| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * |
| * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle |
| * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) |
| * Copyright 1999 Hewlett Packard Co. |
| * |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched.h> |
| #include <linux/sched/debug.h> |
| #include <linux/interrupt.h> |
| #include <linux/extable.h> |
| #include <linux/uaccess.h> |
| #include <linux/hugetlb.h> |
| |
| #include <asm/traps.h> |
| |
| /* Various important other fields */ |
| #define bit22set(x) (x & 0x00000200) |
| #define bits23_25set(x) (x & 0x000001c0) |
| #define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80) |
| /* extended opcode is 0x6a */ |
| |
| #define BITSSET 0x1c0 /* for identifying LDCW */ |
| |
| |
| int show_unhandled_signals = 1; |
| |
| /* |
| * parisc_acctyp(unsigned int inst) -- |
| * Given a PA-RISC memory access instruction, determine if the |
| * the instruction would perform a memory read or memory write |
| * operation. |
| * |
| * This function assumes that the given instruction is a memory access |
| * instruction (i.e. you should really only call it if you know that |
| * the instruction has generated some sort of a memory access fault). |
| * |
| * Returns: |
| * VM_READ if read operation |
| * VM_WRITE if write operation |
| * VM_EXEC if execute operation |
| */ |
| static unsigned long |
| parisc_acctyp(unsigned long code, unsigned int inst) |
| { |
| if (code == 6 || code == 16) |
| return VM_EXEC; |
| |
| switch (inst & 0xf0000000) { |
| case 0x40000000: /* load */ |
| case 0x50000000: /* new load */ |
| return VM_READ; |
| |
| case 0x60000000: /* store */ |
| case 0x70000000: /* new store */ |
| return VM_WRITE; |
| |
| case 0x20000000: /* coproc */ |
| case 0x30000000: /* coproc2 */ |
| if (bit22set(inst)) |
| return VM_WRITE; |
| /* fall through */ |
| |
| case 0x0: /* indexed/memory management */ |
| if (bit22set(inst)) { |
| /* |
| * Check for the 'Graphics Flush Read' instruction. |
| * It resembles an FDC instruction, except for bits |
| * 20 and 21. Any combination other than zero will |
| * utilize the block mover functionality on some |
| * older PA-RISC platforms. The case where a block |
| * move is performed from VM to graphics IO space |
| * should be treated as a READ. |
| * |
| * The significance of bits 20,21 in the FDC |
| * instruction is: |
| * |
| * 00 Flush data cache (normal instruction behavior) |
| * 01 Graphics flush write (IO space -> VM) |
| * 10 Graphics flush read (VM -> IO space) |
| * 11 Graphics flush read/write (VM <-> IO space) |
| */ |
| if (isGraphicsFlushRead(inst)) |
| return VM_READ; |
| return VM_WRITE; |
| } else { |
| /* |
| * Check for LDCWX and LDCWS (semaphore instructions). |
| * If bits 23 through 25 are all 1's it is one of |
| * the above two instructions and is a write. |
| * |
| * Note: With the limited bits we are looking at, |
| * this will also catch PROBEW and PROBEWI. However, |
| * these should never get in here because they don't |
| * generate exceptions of the type: |
| * Data TLB miss fault/data page fault |
| * Data memory protection trap |
| */ |
| if (bits23_25set(inst) == BITSSET) |
| return VM_WRITE; |
| } |
| return VM_READ; /* Default */ |
| } |
| return VM_READ; /* Default */ |
| } |
| |
| #undef bit22set |
| #undef bits23_25set |
| #undef isGraphicsFlushRead |
| #undef BITSSET |
| |
| |
| #if 0 |
| /* This is the treewalk to find a vma which is the highest that has |
| * a start < addr. We're using find_vma_prev instead right now, but |
| * we might want to use this at some point in the future. Probably |
| * not, but I want it committed to CVS so I don't lose it :-) |
| */ |
| while (tree != vm_avl_empty) { |
| if (tree->vm_start > addr) { |
| tree = tree->vm_avl_left; |
| } else { |
| prev = tree; |
| if (prev->vm_next == NULL) |
| break; |
| if (prev->vm_next->vm_start > addr) |
| break; |
| tree = tree->vm_avl_right; |
| } |
| } |
| #endif |
| |
| int fixup_exception(struct pt_regs *regs) |
| { |
| const struct exception_table_entry *fix; |
| |
| fix = search_exception_tables(regs->iaoq[0]); |
| if (fix) { |
| /* |
| * Fix up get_user() and put_user(). |
| * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant |
| * bit in the relative address of the fixup routine to indicate |
| * that %r8 should be loaded with -EFAULT to report a userspace |
| * access error. |
| */ |
| if (fix->fixup & 1) { |
| regs->gr[8] = -EFAULT; |
| |
| /* zero target register for get_user() */ |
| if (parisc_acctyp(0, regs->iir) == VM_READ) { |
| int treg = regs->iir & 0x1f; |
| BUG_ON(treg == 0); |
| regs->gr[treg] = 0; |
| } |
| } |
| |
| regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup; |
| regs->iaoq[0] &= ~3; |
| /* |
| * NOTE: In some cases the faulting instruction |
| * may be in the delay slot of a branch. We |
| * don't want to take the branch, so we don't |
| * increment iaoq[1], instead we set it to be |
| * iaoq[0]+4, and clear the B bit in the PSW |
| */ |
| regs->iaoq[1] = regs->iaoq[0] + 4; |
| regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */ |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * parisc hardware trap list |
| * |
| * Documented in section 3 "Addressing and Access Control" of the |
| * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual" |
| * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf |
| * |
| * For implementation see handle_interruption() in traps.c |
| */ |
| static const char * const trap_description[] = { |
| [1] "High-priority machine check (HPMC)", |
| [2] "Power failure interrupt", |
| [3] "Recovery counter trap", |
| [5] "Low-priority machine check", |
| [6] "Instruction TLB miss fault", |
| [7] "Instruction access rights / protection trap", |
| [8] "Illegal instruction trap", |
| [9] "Break instruction trap", |
| [10] "Privileged operation trap", |
| [11] "Privileged register trap", |
| [12] "Overflow trap", |
| [13] "Conditional trap", |
| [14] "FP Assist Exception trap", |
| [15] "Data TLB miss fault", |
| [16] "Non-access ITLB miss fault", |
| [17] "Non-access DTLB miss fault", |
| [18] "Data memory protection/unaligned access trap", |
| [19] "Data memory break trap", |
| [20] "TLB dirty bit trap", |
| [21] "Page reference trap", |
| [22] "Assist emulation trap", |
| [25] "Taken branch trap", |
| [26] "Data memory access rights trap", |
| [27] "Data memory protection ID trap", |
| [28] "Unaligned data reference trap", |
| }; |
| |
| const char *trap_name(unsigned long code) |
| { |
| const char *t = NULL; |
| |
| if (code < ARRAY_SIZE(trap_description)) |
| t = trap_description[code]; |
| |
| return t ? t : "Unknown trap"; |
| } |
| |
| /* |
| * Print out info about fatal segfaults, if the show_unhandled_signals |
| * sysctl is set: |
| */ |
| static inline void |
| show_signal_msg(struct pt_regs *regs, unsigned long code, |
| unsigned long address, struct task_struct *tsk, |
| struct vm_area_struct *vma) |
| { |
| if (!unhandled_signal(tsk, SIGSEGV)) |
| return; |
| |
| if (!printk_ratelimit()) |
| return; |
| |
| pr_warn("\n"); |
| pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx", |
| tsk->comm, code, address); |
| print_vma_addr(KERN_CONT " in ", regs->iaoq[0]); |
| |
| pr_cont("\ntrap #%lu: %s%c", code, trap_name(code), |
| vma ? ',':'\n'); |
| |
| if (vma) |
| pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n", |
| vma->vm_start, vma->vm_end); |
| |
| show_regs(regs); |
| } |
| |
| void do_page_fault(struct pt_regs *regs, unsigned long code, |
| unsigned long address) |
| { |
| struct vm_area_struct *vma, *prev_vma; |
| struct task_struct *tsk; |
| struct mm_struct *mm; |
| unsigned long acc_type; |
| vm_fault_t fault = 0; |
| unsigned int flags; |
| |
| if (faulthandler_disabled()) |
| goto no_context; |
| |
| tsk = current; |
| mm = tsk->mm; |
| if (!mm) |
| goto no_context; |
| |
| flags = FAULT_FLAG_DEFAULT; |
| if (user_mode(regs)) |
| flags |= FAULT_FLAG_USER; |
| |
| acc_type = parisc_acctyp(code, regs->iir); |
| if (acc_type & VM_WRITE) |
| flags |= FAULT_FLAG_WRITE; |
| retry: |
| down_read(&mm->mmap_sem); |
| vma = find_vma_prev(mm, address, &prev_vma); |
| if (!vma || address < vma->vm_start) |
| goto check_expansion; |
| /* |
| * Ok, we have a good vm_area for this memory access. We still need to |
| * check the access permissions. |
| */ |
| |
| good_area: |
| |
| if ((vma->vm_flags & acc_type) != acc_type) |
| goto bad_area; |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, make |
| * sure we exit gracefully rather than endlessly redo the |
| * fault. |
| */ |
| |
| fault = handle_mm_fault(vma, address, flags); |
| |
| if (fault_signal_pending(fault, regs)) |
| return; |
| |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| /* |
| * We hit a shared mapping outside of the file, or some |
| * other thing happened to us that made us unable to |
| * handle the page fault gracefully. |
| */ |
| if (fault & VM_FAULT_OOM) |
| goto out_of_memory; |
| else if (fault & VM_FAULT_SIGSEGV) |
| goto bad_area; |
| else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| |
| VM_FAULT_HWPOISON_LARGE)) |
| goto bad_area; |
| BUG(); |
| } |
| if (flags & FAULT_FLAG_ALLOW_RETRY) { |
| if (fault & VM_FAULT_MAJOR) |
| current->maj_flt++; |
| else |
| current->min_flt++; |
| if (fault & VM_FAULT_RETRY) { |
| /* |
| * No need to up_read(&mm->mmap_sem) as we would |
| * have already released it in __lock_page_or_retry |
| * in mm/filemap.c. |
| */ |
| flags |= FAULT_FLAG_TRIED; |
| goto retry; |
| } |
| } |
| up_read(&mm->mmap_sem); |
| return; |
| |
| check_expansion: |
| vma = prev_vma; |
| if (vma && (expand_stack(vma, address) == 0)) |
| goto good_area; |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| */ |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| if (user_mode(regs)) { |
| int signo, si_code; |
| |
| switch (code) { |
| case 15: /* Data TLB miss fault/Data page fault */ |
| /* send SIGSEGV when outside of vma */ |
| if (!vma || |
| address < vma->vm_start || address >= vma->vm_end) { |
| signo = SIGSEGV; |
| si_code = SEGV_MAPERR; |
| break; |
| } |
| |
| /* send SIGSEGV for wrong permissions */ |
| if ((vma->vm_flags & acc_type) != acc_type) { |
| signo = SIGSEGV; |
| si_code = SEGV_ACCERR; |
| break; |
| } |
| |
| /* probably address is outside of mapped file */ |
| /* fall through */ |
| case 17: /* NA data TLB miss / page fault */ |
| case 18: /* Unaligned access - PCXS only */ |
| signo = SIGBUS; |
| si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR; |
| break; |
| case 16: /* Non-access instruction TLB miss fault */ |
| case 26: /* PCXL: Data memory access rights trap */ |
| default: |
| signo = SIGSEGV; |
| si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR; |
| break; |
| } |
| #ifdef CONFIG_MEMORY_FAILURE |
| if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { |
| unsigned int lsb = 0; |
| printk(KERN_ERR |
| "MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n", |
| tsk->comm, tsk->pid, address); |
| /* |
| * Either small page or large page may be poisoned. |
| * In other words, VM_FAULT_HWPOISON_LARGE and |
| * VM_FAULT_HWPOISON are mutually exclusive. |
| */ |
| if (fault & VM_FAULT_HWPOISON_LARGE) |
| lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); |
| else if (fault & VM_FAULT_HWPOISON) |
| lsb = PAGE_SHIFT; |
| |
| force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address, |
| lsb); |
| return; |
| } |
| #endif |
| show_signal_msg(regs, code, address, tsk, vma); |
| |
| force_sig_fault(signo, si_code, (void __user *) address); |
| return; |
| } |
| |
| no_context: |
| |
| if (!user_mode(regs) && fixup_exception(regs)) { |
| return; |
| } |
| |
| parisc_terminate("Bad Address (null pointer deref?)", regs, code, address); |
| |
| out_of_memory: |
| up_read(&mm->mmap_sem); |
| if (!user_mode(regs)) |
| goto no_context; |
| pagefault_out_of_memory(); |
| } |