blob: 7a748785c54596b04b9a7101fd7bd332827a2dc5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
* datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
*/
#include <linux/atomic.h>
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#include <drm/display/drm_dp_aux_bus.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_bridge_connector.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define SN_DEVICE_REV_REG 0x08
#define SN_DPPLL_SRC_REG 0x0A
#define DPPLL_CLK_SRC_DSICLK BIT(0)
#define REFCLK_FREQ_MASK GENMASK(3, 1)
#define REFCLK_FREQ(x) ((x) << 1)
#define DPPLL_SRC_DP_PLL_LOCK BIT(7)
#define SN_PLL_ENABLE_REG 0x0D
#define SN_DSI_LANES_REG 0x10
#define CHA_DSI_LANES_MASK GENMASK(4, 3)
#define CHA_DSI_LANES(x) ((x) << 3)
#define SN_DSIA_CLK_FREQ_REG 0x12
#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
#define CHA_HSYNC_POLARITY BIT(7)
#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
#define CHA_VSYNC_POLARITY BIT(7)
#define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
#define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
#define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
#define SN_LN_ASSIGN_REG 0x59
#define LN_ASSIGN_WIDTH 2
#define SN_ENH_FRAME_REG 0x5A
#define VSTREAM_ENABLE BIT(3)
#define LN_POLRS_OFFSET 4
#define LN_POLRS_MASK 0xf0
#define SN_DATA_FORMAT_REG 0x5B
#define BPP_18_RGB BIT(0)
#define SN_HPD_DISABLE_REG 0x5C
#define HPD_DISABLE BIT(0)
#define HPD_DEBOUNCED_STATE BIT(4)
#define SN_GPIO_IO_REG 0x5E
#define SN_GPIO_INPUT_SHIFT 4
#define SN_GPIO_OUTPUT_SHIFT 0
#define SN_GPIO_CTRL_REG 0x5F
#define SN_GPIO_MUX_INPUT 0
#define SN_GPIO_MUX_OUTPUT 1
#define SN_GPIO_MUX_SPECIAL 2
#define SN_GPIO_MUX_MASK 0x3
#define SN_AUX_WDATA_REG(x) (0x64 + (x))
#define SN_AUX_ADDR_19_16_REG 0x74
#define SN_AUX_ADDR_15_8_REG 0x75
#define SN_AUX_ADDR_7_0_REG 0x76
#define SN_AUX_ADDR_MASK GENMASK(19, 0)
#define SN_AUX_LENGTH_REG 0x77
#define SN_AUX_CMD_REG 0x78
#define AUX_CMD_SEND BIT(0)
#define AUX_CMD_REQ(x) ((x) << 4)
#define SN_AUX_RDATA_REG(x) (0x79 + (x))
#define SN_SSC_CONFIG_REG 0x93
#define DP_NUM_LANES_MASK GENMASK(5, 4)
#define DP_NUM_LANES(x) ((x) << 4)
#define SN_DATARATE_CONFIG_REG 0x94
#define DP_DATARATE_MASK GENMASK(7, 5)
#define DP_DATARATE(x) ((x) << 5)
#define SN_TRAINING_SETTING_REG 0x95
#define SCRAMBLE_DISABLE BIT(4)
#define SN_ML_TX_MODE_REG 0x96
#define ML_TX_MAIN_LINK_OFF 0
#define ML_TX_NORMAL_MODE BIT(0)
#define SN_PWM_PRE_DIV_REG 0xA0
#define SN_BACKLIGHT_SCALE_REG 0xA1
#define BACKLIGHT_SCALE_MAX 0xFFFF
#define SN_BACKLIGHT_REG 0xA3
#define SN_PWM_EN_INV_REG 0xA5
#define SN_PWM_INV_MASK BIT(0)
#define SN_PWM_EN_MASK BIT(1)
#define SN_AUX_CMD_STATUS_REG 0xF4
#define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
#define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
#define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
#define MIN_DSI_CLK_FREQ_MHZ 40
/* fudge factor required to account for 8b/10b encoding */
#define DP_CLK_FUDGE_NUM 10
#define DP_CLK_FUDGE_DEN 8
/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
#define SN_AUX_MAX_PAYLOAD_BYTES 16
#define SN_REGULATOR_SUPPLY_NUM 4
#define SN_MAX_DP_LANES 4
#define SN_NUM_GPIOS 4
#define SN_GPIO_PHYSICAL_OFFSET 1
#define SN_LINK_TRAINING_TRIES 10
#define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
/**
* struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
* @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
* @gpio_aux: AUX-bus sub device for GPIO controller functionality.
* @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
* @pwm_aux: AUX-bus sub device for PWM controller functionality.
*
* @dev: Pointer to the top level (i2c) device.
* @regmap: Regmap for accessing i2c.
* @aux: Our aux channel.
* @bridge: Our bridge.
* @connector: Our connector.
* @host_node: Remote DSI node.
* @dsi: Our MIPI DSI source.
* @refclk: Our reference clock.
* @next_bridge: The bridge on the eDP side.
* @enable_gpio: The GPIO we toggle to enable the bridge.
* @supplies: Data for bulk enabling/disabling our regulators.
* @dp_lanes: Count of dp_lanes we're using.
* @ln_assign: Value to program to the LN_ASSIGN register.
* @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
* @comms_enabled: If true then communication over the aux channel is enabled.
* @comms_mutex: Protects modification of comms_enabled.
*
* @gchip: If we expose our GPIOs, this is used.
* @gchip_output: A cache of whether we've set GPIOs to output. This
* serves double-duty of keeping track of the direction and
* also keeping track of whether we've incremented the
* pm_runtime reference count for this pin, which we do
* whenever a pin is configured as an output. This is a
* bitmap so we can do atomic ops on it without an extra
* lock so concurrent users of our 4 GPIOs don't stomp on
* each other's read-modify-write.
*
* @pchip: pwm_chip if the PWM is exposed.
* @pwm_enabled: Used to track if the PWM signal is currently enabled.
* @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
* @pwm_refclk_freq: Cache for the reference clock input to the PWM.
*/
struct ti_sn65dsi86 {
struct auxiliary_device bridge_aux;
struct auxiliary_device gpio_aux;
struct auxiliary_device aux_aux;
struct auxiliary_device pwm_aux;
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_connector *connector;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
struct clk *refclk;
struct drm_bridge *next_bridge;
struct gpio_desc *enable_gpio;
struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
int dp_lanes;
u8 ln_assign;
u8 ln_polrs;
bool comms_enabled;
struct mutex comms_mutex;
#if defined(CONFIG_OF_GPIO)
struct gpio_chip gchip;
DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
#endif
#if defined(CONFIG_PWM)
struct pwm_chip pchip;
bool pwm_enabled;
atomic_t pwm_pin_busy;
#endif
unsigned int pwm_refclk_freq;
};
static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
{ .range_min = 0, .range_max = 0xFF },
};
static const struct regmap_access_table ti_sn_bridge_volatile_table = {
.yes_ranges = ti_sn65dsi86_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
};
static const struct regmap_config ti_sn65dsi86_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &ti_sn_bridge_volatile_table,
.cache_type = REGCACHE_NONE,
.max_register = 0xFF,
};
static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
unsigned int reg, u16 *val)
{
u8 buf[2];
int ret;
ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
if (ret)
return ret;
*val = buf[0] | (buf[1] << 8);
return 0;
}
static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
unsigned int reg, u16 val)
{
u8 buf[2] = { val & 0xff, val >> 8 };
regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
}
static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
{
u32 bit_rate_khz, clk_freq_khz;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
bit_rate_khz = mode->clock *
mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
return clk_freq_khz;
}
/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
static const u32 ti_sn_bridge_refclk_lut[] = {
12000000,
19200000,
26000000,
27000000,
38400000,
};
/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
static const u32 ti_sn_bridge_dsiclk_lut[] = {
468000000,
384000000,
416000000,
486000000,
460800000,
};
static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
{
int i;
u32 refclk_rate;
const u32 *refclk_lut;
size_t refclk_lut_size;
if (pdata->refclk) {
refclk_rate = clk_get_rate(pdata->refclk);
refclk_lut = ti_sn_bridge_refclk_lut;
refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
clk_prepare_enable(pdata->refclk);
} else {
refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
refclk_lut = ti_sn_bridge_dsiclk_lut;
refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
}
/* for i equals to refclk_lut_size means default frequency */
for (i = 0; i < refclk_lut_size; i++)
if (refclk_lut[i] == refclk_rate)
break;
regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
REFCLK_FREQ(i));
/*
* The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
* regardless of its actual sourcing.
*/
pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
}
static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
{
mutex_lock(&pdata->comms_mutex);
/* configure bridge ref_clk */
ti_sn_bridge_set_refclk_freq(pdata);
/*
* HPD on this bridge chip is a bit useless. This is an eDP bridge
* so the HPD is an internal signal that's only there to signal that
* the panel is done powering up. ...but the bridge chip debounces
* this signal by between 100 ms and 400 ms (depending on process,
* voltage, and temperate--I measured it at about 200 ms). One
* particular panel asserted HPD 84 ms after it was powered on meaning
* that we saw HPD 284 ms after power on. ...but the same panel said
* that instead of looking at HPD you could just hardcode a delay of
* 200 ms. We'll assume that the panel driver will have the hardcoded
* delay in its prepare and always disable HPD.
*
* If HPD somehow makes sense on some future panel we'll have to
* change this to be conditional on someone specifying that HPD should
* be used.
*/
regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
HPD_DISABLE);
pdata->comms_enabled = true;
mutex_unlock(&pdata->comms_mutex);
}
static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
{
mutex_lock(&pdata->comms_mutex);
pdata->comms_enabled = false;
clk_disable_unprepare(pdata->refclk);
mutex_unlock(&pdata->comms_mutex);
}
static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
if (ret) {
DRM_ERROR("failed to enable supplies %d\n", ret);
return ret;
}
/* td2: min 100 us after regulators before enabling the GPIO */
usleep_range(100, 110);
gpiod_set_value_cansleep(pdata->enable_gpio, 1);
/*
* If we have a reference clock we can enable communication w/ the
* panel (including the aux channel) w/out any need for an input clock
* so we can do it in resume which lets us read the EDID before
* pre_enable(). Without a reference clock we need the MIPI reference
* clock so reading early doesn't work.
*/
if (pdata->refclk)
ti_sn65dsi86_enable_comms(pdata);
return ret;
}
static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
int ret;
if (pdata->refclk)
ti_sn65dsi86_disable_comms(pdata);
gpiod_set_value_cansleep(pdata->enable_gpio, 0);
ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
if (ret)
DRM_ERROR("failed to disable supplies %d\n", ret);
return ret;
}
static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static int status_show(struct seq_file *s, void *data)
{
struct ti_sn65dsi86 *pdata = s->private;
unsigned int reg, val;
seq_puts(s, "STATUS REGISTERS:\n");
pm_runtime_get_sync(pdata->dev);
/* IRQ Status Registers, see Table 31 in datasheet */
for (reg = 0xf0; reg <= 0xf8; reg++) {
regmap_read(pdata->regmap, reg, &val);
seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
}
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(status);
static void ti_sn65dsi86_debugfs_remove(void *data)
{
debugfs_remove_recursive(data);
}
static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
{
struct device *dev = pdata->dev;
struct dentry *debugfs;
int ret;
debugfs = debugfs_create_dir(dev_name(dev), NULL);
/*
* We might get an error back if debugfs wasn't enabled in the kernel
* so let's just silently return upon failure.
*/
if (IS_ERR_OR_NULL(debugfs))
return;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
if (ret)
return;
debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
}
/* -----------------------------------------------------------------------------
* Auxiliary Devices (*not* AUX)
*/
static void ti_sn65dsi86_uninit_aux(void *data)
{
auxiliary_device_uninit(data);
}
static void ti_sn65dsi86_delete_aux(void *data)
{
auxiliary_device_delete(data);
}
/*
* AUX bus docs say that a non-NULL release is mandatory, but it makes no
* sense for the model used here where all of the aux devices are allocated
* in the single shared structure. We'll use this noop as a workaround.
*/
static void ti_sn65dsi86_noop(struct device *dev) {}
static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
struct auxiliary_device *aux,
const char *name)
{
struct device *dev = pdata->dev;
int ret;
aux->name = name;
aux->dev.parent = dev;
aux->dev.release = ti_sn65dsi86_noop;
device_set_of_node_from_dev(&aux->dev, dev);
ret = auxiliary_device_init(aux);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
if (ret)
return ret;
ret = auxiliary_device_add(aux);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
return ret;
}
/* -----------------------------------------------------------------------------
* AUX Adapter
*/
static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
{
return container_of(aux, struct ti_sn65dsi86, aux);
}
static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
u32 request_val = AUX_CMD_REQ(msg->request);
u8 *buf = msg->buffer;
unsigned int len = msg->size;
unsigned int val;
int ret;
u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
if (len > SN_AUX_MAX_PAYLOAD_BYTES)
return -EINVAL;
pm_runtime_get_sync(pdata->dev);
mutex_lock(&pdata->comms_mutex);
/*
* If someone tries to do a DDC over AUX transaction before pre_enable()
* on a device without a dedicated reference clock then we just can't
* do it. Fail right away. This prevents non-refclk users from reading
* the EDID before enabling the panel but such is life.
*/
if (!pdata->comms_enabled) {
ret = -EIO;
goto exit;
}
switch (request) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
/* Assume it's good */
msg->reply = 0;
break;
default:
ret = -EINVAL;
goto exit;
}
BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
addr_len);
regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
ARRAY_SIZE(addr_len));
if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
/* Clear old status bits before start so we don't get confused */
regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
AUX_IRQ_STATUS_NAT_I2C_FAIL |
AUX_IRQ_STATUS_AUX_RPLY_TOUT |
AUX_IRQ_STATUS_AUX_SHORT);
regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
/* Zero delay loop because i2c transactions are slow already */
ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
!(val & AUX_CMD_SEND), 0, 50 * 1000);
if (ret)
goto exit;
ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
if (ret)
goto exit;
if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
/*
* The hardware tried the message seven times per the DP spec
* but it hit a timeout. We ignore defers here because they're
* handled in hardware.
*/
ret = -ETIMEDOUT;
goto exit;
}
if (val & AUX_IRQ_STATUS_AUX_SHORT) {
ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
if (ret)
goto exit;
} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
switch (request) {
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_READ:
msg->reply |= DP_AUX_I2C_REPLY_NACK;
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_NATIVE_WRITE:
msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
break;
}
len = 0;
goto exit;
}
if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
exit:
mutex_unlock(&pdata->comms_mutex);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
if (ret)
return ret;
return len;
}
static int ti_sn_aux_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
int ret;
pdata->aux.name = "ti-sn65dsi86-aux";
pdata->aux.dev = &adev->dev;
pdata->aux.transfer = ti_sn_aux_transfer;
drm_dp_aux_init(&pdata->aux);
ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
if (ret)
return ret;
/*
* The eDP to MIPI bridge parts don't work until the AUX channel is
* setup so we don't add it in the main driver probe, we add it now.
*/
return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
}
static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
{ .name = "ti_sn65dsi86.aux", },
{},
};
static struct auxiliary_driver ti_sn_aux_driver = {
.name = "aux",
.probe = ti_sn_aux_probe,
.id_table = ti_sn_aux_id_table,
};
/*------------------------------------------------------------------------------
* DRM Bridge
*/
static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
{
return container_of(bridge, struct ti_sn65dsi86, bridge);
}
static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
{
int val;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
struct device *dev = pdata->dev;
const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(pdata->host_node);
if (!host)
return -EPROBE_DEFER;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return PTR_ERR(dsi);
/* TODO: setting to 4 MIPI lanes always for now */
dsi->lanes = 4;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
/* check if continuous dsi clock is required or not */
pm_runtime_get_sync(dev);
regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
pm_runtime_put_autosuspend(dev);
if (!(val & DPPLL_CLK_SRC_DSICLK))
dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
pdata->dsi = dsi;
return devm_mipi_dsi_attach(dev, dsi);
}
static int ti_sn_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
int ret;
pdata->aux.drm_dev = bridge->dev;
ret = drm_dp_aux_register(&pdata->aux);
if (ret < 0) {
drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
return ret;
}
/*
* Attach the next bridge.
* We never want the next bridge to *also* create a connector.
*/
ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret < 0)
goto err_initted_aux;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
pdata->bridge.encoder);
if (IS_ERR(pdata->connector)) {
ret = PTR_ERR(pdata->connector);
goto err_initted_aux;
}
drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
return 0;
err_initted_aux:
drm_dp_aux_unregister(&pdata->aux);
return ret;
}
static void ti_sn_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
}
static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* maximum supported resolution is 4K at 60 fps */
if (mode->clock > 594000)
return MODE_CLOCK_HIGH;
/*
* The front and back porch registers are 8 bits, and pulse width
* registers are 15 bits, so reject any modes with larger periods.
*/
if ((mode->hsync_start - mode->hdisplay) > 0xff)
return MODE_HBLANK_WIDE;
if ((mode->vsync_start - mode->vdisplay) > 0xff)
return MODE_VBLANK_WIDE;
if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
return MODE_HSYNC_WIDE;
if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
return MODE_VSYNC_WIDE;
if ((mode->htotal - mode->hsync_end) > 0xff)
return MODE_HBLANK_WIDE;
if ((mode->vtotal - mode->vsync_end) > 0xff)
return MODE_VBLANK_WIDE;
return MODE_OK;
}
static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
/* disable video stream */
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
}
static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
{
unsigned int bit_rate_mhz, clk_freq_mhz;
unsigned int val;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
/* set DSIA clk frequency */
bit_rate_mhz = (mode->clock / 1000) *
mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
/* for each increment in val, frequency increases by 5MHz */
val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
}
static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
{
if (connector->display_info.bpc <= 6)
return 18;
else
return 24;
}
/*
* LUT index corresponds to register value and
* LUT values corresponds to dp data rate supported
* by the bridge in Mbps unit.
*/
static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
};
static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
{
unsigned int bit_rate_khz, dp_rate_mhz;
unsigned int i;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
/* Calculate minimum bit rate based on our pixel clock. */
bit_rate_khz = mode->clock * bpp;
/* Calculate minimum DP data rate, taking 80% as per DP spec */
dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
break;
return i;
}
static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
{
unsigned int valid_rates = 0;
unsigned int rate_per_200khz;
unsigned int rate_mhz;
u8 dpcd_val;
int ret;
int i, j;
ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read eDP rev (%d), assuming 1.1\n", ret);
dpcd_val = DP_EDP_11;
}
if (dpcd_val >= DP_EDP_14) {
/* eDP 1.4 devices must provide a custom table */
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
if (ret != sizeof(sink_rates)) {
DRM_DEV_ERROR(pdata->dev,
"Can't read supported rate table (%d)\n", ret);
/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
memset(sink_rates, 0, sizeof(sink_rates));
}
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
rate_per_200khz = le16_to_cpu(sink_rates[i]);
if (!rate_per_200khz)
break;
rate_mhz = rate_per_200khz * 200 / 1000;
for (j = 0;
j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
j++) {
if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
valid_rates |= BIT(j);
}
}
for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
if (valid_rates & BIT(i))
return valid_rates;
}
DRM_DEV_ERROR(pdata->dev,
"No matching eDP rates in table; falling back\n");
}
/* On older versions best we can do is use DP_MAX_LINK_RATE */
ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read max rate (%d); assuming 5.4 GHz\n",
ret);
dpcd_val = DP_LINK_BW_5_4;
}
switch (dpcd_val) {
default:
DRM_DEV_ERROR(pdata->dev,
"Unexpected max rate (%#x); assuming 5.4 GHz\n",
(int)dpcd_val);
fallthrough;
case DP_LINK_BW_5_4:
valid_rates |= BIT(7);
fallthrough;
case DP_LINK_BW_2_7:
valid_rates |= BIT(4);
fallthrough;
case DP_LINK_BW_1_62:
valid_rates |= BIT(1);
break;
}
return valid_rates;
}
static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
{
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
u8 hsync_polarity = 0, vsync_polarity = 0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
hsync_polarity = CHA_HSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
vsync_polarity = CHA_VSYNC_POLARITY;
ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
mode->hdisplay);
ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
mode->vdisplay);
regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
(mode->hsync_end - mode->hsync_start) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
(((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
hsync_polarity);
regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
(mode->vsync_end - mode->vsync_start) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
(((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
vsync_polarity);
regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
(mode->htotal - mode->hsync_end) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
(mode->vtotal - mode->vsync_end) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
(mode->hsync_start - mode->hdisplay) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
(mode->vsync_start - mode->vdisplay) & 0xFF);
usleep_range(10000, 10500); /* 10ms delay recommended by spec */
}
static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
{
u8 data;
int ret;
ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read lane count (%d); assuming 4\n", ret);
return 4;
}
return data & DP_LANE_COUNT_MASK;
}
static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
const char **last_err_str)
{
unsigned int val;
int ret;
int i;
/* set dp clk frequency value */
regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
/* enable DP PLL */
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
val & DPPLL_SRC_DP_PLL_LOCK, 1000,
50 * 1000);
if (ret) {
*last_err_str = "DP_PLL_LOCK polling failed";
goto exit;
}
/*
* We'll try to link train several times. As part of link training
* the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
* the panel isn't ready quite it might respond NAK here which means
* we need to try again.
*/
for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
/* Semi auto link training mode */
regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
val == ML_TX_MAIN_LINK_OFF ||
val == ML_TX_NORMAL_MODE, 1000,
500 * 1000);
if (ret) {
*last_err_str = "Training complete polling failed";
} else if (val == ML_TX_MAIN_LINK_OFF) {
*last_err_str = "Link training failed, link is off";
ret = -EIO;
continue;
}
break;
}
/* If we saw quite a few retries, add a note about it */
if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
exit:
/* Disable the PLL if we failed */
if (ret)
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
return ret;
}
static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
struct drm_connector *connector;
const char *last_err_str = "No supported DP rate";
unsigned int valid_rates;
int dp_rate_idx;
unsigned int val;
int ret = -EINVAL;
int max_dp_lanes;
unsigned int bpp;
connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
bridge->encoder);
if (!connector) {
dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
return;
}
max_dp_lanes = ti_sn_get_max_lanes(pdata);
pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
/* DSI_A lane config */
val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
CHA_DSI_LANES_MASK, val);
regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
pdata->ln_polrs << LN_POLRS_OFFSET);
/* set dsi clk frequency value */
ti_sn_bridge_set_dsi_rate(pdata);
/*
* The SN65DSI86 only supports ASSR Display Authentication method and
* this method is enabled for eDP panels. An eDP panel must support this
* authentication method. We need to enable this method in the eDP panel
* at DisplayPort address 0x0010A prior to link training.
*
* As only ASSR is supported by SN65DSI86, for full DisplayPort displays
* we need to disable the scrambler.
*/
if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
SCRAMBLE_DISABLE, 0);
} else {
regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
}
bpp = ti_sn_bridge_get_bpp(connector);
/* Set the DP output format (18 bpp or 24 bpp) */
val = bpp == 18 ? BPP_18_RGB : 0;
regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
/* DP lane config */
val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
val);
valid_rates = ti_sn_bridge_read_valid_rates(pdata);
/* Train until we run out of rates */
for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
dp_rate_idx++) {
if (!(valid_rates & BIT(dp_rate_idx)))
continue;
ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
if (!ret)
break;
}
if (ret) {
DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
return;
}
/* config video parameters */
ti_sn_bridge_set_video_timings(pdata);
/* enable video stream */
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
VSTREAM_ENABLE);
}
static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
pm_runtime_get_sync(pdata->dev);
if (!pdata->refclk)
ti_sn65dsi86_enable_comms(pdata);
/* td7: min 100 us after enable before DSI data */
usleep_range(100, 110);
}
static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
/* semi auto link training mode OFF */
regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
/* Num lanes to 0 as per power sequencing in data sheet */
regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
/* disable DP PLL */
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
if (!pdata->refclk)
ti_sn65dsi86_disable_comms(pdata);
pm_runtime_put_sync(pdata->dev);
}
static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
int val = 0;
pm_runtime_get_sync(pdata->dev);
regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
pm_runtime_put_autosuspend(pdata->dev);
return val & HPD_DEBOUNCED_STATE ? connector_status_connected
: connector_status_disconnected;
}
static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
return drm_get_edid(connector, &pdata->aux.ddc);
}
static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
.attach = ti_sn_bridge_attach,
.detach = ti_sn_bridge_detach,
.mode_valid = ti_sn_bridge_mode_valid,
.get_edid = ti_sn_bridge_get_edid,
.detect = ti_sn_bridge_detect,
.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
.atomic_enable = ti_sn_bridge_atomic_enable,
.atomic_disable = ti_sn_bridge_atomic_disable,
.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
};
static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
struct device_node *np)
{
u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
u32 lane_polarities[SN_MAX_DP_LANES] = { };
struct device_node *endpoint;
u8 ln_assign = 0;
u8 ln_polrs = 0;
int dp_lanes;
int i;
/*
* Read config from the device tree about lane remapping and lane
* polarities. These are optional and we assume identity map and
* normal polarity if nothing is specified. It's OK to specify just
* data-lanes but not lane-polarities but not vice versa.
*
* Error checking is light (we just make sure we don't crash or
* buffer overrun) and we assume dts is well formed and specifying
* mappings that the hardware supports.
*/
endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
if (dp_lanes > 0) {
of_property_read_u32_array(endpoint, "data-lanes",
lane_assignments, dp_lanes);
of_property_read_u32_array(endpoint, "lane-polarities",
lane_polarities, dp_lanes);
} else {
dp_lanes = SN_MAX_DP_LANES;
}
of_node_put(endpoint);
/*
* Convert into register format. Loop over all lanes even if
* data-lanes had fewer elements so that we nicely initialize
* the LN_ASSIGN register.
*/
for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
ln_polrs = ln_polrs << 1 | lane_polarities[i];
}
/* Stash in our struct for when we power on */
pdata->dp_lanes = dp_lanes;
pdata->ln_assign = ln_assign;
pdata->ln_polrs = ln_polrs;
}
static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
{
struct device_node *np = pdata->dev->of_node;
pdata->host_node = of_graph_get_remote_node(np, 0, 0);
if (!pdata->host_node) {
DRM_ERROR("remote dsi host node not found\n");
return -ENODEV;
}
return 0;
}
static int ti_sn_bridge_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
struct device_node *np = pdata->dev->of_node;
int ret;
pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
if (IS_ERR(pdata->next_bridge))
return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
"failed to create panel bridge\n");
ti_sn_bridge_parse_lanes(pdata, np);
ret = ti_sn_bridge_parse_dsi_host(pdata);
if (ret)
return ret;
pdata->bridge.funcs = &ti_sn_bridge_funcs;
pdata->bridge.of_node = np;
pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
drm_bridge_add(&pdata->bridge);
ret = ti_sn_attach_host(pdata);
if (ret) {
dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
goto err_remove_bridge;
}
return 0;
err_remove_bridge:
drm_bridge_remove(&pdata->bridge);
return ret;
}
static void ti_sn_bridge_remove(struct auxiliary_device *adev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
if (!pdata)
return;
drm_bridge_remove(&pdata->bridge);
of_node_put(pdata->host_node);
}
static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
{ .name = "ti_sn65dsi86.bridge", },
{},
};
static struct auxiliary_driver ti_sn_bridge_driver = {
.name = "bridge",
.probe = ti_sn_bridge_probe,
.remove = ti_sn_bridge_remove,
.id_table = ti_sn_bridge_id_table,
};
/* -----------------------------------------------------------------------------
* PWM Controller
*/
#if defined(CONFIG_PWM)
static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
{
return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
}
static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
{
atomic_set(&pdata->pwm_pin_busy, 0);
}
static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
{
return container_of(chip, struct ti_sn65dsi86, pchip);
}
static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
return ti_sn_pwm_pin_request(pdata);
}
static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
ti_sn_pwm_pin_release(pdata);
}
/*
* Limitations:
* - The PWM signal is not driven when the chip is powered down, or in its
* reset state and the driver does not implement the "suspend state"
* described in the documentation. In order to save power, state->enabled is
* interpreted as denoting if the signal is expected to be valid, and is used
* to determine if the chip needs to be kept powered.
* - Changing both period and duty_cycle is not done atomically, neither is the
* multi-byte register updates, so the output might briefly be undefined
* during update.
*/
static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
unsigned int pwm_en_inv;
unsigned int backlight;
unsigned int pre_div;
unsigned int scale;
u64 period_max;
u64 period;
int ret;
if (!pdata->pwm_enabled) {
ret = pm_runtime_get_sync(pdata->dev);
if (ret < 0) {
pm_runtime_put_sync(pdata->dev);
return ret;
}
}
if (state->enabled) {
if (!pdata->pwm_enabled) {
/*
* The chip might have been powered down while we
* didn't hold a PM runtime reference, so mux in the
* PWM function on the GPIO pin again.
*/
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
if (ret) {
dev_err(pdata->dev, "failed to mux in PWM function\n");
goto out;
}
}
/*
* Per the datasheet the PWM frequency is given by:
*
* REFCLK_FREQ
* PWM_FREQ = -----------------------------------
* PWM_PRE_DIV * BACKLIGHT_SCALE + 1
*
* However, after careful review the author is convinced that
* the documentation has lost some parenthesis around
* "BACKLIGHT_SCALE + 1".
*
* With the period T_pwm = 1/PWM_FREQ this can be written:
*
* T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
*
* In order to keep BACKLIGHT_SCALE within its 16 bits,
* PWM_PRE_DIV must be:
*
* T_pwm * REFCLK_FREQ
* PWM_PRE_DIV >= -------------------------
* BACKLIGHT_SCALE_MAX + 1
*
* To simplify the search and to favour higher resolution of
* the duty cycle over accuracy of the period, the lowest
* possible PWM_PRE_DIV is used. Finally the scale is
* calculated as:
*
* T_pwm * REFCLK_FREQ
* BACKLIGHT_SCALE = ---------------------- - 1
* PWM_PRE_DIV
*
* Here T_pwm is represented in seconds, so appropriate scaling
* to nanoseconds is necessary.
*/
/* Minimum T_pwm is 1 / REFCLK_FREQ */
if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
ret = -EINVAL;
goto out;
}
/*
* Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
* Limit period to this to avoid overflows
*/
period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
pdata->pwm_refclk_freq);
period = min(state->period, period_max);
pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
(u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
/*
* The documentation has the duty ratio given as:
*
* duty BACKLIGHT
* ------- = ---------------------
* period BACKLIGHT_SCALE + 1
*
* Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
* to definition above and adjusting for nanosecond
* representation of duty cycle gives us:
*/
backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
(u64)NSEC_PER_SEC * pre_div);
if (backlight > scale)
backlight = scale;
ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
if (ret) {
dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
goto out;
}
ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
}
pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
if (ret) {
dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
goto out;
}
pdata->pwm_enabled = state->enabled;
out:
if (!pdata->pwm_enabled)
pm_runtime_put_sync(pdata->dev);
return ret;
}
static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
unsigned int pwm_en_inv;
unsigned int pre_div;
u16 backlight;
u16 scale;
int ret;
ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
if (ret)
return ret;
ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
if (ret)
return ret;
ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
if (ret)
return ret;
ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
if (ret)
return ret;
state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
state->polarity = PWM_POLARITY_INVERSED;
else
state->polarity = PWM_POLARITY_NORMAL;
state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
pdata->pwm_refclk_freq);
state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
pdata->pwm_refclk_freq);
if (state->duty_cycle > state->period)
state->duty_cycle = state->period;
return 0;
}
static const struct pwm_ops ti_sn_pwm_ops = {
.request = ti_sn_pwm_request,
.free = ti_sn_pwm_free,
.apply = ti_sn_pwm_apply,
.get_state = ti_sn_pwm_get_state,
.owner = THIS_MODULE,
};
static int ti_sn_pwm_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
pdata->pchip.dev = pdata->dev;
pdata->pchip.ops = &ti_sn_pwm_ops;
pdata->pchip.npwm = 1;
pdata->pchip.of_xlate = of_pwm_single_xlate;
pdata->pchip.of_pwm_n_cells = 1;
return pwmchip_add(&pdata->pchip);
}
static void ti_sn_pwm_remove(struct auxiliary_device *adev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
pwmchip_remove(&pdata->pchip);
if (pdata->pwm_enabled)
pm_runtime_put_sync(pdata->dev);
}
static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
{ .name = "ti_sn65dsi86.pwm", },
{},
};
static struct auxiliary_driver ti_sn_pwm_driver = {
.name = "pwm",
.probe = ti_sn_pwm_probe,
.remove = ti_sn_pwm_remove,
.id_table = ti_sn_pwm_id_table,
};
static int __init ti_sn_pwm_register(void)
{
return auxiliary_driver_register(&ti_sn_pwm_driver);
}
static void ti_sn_pwm_unregister(void)
{
auxiliary_driver_unregister(&ti_sn_pwm_driver);
}
#else
static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
static inline int ti_sn_pwm_register(void) { return 0; }
static inline void ti_sn_pwm_unregister(void) {}
#endif
/* -----------------------------------------------------------------------------
* GPIO Controller
*/
#if defined(CONFIG_OF_GPIO)
static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
const struct of_phandle_args *gpiospec,
u32 *flags)
{
if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
return -EINVAL;
if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
return -EINVAL;
if (flags)
*flags = gpiospec->args[1];
return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
}
static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
/*
* We already have to keep track of the direction because we use
* that to figure out whether we've powered the device. We can
* just return that rather than (maybe) powering up the device
* to ask its direction.
*/
return test_bit(offset, pdata->gchip_output) ?
GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}
static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
unsigned int val;
int ret;
/*
* When the pin is an input we don't forcibly keep the bridge
* powered--we just power it on to read the pin. NOTE: part of
* the reason this works is that the bridge defaults (when
* powered back on) to all 4 GPIOs being configured as GPIO input.
* Also note that if something else is keeping the chip powered the
* pm_runtime functions are lightweight increments of a refcount.
*/
pm_runtime_get_sync(pdata->dev);
ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
pm_runtime_put_autosuspend(pdata->dev);
if (ret)
return ret;
return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
}
static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
int val)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int ret;
if (!test_bit(offset, pdata->gchip_output)) {
dev_err(pdata->dev, "Ignoring GPIO set while input\n");
return;
}
val &= 1;
ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
BIT(SN_GPIO_OUTPUT_SHIFT + offset),
val << (SN_GPIO_OUTPUT_SHIFT + offset));
if (ret)
dev_warn(pdata->dev,
"Failed to set bridge GPIO %u: %d\n", offset, ret);
}
static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int shift = offset * 2;
int ret;
if (!test_and_clear_bit(offset, pdata->gchip_output))
return 0;
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << shift,
SN_GPIO_MUX_INPUT << shift);
if (ret) {
set_bit(offset, pdata->gchip_output);
return ret;
}
/*
* NOTE: if nobody else is powering the device this may fully power
* it off and when it comes back it will have lost all state, but
* that's OK because the default is input and we're now an input.
*/
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int val)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int shift = offset * 2;
int ret;
if (test_and_set_bit(offset, pdata->gchip_output))
return 0;
pm_runtime_get_sync(pdata->dev);
/* Set value first to avoid glitching */
ti_sn_bridge_gpio_set(chip, offset, val);
/* Set direction */
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << shift,
SN_GPIO_MUX_OUTPUT << shift);
if (ret) {
clear_bit(offset, pdata->gchip_output);
pm_runtime_put_autosuspend(pdata->dev);
}
return ret;
}
static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
if (offset == SN_PWM_GPIO_IDX)
return ti_sn_pwm_pin_request(pdata);
return 0;
}
static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
/* We won't keep pm_runtime if we're input, so switch there on free */
ti_sn_bridge_gpio_direction_input(chip, offset);
if (offset == SN_PWM_GPIO_IDX)
ti_sn_pwm_pin_release(pdata);
}
static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
"GPIO1", "GPIO2", "GPIO3", "GPIO4"
};
static int ti_sn_gpio_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
int ret;
/* Only init if someone is going to use us as a GPIO controller */
if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
return 0;
pdata->gchip.label = dev_name(pdata->dev);
pdata->gchip.parent = pdata->dev;
pdata->gchip.owner = THIS_MODULE;
pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
pdata->gchip.of_gpio_n_cells = 2;
pdata->gchip.request = ti_sn_bridge_gpio_request;
pdata->gchip.free = ti_sn_bridge_gpio_free;
pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
pdata->gchip.get = ti_sn_bridge_gpio_get;
pdata->gchip.set = ti_sn_bridge_gpio_set;
pdata->gchip.can_sleep = true;
pdata->gchip.names = ti_sn_bridge_gpio_names;
pdata->gchip.ngpio = SN_NUM_GPIOS;
pdata->gchip.base = -1;
ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
if (ret)
dev_err(pdata->dev, "can't add gpio chip\n");
return ret;
}
static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
{ .name = "ti_sn65dsi86.gpio", },
{},
};
MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
static struct auxiliary_driver ti_sn_gpio_driver = {
.name = "gpio",
.probe = ti_sn_gpio_probe,
.id_table = ti_sn_gpio_id_table,
};
static int __init ti_sn_gpio_register(void)
{
return auxiliary_driver_register(&ti_sn_gpio_driver);
}
static void ti_sn_gpio_unregister(void)
{
auxiliary_driver_unregister(&ti_sn_gpio_driver);
}
#else
static inline int ti_sn_gpio_register(void) { return 0; }
static inline void ti_sn_gpio_unregister(void) {}
#endif
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static void ti_sn65dsi86_runtime_disable(void *data)
{
pm_runtime_dont_use_autosuspend(data);
pm_runtime_disable(data);
}
static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
{
unsigned int i;
const char * const ti_sn_bridge_supply_names[] = {
"vcca", "vcc", "vccio", "vpll",
};
for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
pdata->supplies);
}
static int ti_sn65dsi86_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ti_sn65dsi86 *pdata;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
DRM_ERROR("device doesn't support I2C\n");
return -ENODEV;
}
pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
dev_set_drvdata(dev, pdata);
pdata->dev = dev;
mutex_init(&pdata->comms_mutex);
pdata->regmap = devm_regmap_init_i2c(client,
&ti_sn65dsi86_regmap_config);
if (IS_ERR(pdata->regmap))
return dev_err_probe(dev, PTR_ERR(pdata->regmap),
"regmap i2c init failed\n");
pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(pdata->enable_gpio))
return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
"failed to get enable gpio from DT\n");
ret = ti_sn65dsi86_parse_regulators(pdata);
if (ret)
return dev_err_probe(dev, ret, "failed to parse regulators\n");
pdata->refclk = devm_clk_get_optional(dev, "refclk");
if (IS_ERR(pdata->refclk))
return dev_err_probe(dev, PTR_ERR(pdata->refclk),
"failed to get reference clock\n");
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(pdata->dev, 500);
pm_runtime_use_autosuspend(pdata->dev);
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
if (ret)
return ret;
ti_sn65dsi86_debugfs_init(pdata);
/*
* Break ourselves up into a collection of aux devices. The only real
* motiviation here is to solve the chicken-and-egg problem of probe
* ordering. The bridge wants the panel to be there when it probes.
* The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
* when it probes. The panel and maybe backlight might want the DDC
* bus or the pwm_chip. Having sub-devices allows the some sub devices
* to finish probing even if others return -EPROBE_DEFER and gets us
* around the problems.
*/
if (IS_ENABLED(CONFIG_OF_GPIO)) {
ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
if (ret)
return ret;
}
if (IS_ENABLED(CONFIG_PWM)) {
ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
if (ret)
return ret;
}
/*
* NOTE: At the end of the AUX channel probe we'll add the aux device
* for the bridge. This is because the bridge can't be used until the
* AUX channel is there and this is a very simple solution to the
* dependency problem.
*/
return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
}
static struct i2c_device_id ti_sn65dsi86_id[] = {
{ "ti,sn65dsi86", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
static const struct of_device_id ti_sn65dsi86_match_table[] = {
{.compatible = "ti,sn65dsi86"},
{},
};
MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
static struct i2c_driver ti_sn65dsi86_driver = {
.driver = {
.name = "ti_sn65dsi86",
.of_match_table = ti_sn65dsi86_match_table,
.pm = &ti_sn65dsi86_pm_ops,
},
.probe_new = ti_sn65dsi86_probe,
.id_table = ti_sn65dsi86_id,
};
static int __init ti_sn65dsi86_init(void)
{
int ret;
ret = i2c_add_driver(&ti_sn65dsi86_driver);
if (ret)
return ret;
ret = ti_sn_gpio_register();
if (ret)
goto err_main_was_registered;
ret = ti_sn_pwm_register();
if (ret)
goto err_gpio_was_registered;
ret = auxiliary_driver_register(&ti_sn_aux_driver);
if (ret)
goto err_pwm_was_registered;
ret = auxiliary_driver_register(&ti_sn_bridge_driver);
if (ret)
goto err_aux_was_registered;
return 0;
err_aux_was_registered:
auxiliary_driver_unregister(&ti_sn_aux_driver);
err_pwm_was_registered:
ti_sn_pwm_unregister();
err_gpio_was_registered:
ti_sn_gpio_unregister();
err_main_was_registered:
i2c_del_driver(&ti_sn65dsi86_driver);
return ret;
}
module_init(ti_sn65dsi86_init);
static void __exit ti_sn65dsi86_exit(void)
{
auxiliary_driver_unregister(&ti_sn_bridge_driver);
auxiliary_driver_unregister(&ti_sn_aux_driver);
ti_sn_pwm_unregister();
ti_sn_gpio_unregister();
i2c_del_driver(&ti_sn65dsi86_driver);
}
module_exit(ti_sn65dsi86_exit);
MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
MODULE_LICENSE("GPL v2");