
| mutex_lock(&lock); |
| list_for_each_entry_reverse(temp_req, &req_list, list) { |
| if (time_after_eq(req->timeout, temp_req->timeout)) |
| break; |
| } |
| |
| list_add(&req->list, &temp_req->list); |
| |
| set_timeout(&req->work, req->timeout); |
| mutex_unlock(&lock); |
| } |
| |
| static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, |
| const void *daddr, u32 seq, u16 family) |
| { |
| if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) |
| return -EADDRNOTAVAIL; |
| |
| /* We fill in what we can, the response will fill the rest */ |
| rdma_copy_addr(dev_addr, dst->dev, NULL); |
| return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); |
| } |
| |
| static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, |
| const void *daddr) |
| { |
| struct neighbour *n; |
| int ret = 0; |
| |
| n = dst_neigh_lookup(dst, daddr); |
| |
| rcu_read_lock(); |
| if (!n || !(n->nud_state & NUD_VALID)) { |
| if (n) |
| neigh_event_send(n, NULL); |
| ret = -ENODATA; |
| } else { |
| rdma_copy_addr(dev_addr, dst->dev, n->ha); |
| } |
| rcu_read_unlock(); |
| |
| if (n) |
| neigh_release(n); |
| |
| return ret; |
| } |
| |
| static bool has_gateway(struct dst_entry *dst, sa_family_t family) |
| { |
| struct rtable *rt; |
| struct rt6_info *rt6; |
| |
| if (family == AF_INET) { |
| rt = container_of(dst, struct rtable, dst); |
| return rt->rt_uses_gateway; |
| } |
| |
| rt6 = container_of(dst, struct rt6_info, dst); |
| return rt6->rt6i_flags & RTF_GATEWAY; |
| } |
| |
| static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, |
| const struct sockaddr *dst_in, u32 seq) |
| { |
| const struct sockaddr_in *dst_in4 = |
| (const struct sockaddr_in *)dst_in; |
| const struct sockaddr_in6 *dst_in6 = |
| (const struct sockaddr_in6 *)dst_in; |
| const void *daddr = (dst_in->sa_family == AF_INET) ? |
| (const void *)&dst_in4->sin_addr.s_addr : |
| (const void *)&dst_in6->sin6_addr; |
| sa_family_t family = dst_in->sa_family; |
| |
| /* Gateway + ARPHRD_INFINIBAND -> IB router */ |
| if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND) |
| return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family); |
| else |
| return dst_fetch_ha(dst, dev_addr, daddr); |
| } |
| |
| static int addr4_resolve(struct sockaddr_in *src_in, |
| const struct sockaddr_in *dst_in, |
| struct rdma_dev_addr *addr, |
| struct rtable **prt) |
| { |
| __be32 src_ip = src_in->sin_addr.s_addr; |
| __be32 dst_ip = dst_in->sin_addr.s_addr; |
| struct rtable *rt; |
| struct flowi4 fl4; |
| int ret; |
| |
| memset(&fl4, 0, sizeof(fl4)); |
| fl4.daddr = dst_ip; |
| fl4.saddr = src_ip; |
| fl4.flowi4_oif = addr->bound_dev_if; |
| rt = ip_route_output_key(addr->net, &fl4); |
| ret = PTR_ERR_OR_ZERO(rt); |
| if (ret) |
| return ret; |
| |
| src_in->sin_family = AF_INET; |
| src_in->sin_addr.s_addr = fl4.saddr; |
| |
| /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're |
| * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network |
| * type accordingly. |
| */ |
| if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND) |
| addr->network = RDMA_NETWORK_IPV4; |
| |
| addr->hoplimit = ip4_dst_hoplimit(&rt->dst); |
| |
| *prt = rt; |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static int addr6_resolve(struct sockaddr_in6 *src_in, |
| const struct sockaddr_in6 *dst_in, |
| struct rdma_dev_addr *addr, |
| struct dst_entry **pdst) |
| { |
| struct flowi6 fl6; |
| struct dst_entry *dst; |
| struct rt6_info *rt; |
| int ret; |
| |
| memset(&fl6, 0, sizeof fl6); |
| fl6.daddr = dst_in->sin6_addr; |
| fl6.saddr = src_in->sin6_addr; |
| fl6.flowi6_oif = addr->bound_dev_if; |
| |
| ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); |
| if (ret < 0) |
| return ret; |
| |
| rt = (struct rt6_info *)dst; |
| if (ipv6_addr_any(&src_in->sin6_addr)) { |
| src_in->sin6_family = AF_INET6; |
| src_in->sin6_addr = fl6.saddr; |
| } |
| |
| /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're |
| * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network |
| * type accordingly. |
| */ |
| if (rt->rt6i_flags & RTF_GATEWAY && |
| ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND) |
| addr->network = RDMA_NETWORK_IPV6; |
| |
| addr->hoplimit = ip6_dst_hoplimit(dst); |
| |
| *pdst = dst; |
| return 0; |
| } |
| #else |
| static int addr6_resolve(struct sockaddr_in6 *src_in, |
| const struct sockaddr_in6 *dst_in, |
| struct rdma_dev_addr *addr, |
| struct dst_entry **pdst) |
| { |
| return -EADDRNOTAVAIL; |
| } |
| #endif |
| |
| static int addr_resolve_neigh(struct dst_entry *dst, |
| const struct sockaddr *dst_in, |
| struct rdma_dev_addr *addr, |
| u32 seq) |
| { |
| if (dst->dev->flags & IFF_LOOPBACK) { |
| int ret; |
| |
| ret = rdma_translate_ip(dst_in, addr); |
| if (!ret) |
| memcpy(addr->dst_dev_addr, addr->src_dev_addr, |
| MAX_ADDR_LEN); |
| |
| return ret; |
| } |
| |
| /* If the device doesn't do ARP internally */ |
| if (!(dst->dev->flags & IFF_NOARP)) |
| return fetch_ha(dst, addr, dst_in, seq); |
| |
| rdma_copy_addr(addr, dst->dev, NULL); |
| |
| return 0; |
| } |
| |
| static int addr_resolve(struct sockaddr *src_in, |
| const struct sockaddr *dst_in, |
| struct rdma_dev_addr *addr, |
| bool resolve_neigh, |
| u32 seq) |
| { |
| struct net_device *ndev; |
| struct dst_entry *dst; |
| int ret; |
| |
| if (!addr->net) { |
| pr_warn_ratelimited("%s: missing namespace\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (src_in->sa_family == AF_INET) { |
| struct rtable *rt = NULL; |
| const struct sockaddr_in *dst_in4 = |
| (const struct sockaddr_in *)dst_in; |
| |
| ret = addr4_resolve((struct sockaddr_in *)src_in, |
| dst_in4, addr, &rt); |
| if (ret) |
| return ret; |
| |
| if (resolve_neigh) |
| ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq); |
| |
| if (addr->bound_dev_if) { |
| ndev = dev_get_by_index(addr->net, addr->bound_dev_if); |
| } else { |
| ndev = rt->dst.dev; |
| dev_hold(ndev); |
| } |
| |
| ip_rt_put(rt); |
| } else { |
| const struct sockaddr_in6 *dst_in6 = |
| (const struct sockaddr_in6 *)dst_in; |
| |
| ret = addr6_resolve((struct sockaddr_in6 *)src_in, |
| dst_in6, addr, |
| &dst); |
| if (ret) |
| return ret; |
| |
| if (resolve_neigh) |
| ret = addr_resolve_neigh(dst, dst_in, addr, seq); |
| |
| if (addr->bound_dev_if) { |
| ndev = dev_get_by_index(addr->net, addr->bound_dev_if); |
| } else { |
| ndev = dst->dev; |
| dev_hold(ndev); |
| } |
| |
| dst_release(dst); |
| } |
| |
| if (ndev->flags & IFF_LOOPBACK) { |
| ret = rdma_translate_ip(dst_in, addr); |
| /* |
| * Put the loopback device and get the translated |
| * device instead. |
| */ |
| dev_put(ndev); |
| ndev = dev_get_by_index(addr->net, addr->bound_dev_if); |
| } else { |
| addr->bound_dev_if = ndev->ifindex; |
| } |
| dev_put(ndev); |
| |
| return ret; |
| } |
| |
| static void process_one_req(struct work_struct *_work) |
| { |
| struct addr_req *req; |
| struct sockaddr *src_in, *dst_in; |
| |
| mutex_lock(&lock); |
| req = container_of(_work, struct addr_req, work.work); |
| |
| if (req->status == -ENODATA) { |
| src_in = (struct sockaddr *)&req->src_addr; |
| dst_in = (struct sockaddr *)&req->dst_addr; |
| req->status = addr_resolve(src_in, dst_in, req->addr, |
| true, req->seq); |
| if (req->status && time_after_eq(jiffies, req->timeout)) { |
| req->status = -ETIMEDOUT; |
| } else if (req->status == -ENODATA) { |
| /* requeue the work for retrying again */ |
| set_timeout(&req->work, req->timeout); |
| mutex_unlock(&lock); |
| return; |
| } |
| } |
| list_del(&req->list); |
| mutex_unlock(&lock); |
| |
| req->callback(req->status, (struct sockaddr *)&req->src_addr, |
| req->addr, req->context); |
| put_client(req->client); |
| kfree(req); |
| } |
| |
| static void process_req(struct work_struct *work) |
| { |
| struct addr_req *req, *temp_req; |
| struct sockaddr *src_in, *dst_in; |
| struct list_head done_list; |
| |
| INIT_LIST_HEAD(&done_list); |
| |
| mutex_lock(&lock); |
| list_for_each_entry_safe(req, temp_req, &req_list, list) { |
| if (req->status == -ENODATA) { |
| src_in = (struct sockaddr *) &req->src_addr; |
| dst_in = (struct sockaddr *) &req->dst_addr; |
| req->status = addr_resolve(src_in, dst_in, req->addr, |
| true, req->seq); |
| if (req->status && time_after_eq(jiffies, req->timeout)) |
| req->status = -ETIMEDOUT; |
| else if (req->status == -ENODATA) { |
| set_timeout(&req->work, req->timeout); |
| continue; |
| } |
| } |
| list_move_tail(&req->list, &done_list); |
| } |
| |
| mutex_unlock(&lock); |
| |
| list_for_each_entry_safe(req, temp_req, &done_list, list) { |
| list_del(&req->list); |
| /* It is safe to cancel other work items from this work item |
| * because at a time there can be only one work item running |
| * with this single threaded work queue. |
| */ |
| cancel_delayed_work(&req->work); |
| req->callback(req->status, (struct sockaddr *) &req->src_addr, |
| req->addr, req->context); |
| put_client(req->client); |
| kfree(req); |
| } |
| } |
| |
| int rdma_resolve_ip(struct rdma_addr_client *client, |
| struct sockaddr *src_addr, struct sockaddr *dst_addr, |
| struct rdma_dev_addr *addr, int timeout_ms, |
| void (*callback)(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *addr, void *context), |
| void *context) |
| { |
| struct sockaddr *src_in, *dst_in; |
| struct addr_req *req; |
| int ret = 0; |
| |
| req = kzalloc(sizeof *req, GFP_KERNEL); |
| if (!req) |
| return -ENOMEM; |
| |
| src_in = (struct sockaddr *) &req->src_addr; |
| dst_in = (struct sockaddr *) &req->dst_addr; |
| |
| if (src_addr) { |
| if (src_addr->sa_family != dst_addr->sa_family) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| memcpy(src_in, src_addr, rdma_addr_size(src_addr)); |
| } else { |
| src_in->sa_family = dst_addr->sa_family; |
| } |
| |
| memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); |
| req->addr = addr; |
| req->callback = callback; |
| req->context = context; |
| req->client = client; |
| atomic_inc(&client->refcount); |
| INIT_DELAYED_WORK(&req->work, process_one_req); |
| req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); |
| |
| req->status = addr_resolve(src_in, dst_in, addr, true, req->seq); |
| switch (req->status) { |
| case 0: |
| req->timeout = jiffies; |
| queue_req(req); |
| break; |
| case -ENODATA: |
| req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; |
| queue_req(req); |
| break; |
| default: |
| ret = req->status; |
| atomic_dec(&client->refcount); |
| goto err; |
| } |
| return ret; |
| err: |
| kfree(req); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_resolve_ip); |
| |
| int rdma_resolve_ip_route(struct sockaddr *src_addr, |
| const struct sockaddr *dst_addr, |
| struct rdma_dev_addr *addr) |
| { |
| struct sockaddr_storage ssrc_addr = {}; |
| struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; |
| |
| if (src_addr) { |
| if (src_addr->sa_family != dst_addr->sa_family) |
| return -EINVAL; |
| |
| memcpy(src_in, src_addr, rdma_addr_size(src_addr)); |
| } else { |
| src_in->sa_family = dst_addr->sa_family; |
| } |
| |
| return addr_resolve(src_in, dst_addr, addr, false, 0); |
| } |
| EXPORT_SYMBOL(rdma_resolve_ip_route); |
| |
| void rdma_addr_cancel(struct rdma_dev_addr *addr) |
| { |
| struct addr_req *req, *temp_req; |
| |
| mutex_lock(&lock); |
| list_for_each_entry_safe(req, temp_req, &req_list, list) { |
| if (req->addr == addr) { |
| req->status = -ECANCELED; |
| req->timeout = jiffies; |
| list_move(&req->list, &req_list); |
| set_timeout(&req->work, req->timeout); |
| break; |
| } |
| } |
| mutex_unlock(&lock); |
| } |
| EXPORT_SYMBOL(rdma_addr_cancel); |
| |
| struct resolve_cb_context { |
| struct completion comp; |
| int status; |
| }; |
| |
| static void resolve_cb(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *addr, void *context) |
| { |
| ((struct resolve_cb_context *)context)->status = status; |
| complete(&((struct resolve_cb_context *)context)->comp); |
| } |
| |
| int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, |
| const union ib_gid *dgid, |
| u8 *dmac, const struct net_device *ndev, |
| int *hoplimit) |
| { |
| struct rdma_dev_addr dev_addr; |
| struct resolve_cb_context ctx; |
| union { |
| struct sockaddr _sockaddr; |
| struct sockaddr_in _sockaddr_in; |
| struct sockaddr_in6 _sockaddr_in6; |
| } sgid_addr, dgid_addr; |
| int ret; |
| |
| rdma_gid2ip(&sgid_addr._sockaddr, sgid); |
| rdma_gid2ip(&dgid_addr._sockaddr, dgid); |
| |
| memset(&dev_addr, 0, sizeof(dev_addr)); |
| dev_addr.bound_dev_if = ndev->ifindex; |
| dev_addr.net = &init_net; |
| |
| init_completion(&ctx.comp); |
| ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, |
| &dev_addr, 1000, resolve_cb, &ctx); |
| if (ret) |
| return ret; |
| |
| wait_for_completion(&ctx.comp); |
| |
| ret = ctx.status; |
| if (ret) |
| return ret; |
| |
| memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); |
| *hoplimit = dev_addr.hoplimit; |
| return 0; |
| } |
| |
| static int netevent_callback(struct notifier_block *self, unsigned long event, |
| void *ctx) |
| { |
| if (event == NETEVENT_NEIGH_UPDATE) { |
| struct neighbour *neigh = ctx; |
| |
| if (neigh->nud_state & NUD_VALID) |
| set_timeout(&work, jiffies); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block nb = { |
| .notifier_call = netevent_callback |
| }; |
| |
| int addr_init(void) |
| { |
| addr_wq = alloc_ordered_workqueue("ib_addr", 0); |
| if (!addr_wq) |
| return -ENOMEM; |
| |
| register_netevent_notifier(&nb); |
| rdma_addr_register_client(&self); |
| |
| return 0; |
| } |
| |
| void addr_cleanup(void) |
| { |
| rdma_addr_unregister_client(&self); |
| unregister_netevent_notifier(&nb); |
| destroy_workqueue(addr_wq); |
| } |