| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2018, The Linux Foundation. All rights reserved. |
| * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/auxiliary_bus.h> |
| #include <linux/bitfield.h> |
| #include <linux/bits.h> |
| #include <linux/clk.h> |
| #include <linux/debugfs.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/gpio/driver.h> |
| #include <linux/i2c.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/of_graph.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pwm.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include <drm/display/drm_dp_aux_bus.h> |
| #include <drm/display/drm_dp_helper.h> |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_bridge.h> |
| #include <drm/drm_bridge_connector.h> |
| #include <drm/drm_edid.h> |
| #include <drm/drm_mipi_dsi.h> |
| #include <drm/drm_of.h> |
| #include <drm/drm_panel.h> |
| #include <drm/drm_print.h> |
| #include <drm/drm_probe_helper.h> |
| |
| #define SN_DEVICE_REV_REG 0x08 |
| #define SN_DPPLL_SRC_REG 0x0A |
| #define DPPLL_CLK_SRC_DSICLK BIT(0) |
| #define REFCLK_FREQ_MASK GENMASK(3, 1) |
| #define REFCLK_FREQ(x) ((x) << 1) |
| #define DPPLL_SRC_DP_PLL_LOCK BIT(7) |
| #define SN_PLL_ENABLE_REG 0x0D |
| #define SN_DSI_LANES_REG 0x10 |
| #define CHA_DSI_LANES_MASK GENMASK(4, 3) |
| #define CHA_DSI_LANES(x) ((x) << 3) |
| #define SN_DSIA_CLK_FREQ_REG 0x12 |
| #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 |
| #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 |
| #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C |
| #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D |
| #define CHA_HSYNC_POLARITY BIT(7) |
| #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 |
| #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 |
| #define CHA_VSYNC_POLARITY BIT(7) |
| #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 |
| #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 |
| #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 |
| #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A |
| #define SN_LN_ASSIGN_REG 0x59 |
| #define LN_ASSIGN_WIDTH 2 |
| #define SN_ENH_FRAME_REG 0x5A |
| #define VSTREAM_ENABLE BIT(3) |
| #define LN_POLRS_OFFSET 4 |
| #define LN_POLRS_MASK 0xf0 |
| #define SN_DATA_FORMAT_REG 0x5B |
| #define BPP_18_RGB BIT(0) |
| #define SN_HPD_DISABLE_REG 0x5C |
| #define HPD_DISABLE BIT(0) |
| #define HPD_DEBOUNCED_STATE BIT(4) |
| #define SN_GPIO_IO_REG 0x5E |
| #define SN_GPIO_INPUT_SHIFT 4 |
| #define SN_GPIO_OUTPUT_SHIFT 0 |
| #define SN_GPIO_CTRL_REG 0x5F |
| #define SN_GPIO_MUX_INPUT 0 |
| #define SN_GPIO_MUX_OUTPUT 1 |
| #define SN_GPIO_MUX_SPECIAL 2 |
| #define SN_GPIO_MUX_MASK 0x3 |
| #define SN_AUX_WDATA_REG(x) (0x64 + (x)) |
| #define SN_AUX_ADDR_19_16_REG 0x74 |
| #define SN_AUX_ADDR_15_8_REG 0x75 |
| #define SN_AUX_ADDR_7_0_REG 0x76 |
| #define SN_AUX_ADDR_MASK GENMASK(19, 0) |
| #define SN_AUX_LENGTH_REG 0x77 |
| #define SN_AUX_CMD_REG 0x78 |
| #define AUX_CMD_SEND BIT(0) |
| #define AUX_CMD_REQ(x) ((x) << 4) |
| #define SN_AUX_RDATA_REG(x) (0x79 + (x)) |
| #define SN_SSC_CONFIG_REG 0x93 |
| #define DP_NUM_LANES_MASK GENMASK(5, 4) |
| #define DP_NUM_LANES(x) ((x) << 4) |
| #define SN_DATARATE_CONFIG_REG 0x94 |
| #define DP_DATARATE_MASK GENMASK(7, 5) |
| #define DP_DATARATE(x) ((x) << 5) |
| #define SN_TRAINING_SETTING_REG 0x95 |
| #define SCRAMBLE_DISABLE BIT(4) |
| #define SN_ML_TX_MODE_REG 0x96 |
| #define ML_TX_MAIN_LINK_OFF 0 |
| #define ML_TX_NORMAL_MODE BIT(0) |
| #define SN_PWM_PRE_DIV_REG 0xA0 |
| #define SN_BACKLIGHT_SCALE_REG 0xA1 |
| #define BACKLIGHT_SCALE_MAX 0xFFFF |
| #define SN_BACKLIGHT_REG 0xA3 |
| #define SN_PWM_EN_INV_REG 0xA5 |
| #define SN_PWM_INV_MASK BIT(0) |
| #define SN_PWM_EN_MASK BIT(1) |
| #define SN_AUX_CMD_STATUS_REG 0xF4 |
| #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) |
| #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) |
| #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) |
| |
| #define MIN_DSI_CLK_FREQ_MHZ 40 |
| |
| /* fudge factor required to account for 8b/10b encoding */ |
| #define DP_CLK_FUDGE_NUM 10 |
| #define DP_CLK_FUDGE_DEN 8 |
| |
| /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ |
| #define SN_AUX_MAX_PAYLOAD_BYTES 16 |
| |
| #define SN_REGULATOR_SUPPLY_NUM 4 |
| |
| #define SN_MAX_DP_LANES 4 |
| #define SN_NUM_GPIOS 4 |
| #define SN_GPIO_PHYSICAL_OFFSET 1 |
| |
| #define SN_LINK_TRAINING_TRIES 10 |
| |
| #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */ |
| |
| /** |
| * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. |
| * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. |
| * @gpio_aux: AUX-bus sub device for GPIO controller functionality. |
| * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. |
| * @pwm_aux: AUX-bus sub device for PWM controller functionality. |
| * |
| * @dev: Pointer to the top level (i2c) device. |
| * @regmap: Regmap for accessing i2c. |
| * @aux: Our aux channel. |
| * @bridge: Our bridge. |
| * @connector: Our connector. |
| * @host_node: Remote DSI node. |
| * @dsi: Our MIPI DSI source. |
| * @refclk: Our reference clock. |
| * @next_bridge: The bridge on the eDP side. |
| * @enable_gpio: The GPIO we toggle to enable the bridge. |
| * @supplies: Data for bulk enabling/disabling our regulators. |
| * @dp_lanes: Count of dp_lanes we're using. |
| * @ln_assign: Value to program to the LN_ASSIGN register. |
| * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. |
| * @comms_enabled: If true then communication over the aux channel is enabled. |
| * @comms_mutex: Protects modification of comms_enabled. |
| * |
| * @gchip: If we expose our GPIOs, this is used. |
| * @gchip_output: A cache of whether we've set GPIOs to output. This |
| * serves double-duty of keeping track of the direction and |
| * also keeping track of whether we've incremented the |
| * pm_runtime reference count for this pin, which we do |
| * whenever a pin is configured as an output. This is a |
| * bitmap so we can do atomic ops on it without an extra |
| * lock so concurrent users of our 4 GPIOs don't stomp on |
| * each other's read-modify-write. |
| * |
| * @pchip: pwm_chip if the PWM is exposed. |
| * @pwm_enabled: Used to track if the PWM signal is currently enabled. |
| * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM. |
| * @pwm_refclk_freq: Cache for the reference clock input to the PWM. |
| */ |
| struct ti_sn65dsi86 { |
| struct auxiliary_device bridge_aux; |
| struct auxiliary_device gpio_aux; |
| struct auxiliary_device aux_aux; |
| struct auxiliary_device pwm_aux; |
| |
| struct device *dev; |
| struct regmap *regmap; |
| struct drm_dp_aux aux; |
| struct drm_bridge bridge; |
| struct drm_connector *connector; |
| struct device_node *host_node; |
| struct mipi_dsi_device *dsi; |
| struct clk *refclk; |
| struct drm_bridge *next_bridge; |
| struct gpio_desc *enable_gpio; |
| struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; |
| int dp_lanes; |
| u8 ln_assign; |
| u8 ln_polrs; |
| bool comms_enabled; |
| struct mutex comms_mutex; |
| |
| #if defined(CONFIG_OF_GPIO) |
| struct gpio_chip gchip; |
| DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); |
| #endif |
| #if defined(CONFIG_PWM) |
| struct pwm_chip pchip; |
| bool pwm_enabled; |
| atomic_t pwm_pin_busy; |
| #endif |
| unsigned int pwm_refclk_freq; |
| }; |
| |
| static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { |
| { .range_min = 0, .range_max = 0xFF }, |
| }; |
| |
| static const struct regmap_access_table ti_sn_bridge_volatile_table = { |
| .yes_ranges = ti_sn65dsi86_volatile_ranges, |
| .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges), |
| }; |
| |
| static const struct regmap_config ti_sn65dsi86_regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .volatile_table = &ti_sn_bridge_volatile_table, |
| .cache_type = REGCACHE_NONE, |
| .max_register = 0xFF, |
| }; |
| |
| static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata, |
| unsigned int reg, u16 *val) |
| { |
| u8 buf[2]; |
| int ret; |
| |
| ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); |
| if (ret) |
| return ret; |
| |
| *val = buf[0] | (buf[1] << 8); |
| |
| return 0; |
| } |
| |
| static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, |
| unsigned int reg, u16 val) |
| { |
| u8 buf[2] = { val & 0xff, val >> 8 }; |
| |
| regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); |
| } |
| |
| static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata) |
| { |
| u32 bit_rate_khz, clk_freq_khz; |
| struct drm_display_mode *mode = |
| &pdata->bridge.encoder->crtc->state->adjusted_mode; |
| |
| bit_rate_khz = mode->clock * |
| mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); |
| clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); |
| |
| return clk_freq_khz; |
| } |
| |
| /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ |
| static const u32 ti_sn_bridge_refclk_lut[] = { |
| 12000000, |
| 19200000, |
| 26000000, |
| 27000000, |
| 38400000, |
| }; |
| |
| /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ |
| static const u32 ti_sn_bridge_dsiclk_lut[] = { |
| 468000000, |
| 384000000, |
| 416000000, |
| 486000000, |
| 460800000, |
| }; |
| |
| static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) |
| { |
| int i; |
| u32 refclk_rate; |
| const u32 *refclk_lut; |
| size_t refclk_lut_size; |
| |
| if (pdata->refclk) { |
| refclk_rate = clk_get_rate(pdata->refclk); |
| refclk_lut = ti_sn_bridge_refclk_lut; |
| refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); |
| clk_prepare_enable(pdata->refclk); |
| } else { |
| refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; |
| refclk_lut = ti_sn_bridge_dsiclk_lut; |
| refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); |
| } |
| |
| /* for i equals to refclk_lut_size means default frequency */ |
| for (i = 0; i < refclk_lut_size; i++) |
| if (refclk_lut[i] == refclk_rate) |
| break; |
| |
| regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, |
| REFCLK_FREQ(i)); |
| |
| /* |
| * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG, |
| * regardless of its actual sourcing. |
| */ |
| pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i]; |
| } |
| |
| static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) |
| { |
| mutex_lock(&pdata->comms_mutex); |
| |
| /* configure bridge ref_clk */ |
| ti_sn_bridge_set_refclk_freq(pdata); |
| |
| /* |
| * HPD on this bridge chip is a bit useless. This is an eDP bridge |
| * so the HPD is an internal signal that's only there to signal that |
| * the panel is done powering up. ...but the bridge chip debounces |
| * this signal by between 100 ms and 400 ms (depending on process, |
| * voltage, and temperate--I measured it at about 200 ms). One |
| * particular panel asserted HPD 84 ms after it was powered on meaning |
| * that we saw HPD 284 ms after power on. ...but the same panel said |
| * that instead of looking at HPD you could just hardcode a delay of |
| * 200 ms. We'll assume that the panel driver will have the hardcoded |
| * delay in its prepare and always disable HPD. |
| * |
| * If HPD somehow makes sense on some future panel we'll have to |
| * change this to be conditional on someone specifying that HPD should |
| * be used. |
| */ |
| regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, |
| HPD_DISABLE); |
| |
| pdata->comms_enabled = true; |
| |
| mutex_unlock(&pdata->comms_mutex); |
| } |
| |
| static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata) |
| { |
| mutex_lock(&pdata->comms_mutex); |
| |
| pdata->comms_enabled = false; |
| clk_disable_unprepare(pdata->refclk); |
| |
| mutex_unlock(&pdata->comms_mutex); |
| } |
| |
| static int __maybe_unused ti_sn65dsi86_resume(struct device *dev) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); |
| if (ret) { |
| DRM_ERROR("failed to enable supplies %d\n", ret); |
| return ret; |
| } |
| |
| /* td2: min 100 us after regulators before enabling the GPIO */ |
| usleep_range(100, 110); |
| |
| gpiod_set_value_cansleep(pdata->enable_gpio, 1); |
| |
| /* |
| * If we have a reference clock we can enable communication w/ the |
| * panel (including the aux channel) w/out any need for an input clock |
| * so we can do it in resume which lets us read the EDID before |
| * pre_enable(). Without a reference clock we need the MIPI reference |
| * clock so reading early doesn't work. |
| */ |
| if (pdata->refclk) |
| ti_sn65dsi86_enable_comms(pdata); |
| |
| return ret; |
| } |
| |
| static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); |
| int ret; |
| |
| if (pdata->refclk) |
| ti_sn65dsi86_disable_comms(pdata); |
| |
| gpiod_set_value_cansleep(pdata->enable_gpio, 0); |
| |
| ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); |
| if (ret) |
| DRM_ERROR("failed to disable supplies %d\n", ret); |
| |
| return ret; |
| } |
| |
| static const struct dev_pm_ops ti_sn65dsi86_pm_ops = { |
| SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL) |
| SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, |
| pm_runtime_force_resume) |
| }; |
| |
| static int status_show(struct seq_file *s, void *data) |
| { |
| struct ti_sn65dsi86 *pdata = s->private; |
| unsigned int reg, val; |
| |
| seq_puts(s, "STATUS REGISTERS:\n"); |
| |
| pm_runtime_get_sync(pdata->dev); |
| |
| /* IRQ Status Registers, see Table 31 in datasheet */ |
| for (reg = 0xf0; reg <= 0xf8; reg++) { |
| regmap_read(pdata->regmap, reg, &val); |
| seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); |
| } |
| |
| pm_runtime_put_autosuspend(pdata->dev); |
| |
| return 0; |
| } |
| |
| DEFINE_SHOW_ATTRIBUTE(status); |
| |
| static void ti_sn65dsi86_debugfs_remove(void *data) |
| { |
| debugfs_remove_recursive(data); |
| } |
| |
| static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata) |
| { |
| struct device *dev = pdata->dev; |
| struct dentry *debugfs; |
| int ret; |
| |
| debugfs = debugfs_create_dir(dev_name(dev), NULL); |
| |
| /* |
| * We might get an error back if debugfs wasn't enabled in the kernel |
| * so let's just silently return upon failure. |
| */ |
| if (IS_ERR_OR_NULL(debugfs)) |
| return; |
| |
| ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs); |
| if (ret) |
| return; |
| |
| debugfs_create_file("status", 0600, debugfs, pdata, &status_fops); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Auxiliary Devices (*not* AUX) |
| */ |
| |
| static void ti_sn65dsi86_uninit_aux(void *data) |
| { |
| auxiliary_device_uninit(data); |
| } |
| |
| static void ti_sn65dsi86_delete_aux(void *data) |
| { |
| auxiliary_device_delete(data); |
| } |
| |
| /* |
| * AUX bus docs say that a non-NULL release is mandatory, but it makes no |
| * sense for the model used here where all of the aux devices are allocated |
| * in the single shared structure. We'll use this noop as a workaround. |
| */ |
| static void ti_sn65dsi86_noop(struct device *dev) {} |
| |
| static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata, |
| struct auxiliary_device *aux, |
| const char *name) |
| { |
| struct device *dev = pdata->dev; |
| int ret; |
| |
| aux->name = name; |
| aux->dev.parent = dev; |
| aux->dev.release = ti_sn65dsi86_noop; |
| device_set_of_node_from_dev(&aux->dev, dev); |
| ret = auxiliary_device_init(aux); |
| if (ret) |
| return ret; |
| ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux); |
| if (ret) |
| return ret; |
| |
| ret = auxiliary_device_add(aux); |
| if (ret) |
| return ret; |
| ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux); |
| |
| return ret; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * AUX Adapter |
| */ |
| |
| static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux) |
| { |
| return container_of(aux, struct ti_sn65dsi86, aux); |
| } |
| |
| static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, |
| struct drm_dp_aux_msg *msg) |
| { |
| struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux); |
| u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE); |
| u32 request_val = AUX_CMD_REQ(msg->request); |
| u8 *buf = msg->buffer; |
| unsigned int len = msg->size; |
| unsigned int val; |
| int ret; |
| u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG]; |
| |
| if (len > SN_AUX_MAX_PAYLOAD_BYTES) |
| return -EINVAL; |
| |
| pm_runtime_get_sync(pdata->dev); |
| mutex_lock(&pdata->comms_mutex); |
| |
| /* |
| * If someone tries to do a DDC over AUX transaction before pre_enable() |
| * on a device without a dedicated reference clock then we just can't |
| * do it. Fail right away. This prevents non-refclk users from reading |
| * the EDID before enabling the panel but such is life. |
| */ |
| if (!pdata->comms_enabled) { |
| ret = -EIO; |
| goto exit; |
| } |
| |
| switch (request) { |
| case DP_AUX_NATIVE_WRITE: |
| case DP_AUX_I2C_WRITE: |
| case DP_AUX_NATIVE_READ: |
| case DP_AUX_I2C_READ: |
| regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); |
| /* Assume it's good */ |
| msg->reply = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32)); |
| put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len, |
| addr_len); |
| regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len, |
| ARRAY_SIZE(addr_len)); |
| |
| if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) |
| regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len); |
| |
| /* Clear old status bits before start so we don't get confused */ |
| regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, |
| AUX_IRQ_STATUS_NAT_I2C_FAIL | |
| AUX_IRQ_STATUS_AUX_RPLY_TOUT | |
| AUX_IRQ_STATUS_AUX_SHORT); |
| |
| regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); |
| |
| /* Zero delay loop because i2c transactions are slow already */ |
| ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, |
| !(val & AUX_CMD_SEND), 0, 50 * 1000); |
| if (ret) |
| goto exit; |
| |
| ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); |
| if (ret) |
| goto exit; |
| |
| if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) { |
| /* |
| * The hardware tried the message seven times per the DP spec |
| * but it hit a timeout. We ignore defers here because they're |
| * handled in hardware. |
| */ |
| ret = -ETIMEDOUT; |
| goto exit; |
| } |
| |
| if (val & AUX_IRQ_STATUS_AUX_SHORT) { |
| ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len); |
| if (ret) |
| goto exit; |
| } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) { |
| switch (request) { |
| case DP_AUX_I2C_WRITE: |
| case DP_AUX_I2C_READ: |
| msg->reply |= DP_AUX_I2C_REPLY_NACK; |
| break; |
| case DP_AUX_NATIVE_READ: |
| case DP_AUX_NATIVE_WRITE: |
| msg->reply |= DP_AUX_NATIVE_REPLY_NACK; |
| break; |
| } |
| len = 0; |
| goto exit; |
| } |
| |
| if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0) |
| ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len); |
| |
| exit: |
| mutex_unlock(&pdata->comms_mutex); |
| pm_runtime_mark_last_busy(pdata->dev); |
| pm_runtime_put_autosuspend(pdata->dev); |
| |
| if (ret) |
| return ret; |
| return len; |
| } |
| |
| static int ti_sn_aux_probe(struct auxiliary_device *adev, |
| const struct auxiliary_device_id *id) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); |
| int ret; |
| |
| pdata->aux.name = "ti-sn65dsi86-aux"; |
| pdata->aux.dev = &adev->dev; |
| pdata->aux.transfer = ti_sn_aux_transfer; |
| drm_dp_aux_init(&pdata->aux); |
| |
| ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux); |
| if (ret) |
| return ret; |
| |
| /* |
| * The eDP to MIPI bridge parts don't work until the AUX channel is |
| * setup so we don't add it in the main driver probe, we add it now. |
| */ |
| return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge"); |
| } |
| |
| static const struct auxiliary_device_id ti_sn_aux_id_table[] = { |
| { .name = "ti_sn65dsi86.aux", }, |
| {}, |
| }; |
| |
| static struct auxiliary_driver ti_sn_aux_driver = { |
| .name = "aux", |
| .probe = ti_sn_aux_probe, |
| .id_table = ti_sn_aux_id_table, |
| }; |
| |
| /*------------------------------------------------------------------------------ |
| * DRM Bridge |
| */ |
| |
| static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge) |
| { |
| return container_of(bridge, struct ti_sn65dsi86, bridge); |
| } |
| |
| static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata) |
| { |
| int val; |
| struct mipi_dsi_host *host; |
| struct mipi_dsi_device *dsi; |
| struct device *dev = pdata->dev; |
| const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", |
| .channel = 0, |
| .node = NULL, |
| }; |
| |
| host = of_find_mipi_dsi_host_by_node(pdata->host_node); |
| if (!host) |
| return -EPROBE_DEFER; |
| |
| dsi = devm_mipi_dsi_device_register_full(dev, host, &info); |
| if (IS_ERR(dsi)) |
| return PTR_ERR(dsi); |
| |
| /* TODO: setting to 4 MIPI lanes always for now */ |
| dsi->lanes = 4; |
| dsi->format = MIPI_DSI_FMT_RGB888; |
| dsi->mode_flags = MIPI_DSI_MODE_VIDEO; |
| |
| /* check if continuous dsi clock is required or not */ |
| pm_runtime_get_sync(dev); |
| regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); |
| pm_runtime_put_autosuspend(dev); |
| if (!(val & DPPLL_CLK_SRC_DSICLK)) |
| dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; |
| |
| pdata->dsi = dsi; |
| |
| return devm_mipi_dsi_attach(dev, dsi); |
| } |
| |
| static int ti_sn_bridge_attach(struct drm_bridge *bridge, |
| enum drm_bridge_attach_flags flags) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| int ret; |
| |
| pdata->aux.drm_dev = bridge->dev; |
| ret = drm_dp_aux_register(&pdata->aux); |
| if (ret < 0) { |
| drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret); |
| return ret; |
| } |
| |
| /* |
| * Attach the next bridge. |
| * We never want the next bridge to *also* create a connector. |
| */ |
| ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge, |
| &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR); |
| if (ret < 0) |
| goto err_initted_aux; |
| |
| if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) |
| return 0; |
| |
| pdata->connector = drm_bridge_connector_init(pdata->bridge.dev, |
| pdata->bridge.encoder); |
| if (IS_ERR(pdata->connector)) { |
| ret = PTR_ERR(pdata->connector); |
| goto err_initted_aux; |
| } |
| |
| drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder); |
| |
| return 0; |
| |
| err_initted_aux: |
| drm_dp_aux_unregister(&pdata->aux); |
| return ret; |
| } |
| |
| static void ti_sn_bridge_detach(struct drm_bridge *bridge) |
| { |
| drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux); |
| } |
| |
| static enum drm_mode_status |
| ti_sn_bridge_mode_valid(struct drm_bridge *bridge, |
| const struct drm_display_info *info, |
| const struct drm_display_mode *mode) |
| { |
| /* maximum supported resolution is 4K at 60 fps */ |
| if (mode->clock > 594000) |
| return MODE_CLOCK_HIGH; |
| |
| /* |
| * The front and back porch registers are 8 bits, and pulse width |
| * registers are 15 bits, so reject any modes with larger periods. |
| */ |
| |
| if ((mode->hsync_start - mode->hdisplay) > 0xff) |
| return MODE_HBLANK_WIDE; |
| |
| if ((mode->vsync_start - mode->vdisplay) > 0xff) |
| return MODE_VBLANK_WIDE; |
| |
| if ((mode->hsync_end - mode->hsync_start) > 0x7fff) |
| return MODE_HSYNC_WIDE; |
| |
| if ((mode->vsync_end - mode->vsync_start) > 0x7fff) |
| return MODE_VSYNC_WIDE; |
| |
| if ((mode->htotal - mode->hsync_end) > 0xff) |
| return MODE_HBLANK_WIDE; |
| |
| if ((mode->vtotal - mode->vsync_end) > 0xff) |
| return MODE_VBLANK_WIDE; |
| |
| return MODE_OK; |
| } |
| |
| static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge, |
| struct drm_bridge_state *old_bridge_state) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| |
| /* disable video stream */ |
| regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); |
| } |
| |
| static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata) |
| { |
| unsigned int bit_rate_mhz, clk_freq_mhz; |
| unsigned int val; |
| struct drm_display_mode *mode = |
| &pdata->bridge.encoder->crtc->state->adjusted_mode; |
| |
| /* set DSIA clk frequency */ |
| bit_rate_mhz = (mode->clock / 1000) * |
| mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); |
| clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); |
| |
| /* for each increment in val, frequency increases by 5MHz */ |
| val = (MIN_DSI_CLK_FREQ_MHZ / 5) + |
| (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); |
| regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); |
| } |
| |
| static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector) |
| { |
| if (connector->display_info.bpc <= 6) |
| return 18; |
| else |
| return 24; |
| } |
| |
| /* |
| * LUT index corresponds to register value and |
| * LUT values corresponds to dp data rate supported |
| * by the bridge in Mbps unit. |
| */ |
| static const unsigned int ti_sn_bridge_dp_rate_lut[] = { |
| 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 |
| }; |
| |
| static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp) |
| { |
| unsigned int bit_rate_khz, dp_rate_mhz; |
| unsigned int i; |
| struct drm_display_mode *mode = |
| &pdata->bridge.encoder->crtc->state->adjusted_mode; |
| |
| /* Calculate minimum bit rate based on our pixel clock. */ |
| bit_rate_khz = mode->clock * bpp; |
| |
| /* Calculate minimum DP data rate, taking 80% as per DP spec */ |
| dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, |
| 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); |
| |
| for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) |
| if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) |
| break; |
| |
| return i; |
| } |
| |
| static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata) |
| { |
| unsigned int valid_rates = 0; |
| unsigned int rate_per_200khz; |
| unsigned int rate_mhz; |
| u8 dpcd_val; |
| int ret; |
| int i, j; |
| |
| ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); |
| if (ret != 1) { |
| DRM_DEV_ERROR(pdata->dev, |
| "Can't read eDP rev (%d), assuming 1.1\n", ret); |
| dpcd_val = DP_EDP_11; |
| } |
| |
| if (dpcd_val >= DP_EDP_14) { |
| /* eDP 1.4 devices must provide a custom table */ |
| __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; |
| |
| ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, |
| sink_rates, sizeof(sink_rates)); |
| |
| if (ret != sizeof(sink_rates)) { |
| DRM_DEV_ERROR(pdata->dev, |
| "Can't read supported rate table (%d)\n", ret); |
| |
| /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ |
| memset(sink_rates, 0, sizeof(sink_rates)); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { |
| rate_per_200khz = le16_to_cpu(sink_rates[i]); |
| |
| if (!rate_per_200khz) |
| break; |
| |
| rate_mhz = rate_per_200khz * 200 / 1000; |
| for (j = 0; |
| j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); |
| j++) { |
| if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) |
| valid_rates |= BIT(j); |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { |
| if (valid_rates & BIT(i)) |
| return valid_rates; |
| } |
| DRM_DEV_ERROR(pdata->dev, |
| "No matching eDP rates in table; falling back\n"); |
| } |
| |
| /* On older versions best we can do is use DP_MAX_LINK_RATE */ |
| ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); |
| if (ret != 1) { |
| DRM_DEV_ERROR(pdata->dev, |
| "Can't read max rate (%d); assuming 5.4 GHz\n", |
| ret); |
| dpcd_val = DP_LINK_BW_5_4; |
| } |
| |
| switch (dpcd_val) { |
| default: |
| DRM_DEV_ERROR(pdata->dev, |
| "Unexpected max rate (%#x); assuming 5.4 GHz\n", |
| (int)dpcd_val); |
| fallthrough; |
| case DP_LINK_BW_5_4: |
| valid_rates |= BIT(7); |
| fallthrough; |
| case DP_LINK_BW_2_7: |
| valid_rates |= BIT(4); |
| fallthrough; |
| case DP_LINK_BW_1_62: |
| valid_rates |= BIT(1); |
| break; |
| } |
| |
| return valid_rates; |
| } |
| |
| static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata) |
| { |
| struct drm_display_mode *mode = |
| &pdata->bridge.encoder->crtc->state->adjusted_mode; |
| u8 hsync_polarity = 0, vsync_polarity = 0; |
| |
| if (mode->flags & DRM_MODE_FLAG_NHSYNC) |
| hsync_polarity = CHA_HSYNC_POLARITY; |
| if (mode->flags & DRM_MODE_FLAG_NVSYNC) |
| vsync_polarity = CHA_VSYNC_POLARITY; |
| |
| ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, |
| mode->hdisplay); |
| ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, |
| mode->vdisplay); |
| regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, |
| (mode->hsync_end - mode->hsync_start) & 0xFF); |
| regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, |
| (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | |
| hsync_polarity); |
| regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, |
| (mode->vsync_end - mode->vsync_start) & 0xFF); |
| regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, |
| (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | |
| vsync_polarity); |
| |
| regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, |
| (mode->htotal - mode->hsync_end) & 0xFF); |
| regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, |
| (mode->vtotal - mode->vsync_end) & 0xFF); |
| |
| regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, |
| (mode->hsync_start - mode->hdisplay) & 0xFF); |
| regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, |
| (mode->vsync_start - mode->vdisplay) & 0xFF); |
| |
| usleep_range(10000, 10500); /* 10ms delay recommended by spec */ |
| } |
| |
| static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata) |
| { |
| u8 data; |
| int ret; |
| |
| ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); |
| if (ret != 1) { |
| DRM_DEV_ERROR(pdata->dev, |
| "Can't read lane count (%d); assuming 4\n", ret); |
| return 4; |
| } |
| |
| return data & DP_LANE_COUNT_MASK; |
| } |
| |
| static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx, |
| const char **last_err_str) |
| { |
| unsigned int val; |
| int ret; |
| int i; |
| |
| /* set dp clk frequency value */ |
| regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, |
| DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); |
| |
| /* enable DP PLL */ |
| regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); |
| |
| ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, |
| val & DPPLL_SRC_DP_PLL_LOCK, 1000, |
| 50 * 1000); |
| if (ret) { |
| *last_err_str = "DP_PLL_LOCK polling failed"; |
| goto exit; |
| } |
| |
| /* |
| * We'll try to link train several times. As part of link training |
| * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If |
| * the panel isn't ready quite it might respond NAK here which means |
| * we need to try again. |
| */ |
| for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) { |
| /* Semi auto link training mode */ |
| regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); |
| ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, |
| val == ML_TX_MAIN_LINK_OFF || |
| val == ML_TX_NORMAL_MODE, 1000, |
| 500 * 1000); |
| if (ret) { |
| *last_err_str = "Training complete polling failed"; |
| } else if (val == ML_TX_MAIN_LINK_OFF) { |
| *last_err_str = "Link training failed, link is off"; |
| ret = -EIO; |
| continue; |
| } |
| |
| break; |
| } |
| |
| /* If we saw quite a few retries, add a note about it */ |
| if (!ret && i > SN_LINK_TRAINING_TRIES / 2) |
| DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i); |
| |
| exit: |
| /* Disable the PLL if we failed */ |
| if (ret) |
| regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); |
| |
| return ret; |
| } |
| |
| static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge, |
| struct drm_bridge_state *old_bridge_state) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| struct drm_connector *connector; |
| const char *last_err_str = "No supported DP rate"; |
| unsigned int valid_rates; |
| int dp_rate_idx; |
| unsigned int val; |
| int ret = -EINVAL; |
| int max_dp_lanes; |
| unsigned int bpp; |
| |
| connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state, |
| bridge->encoder); |
| if (!connector) { |
| dev_err_ratelimited(pdata->dev, "Could not get the connector\n"); |
| return; |
| } |
| |
| max_dp_lanes = ti_sn_get_max_lanes(pdata); |
| pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); |
| |
| /* DSI_A lane config */ |
| val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); |
| regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, |
| CHA_DSI_LANES_MASK, val); |
| |
| regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); |
| regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, |
| pdata->ln_polrs << LN_POLRS_OFFSET); |
| |
| /* set dsi clk frequency value */ |
| ti_sn_bridge_set_dsi_rate(pdata); |
| |
| /* |
| * The SN65DSI86 only supports ASSR Display Authentication method and |
| * this method is enabled for eDP panels. An eDP panel must support this |
| * authentication method. We need to enable this method in the eDP panel |
| * at DisplayPort address 0x0010A prior to link training. |
| * |
| * As only ASSR is supported by SN65DSI86, for full DisplayPort displays |
| * we need to disable the scrambler. |
| */ |
| if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) { |
| drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, |
| DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); |
| |
| regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, |
| SCRAMBLE_DISABLE, 0); |
| } else { |
| regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, |
| SCRAMBLE_DISABLE, SCRAMBLE_DISABLE); |
| } |
| |
| bpp = ti_sn_bridge_get_bpp(connector); |
| /* Set the DP output format (18 bpp or 24 bpp) */ |
| val = bpp == 18 ? BPP_18_RGB : 0; |
| regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); |
| |
| /* DP lane config */ |
| val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); |
| regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, |
| val); |
| |
| valid_rates = ti_sn_bridge_read_valid_rates(pdata); |
| |
| /* Train until we run out of rates */ |
| for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp); |
| dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); |
| dp_rate_idx++) { |
| if (!(valid_rates & BIT(dp_rate_idx))) |
| continue; |
| |
| ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); |
| if (!ret) |
| break; |
| } |
| if (ret) { |
| DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); |
| return; |
| } |
| |
| /* config video parameters */ |
| ti_sn_bridge_set_video_timings(pdata); |
| |
| /* enable video stream */ |
| regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, |
| VSTREAM_ENABLE); |
| } |
| |
| static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge, |
| struct drm_bridge_state *old_bridge_state) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| |
| pm_runtime_get_sync(pdata->dev); |
| |
| if (!pdata->refclk) |
| ti_sn65dsi86_enable_comms(pdata); |
| |
| /* td7: min 100 us after enable before DSI data */ |
| usleep_range(100, 110); |
| } |
| |
| static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge, |
| struct drm_bridge_state *old_bridge_state) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| |
| /* semi auto link training mode OFF */ |
| regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); |
| /* Num lanes to 0 as per power sequencing in data sheet */ |
| regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0); |
| /* disable DP PLL */ |
| regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); |
| |
| if (!pdata->refclk) |
| ti_sn65dsi86_disable_comms(pdata); |
| |
| pm_runtime_put_sync(pdata->dev); |
| } |
| |
| static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| int val = 0; |
| |
| pm_runtime_get_sync(pdata->dev); |
| regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val); |
| pm_runtime_put_autosuspend(pdata->dev); |
| |
| return val & HPD_DEBOUNCED_STATE ? connector_status_connected |
| : connector_status_disconnected; |
| } |
| |
| static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge, |
| struct drm_connector *connector) |
| { |
| struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); |
| |
| return drm_get_edid(connector, &pdata->aux.ddc); |
| } |
| |
| static const struct drm_bridge_funcs ti_sn_bridge_funcs = { |
| .attach = ti_sn_bridge_attach, |
| .detach = ti_sn_bridge_detach, |
| .mode_valid = ti_sn_bridge_mode_valid, |
| .get_edid = ti_sn_bridge_get_edid, |
| .detect = ti_sn_bridge_detect, |
| .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable, |
| .atomic_enable = ti_sn_bridge_atomic_enable, |
| .atomic_disable = ti_sn_bridge_atomic_disable, |
| .atomic_post_disable = ti_sn_bridge_atomic_post_disable, |
| .atomic_reset = drm_atomic_helper_bridge_reset, |
| .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, |
| .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, |
| }; |
| |
| static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata, |
| struct device_node *np) |
| { |
| u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; |
| u32 lane_polarities[SN_MAX_DP_LANES] = { }; |
| struct device_node *endpoint; |
| u8 ln_assign = 0; |
| u8 ln_polrs = 0; |
| int dp_lanes; |
| int i; |
| |
| /* |
| * Read config from the device tree about lane remapping and lane |
| * polarities. These are optional and we assume identity map and |
| * normal polarity if nothing is specified. It's OK to specify just |
| * data-lanes but not lane-polarities but not vice versa. |
| * |
| * Error checking is light (we just make sure we don't crash or |
| * buffer overrun) and we assume dts is well formed and specifying |
| * mappings that the hardware supports. |
| */ |
| endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); |
| dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES); |
| if (dp_lanes > 0) { |
| of_property_read_u32_array(endpoint, "data-lanes", |
| lane_assignments, dp_lanes); |
| of_property_read_u32_array(endpoint, "lane-polarities", |
| lane_polarities, dp_lanes); |
| } else { |
| dp_lanes = SN_MAX_DP_LANES; |
| } |
| of_node_put(endpoint); |
| |
| /* |
| * Convert into register format. Loop over all lanes even if |
| * data-lanes had fewer elements so that we nicely initialize |
| * the LN_ASSIGN register. |
| */ |
| for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { |
| ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; |
| ln_polrs = ln_polrs << 1 | lane_polarities[i]; |
| } |
| |
| /* Stash in our struct for when we power on */ |
| pdata->dp_lanes = dp_lanes; |
| pdata->ln_assign = ln_assign; |
| pdata->ln_polrs = ln_polrs; |
| } |
| |
| static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) |
| { |
| struct device_node *np = pdata->dev->of_node; |
| |
| pdata->host_node = of_graph_get_remote_node(np, 0, 0); |
| |
| if (!pdata->host_node) { |
| DRM_ERROR("remote dsi host node not found\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int ti_sn_bridge_probe(struct auxiliary_device *adev, |
| const struct auxiliary_device_id *id) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); |
| struct device_node *np = pdata->dev->of_node; |
| int ret; |
| |
| pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0); |
| if (IS_ERR(pdata->next_bridge)) |
| return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge), |
| "failed to create panel bridge\n"); |
| |
| ti_sn_bridge_parse_lanes(pdata, np); |
| |
| ret = ti_sn_bridge_parse_dsi_host(pdata); |
| if (ret) |
| return ret; |
| |
| pdata->bridge.funcs = &ti_sn_bridge_funcs; |
| pdata->bridge.of_node = np; |
| pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort |
| ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP; |
| |
| if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) |
| pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT; |
| |
| drm_bridge_add(&pdata->bridge); |
| |
| ret = ti_sn_attach_host(pdata); |
| if (ret) { |
| dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n"); |
| goto err_remove_bridge; |
| } |
| |
| return 0; |
| |
| err_remove_bridge: |
| drm_bridge_remove(&pdata->bridge); |
| return ret; |
| } |
| |
| static void ti_sn_bridge_remove(struct auxiliary_device *adev) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); |
| |
| if (!pdata) |
| return; |
| |
| drm_bridge_remove(&pdata->bridge); |
| |
| of_node_put(pdata->host_node); |
| } |
| |
| static const struct auxiliary_device_id ti_sn_bridge_id_table[] = { |
| { .name = "ti_sn65dsi86.bridge", }, |
| {}, |
| }; |
| |
| static struct auxiliary_driver ti_sn_bridge_driver = { |
| .name = "bridge", |
| .probe = ti_sn_bridge_probe, |
| .remove = ti_sn_bridge_remove, |
| .id_table = ti_sn_bridge_id_table, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * PWM Controller |
| */ |
| #if defined(CONFIG_PWM) |
| static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) |
| { |
| return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0; |
| } |
| |
| static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) |
| { |
| atomic_set(&pdata->pwm_pin_busy, 0); |
| } |
| |
| static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip) |
| { |
| return container_of(chip, struct ti_sn65dsi86, pchip); |
| } |
| |
| static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) |
| { |
| struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); |
| |
| return ti_sn_pwm_pin_request(pdata); |
| } |
| |
| static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) |
| { |
| struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); |
| |
| ti_sn_pwm_pin_release(pdata); |
| } |
| |
| /* |
| * Limitations: |
| * - The PWM signal is not driven when the chip is powered down, or in its |
| * reset state and the driver does not implement the "suspend state" |
| * described in the documentation. In order to save power, state->enabled is |
| * interpreted as denoting if the signal is expected to be valid, and is used |
| * to determine if the chip needs to be kept powered. |
| * - Changing both period and duty_cycle is not done atomically, neither is the |
| * multi-byte register updates, so the output might briefly be undefined |
| * during update. |
| */ |
| static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
| const struct pwm_state *state) |
| { |
| struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); |
| unsigned int pwm_en_inv; |
| unsigned int backlight; |
| unsigned int pre_div; |
| unsigned int scale; |
| u64 period_max; |
| u64 period; |
| int ret; |
| |
| if (!pdata->pwm_enabled) { |
| ret = pm_runtime_get_sync(pdata->dev); |
| if (ret < 0) { |
| pm_runtime_put_sync(pdata->dev); |
| return ret; |
| } |
| } |
| |
| if (state->enabled) { |
| if (!pdata->pwm_enabled) { |
| /* |
| * The chip might have been powered down while we |
| * didn't hold a PM runtime reference, so mux in the |
| * PWM function on the GPIO pin again. |
| */ |
| ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, |
| SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX), |
| SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX)); |
| if (ret) { |
| dev_err(pdata->dev, "failed to mux in PWM function\n"); |
| goto out; |
| } |
| } |
| |
| /* |
| * Per the datasheet the PWM frequency is given by: |
| * |
| * REFCLK_FREQ |
| * PWM_FREQ = ----------------------------------- |
| * PWM_PRE_DIV * BACKLIGHT_SCALE + 1 |
| * |
| * However, after careful review the author is convinced that |
| * the documentation has lost some parenthesis around |
| * "BACKLIGHT_SCALE + 1". |
| * |
| * With the period T_pwm = 1/PWM_FREQ this can be written: |
| * |
| * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1) |
| * |
| * In order to keep BACKLIGHT_SCALE within its 16 bits, |
| * PWM_PRE_DIV must be: |
| * |
| * T_pwm * REFCLK_FREQ |
| * PWM_PRE_DIV >= ------------------------- |
| * BACKLIGHT_SCALE_MAX + 1 |
| * |
| * To simplify the search and to favour higher resolution of |
| * the duty cycle over accuracy of the period, the lowest |
| * possible PWM_PRE_DIV is used. Finally the scale is |
| * calculated as: |
| * |
| * T_pwm * REFCLK_FREQ |
| * BACKLIGHT_SCALE = ---------------------- - 1 |
| * PWM_PRE_DIV |
| * |
| * Here T_pwm is represented in seconds, so appropriate scaling |
| * to nanoseconds is necessary. |
| */ |
| |
| /* Minimum T_pwm is 1 / REFCLK_FREQ */ |
| if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ |
| * Limit period to this to avoid overflows |
| */ |
| period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1), |
| pdata->pwm_refclk_freq); |
| period = min(state->period, period_max); |
| |
| pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq, |
| (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1)); |
| scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1; |
| |
| /* |
| * The documentation has the duty ratio given as: |
| * |
| * duty BACKLIGHT |
| * ------- = --------------------- |
| * period BACKLIGHT_SCALE + 1 |
| * |
| * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according |
| * to definition above and adjusting for nanosecond |
| * representation of duty cycle gives us: |
| */ |
| backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq, |
| (u64)NSEC_PER_SEC * pre_div); |
| if (backlight > scale) |
| backlight = scale; |
| |
| ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div); |
| if (ret) { |
| dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n"); |
| goto out; |
| } |
| |
| ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale); |
| ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight); |
| } |
| |
| pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) | |
| FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED); |
| ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv); |
| if (ret) { |
| dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n"); |
| goto out; |
| } |
| |
| pdata->pwm_enabled = state->enabled; |
| out: |
| |
| if (!pdata->pwm_enabled) |
| pm_runtime_put_sync(pdata->dev); |
| |
| return ret; |
| } |
| |
| static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, |
| struct pwm_state *state) |
| { |
| struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); |
| unsigned int pwm_en_inv; |
| unsigned int pre_div; |
| u16 backlight; |
| u16 scale; |
| int ret; |
| |
| ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv); |
| if (ret) |
| return ret; |
| |
| ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale); |
| if (ret) |
| return ret; |
| |
| ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight); |
| if (ret) |
| return ret; |
| |
| ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div); |
| if (ret) |
| return ret; |
| |
| state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv); |
| if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv)) |
| state->polarity = PWM_POLARITY_INVERSED; |
| else |
| state->polarity = PWM_POLARITY_NORMAL; |
| |
| state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1), |
| pdata->pwm_refclk_freq); |
| state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight, |
| pdata->pwm_refclk_freq); |
| |
| if (state->duty_cycle > state->period) |
| state->duty_cycle = state->period; |
| |
| return 0; |
| } |
| |
| static const struct pwm_ops ti_sn_pwm_ops = { |
| .request = ti_sn_pwm_request, |
| .free = ti_sn_pwm_free, |
| .apply = ti_sn_pwm_apply, |
| .get_state = ti_sn_pwm_get_state, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int ti_sn_pwm_probe(struct auxiliary_device *adev, |
| const struct auxiliary_device_id *id) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); |
| |
| pdata->pchip.dev = pdata->dev; |
| pdata->pchip.ops = &ti_sn_pwm_ops; |
| pdata->pchip.npwm = 1; |
| pdata->pchip.of_xlate = of_pwm_single_xlate; |
| pdata->pchip.of_pwm_n_cells = 1; |
| |
| return pwmchip_add(&pdata->pchip); |
| } |
| |
| static void ti_sn_pwm_remove(struct auxiliary_device *adev) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); |
| |
| pwmchip_remove(&pdata->pchip); |
| |
| if (pdata->pwm_enabled) |
| pm_runtime_put_sync(pdata->dev); |
| } |
| |
| static const struct auxiliary_device_id ti_sn_pwm_id_table[] = { |
| { .name = "ti_sn65dsi86.pwm", }, |
| {}, |
| }; |
| |
| static struct auxiliary_driver ti_sn_pwm_driver = { |
| .name = "pwm", |
| .probe = ti_sn_pwm_probe, |
| .remove = ti_sn_pwm_remove, |
| .id_table = ti_sn_pwm_id_table, |
| }; |
| |
| static int __init ti_sn_pwm_register(void) |
| { |
| return auxiliary_driver_register(&ti_sn_pwm_driver); |
| } |
| |
| static void ti_sn_pwm_unregister(void) |
| { |
| auxiliary_driver_unregister(&ti_sn_pwm_driver); |
| } |
| |
| #else |
| static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; } |
| static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {} |
| |
| static inline int ti_sn_pwm_register(void) { return 0; } |
| static inline void ti_sn_pwm_unregister(void) {} |
| #endif |
| |
| /* ----------------------------------------------------------------------------- |
| * GPIO Controller |
| */ |
| #if defined(CONFIG_OF_GPIO) |
| |
| static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, |
| const struct of_phandle_args *gpiospec, |
| u32 *flags) |
| { |
| if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) |
| return -EINVAL; |
| |
| if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) |
| return -EINVAL; |
| |
| if (flags) |
| *flags = gpiospec->args[1]; |
| |
| return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; |
| } |
| |
| static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, |
| unsigned int offset) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| |
| /* |
| * We already have to keep track of the direction because we use |
| * that to figure out whether we've powered the device. We can |
| * just return that rather than (maybe) powering up the device |
| * to ask its direction. |
| */ |
| return test_bit(offset, pdata->gchip_output) ? |
| GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; |
| } |
| |
| static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| unsigned int val; |
| int ret; |
| |
| /* |
| * When the pin is an input we don't forcibly keep the bridge |
| * powered--we just power it on to read the pin. NOTE: part of |
| * the reason this works is that the bridge defaults (when |
| * powered back on) to all 4 GPIOs being configured as GPIO input. |
| * Also note that if something else is keeping the chip powered the |
| * pm_runtime functions are lightweight increments of a refcount. |
| */ |
| pm_runtime_get_sync(pdata->dev); |
| ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); |
| pm_runtime_put_autosuspend(pdata->dev); |
| |
| if (ret) |
| return ret; |
| |
| return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); |
| } |
| |
| static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, |
| int val) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| int ret; |
| |
| if (!test_bit(offset, pdata->gchip_output)) { |
| dev_err(pdata->dev, "Ignoring GPIO set while input\n"); |
| return; |
| } |
| |
| val &= 1; |
| ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, |
| BIT(SN_GPIO_OUTPUT_SHIFT + offset), |
| val << (SN_GPIO_OUTPUT_SHIFT + offset)); |
| if (ret) |
| dev_warn(pdata->dev, |
| "Failed to set bridge GPIO %u: %d\n", offset, ret); |
| } |
| |
| static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, |
| unsigned int offset) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| int shift = offset * 2; |
| int ret; |
| |
| if (!test_and_clear_bit(offset, pdata->gchip_output)) |
| return 0; |
| |
| ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, |
| SN_GPIO_MUX_MASK << shift, |
| SN_GPIO_MUX_INPUT << shift); |
| if (ret) { |
| set_bit(offset, pdata->gchip_output); |
| return ret; |
| } |
| |
| /* |
| * NOTE: if nobody else is powering the device this may fully power |
| * it off and when it comes back it will have lost all state, but |
| * that's OK because the default is input and we're now an input. |
| */ |
| pm_runtime_put_autosuspend(pdata->dev); |
| |
| return 0; |
| } |
| |
| static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, |
| unsigned int offset, int val) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| int shift = offset * 2; |
| int ret; |
| |
| if (test_and_set_bit(offset, pdata->gchip_output)) |
| return 0; |
| |
| pm_runtime_get_sync(pdata->dev); |
| |
| /* Set value first to avoid glitching */ |
| ti_sn_bridge_gpio_set(chip, offset, val); |
| |
| /* Set direction */ |
| ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, |
| SN_GPIO_MUX_MASK << shift, |
| SN_GPIO_MUX_OUTPUT << shift); |
| if (ret) { |
| clear_bit(offset, pdata->gchip_output); |
| pm_runtime_put_autosuspend(pdata->dev); |
| } |
| |
| return ret; |
| } |
| |
| static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| |
| if (offset == SN_PWM_GPIO_IDX) |
| return ti_sn_pwm_pin_request(pdata); |
| |
| return 0; |
| } |
| |
| static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) |
| { |
| struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); |
| |
| /* We won't keep pm_runtime if we're input, so switch there on free */ |
| ti_sn_bridge_gpio_direction_input(chip, offset); |
| |
| if (offset == SN_PWM_GPIO_IDX) |
| ti_sn_pwm_pin_release(pdata); |
| } |
| |
| static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { |
| "GPIO1", "GPIO2", "GPIO3", "GPIO4" |
| }; |
| |
| static int ti_sn_gpio_probe(struct auxiliary_device *adev, |
| const struct auxiliary_device_id *id) |
| { |
| struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); |
| int ret; |
| |
| /* Only init if someone is going to use us as a GPIO controller */ |
| if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) |
| return 0; |
| |
| pdata->gchip.label = dev_name(pdata->dev); |
| pdata->gchip.parent = pdata->dev; |
| pdata->gchip.owner = THIS_MODULE; |
| pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; |
| pdata->gchip.of_gpio_n_cells = 2; |
| pdata->gchip.request = ti_sn_bridge_gpio_request; |
| pdata->gchip.free = ti_sn_bridge_gpio_free; |
| pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; |
| pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; |
| pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; |
| pdata->gchip.get = ti_sn_bridge_gpio_get; |
| pdata->gchip.set = ti_sn_bridge_gpio_set; |
| pdata->gchip.can_sleep = true; |
| pdata->gchip.names = ti_sn_bridge_gpio_names; |
| pdata->gchip.ngpio = SN_NUM_GPIOS; |
| pdata->gchip.base = -1; |
| ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata); |
| if (ret) |
| dev_err(pdata->dev, "can't add gpio chip\n"); |
| |
| return ret; |
| } |
| |
| static const struct auxiliary_device_id ti_sn_gpio_id_table[] = { |
| { .name = "ti_sn65dsi86.gpio", }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table); |
| |
| static struct auxiliary_driver ti_sn_gpio_driver = { |
| .name = "gpio", |
| .probe = ti_sn_gpio_probe, |
| .id_table = ti_sn_gpio_id_table, |
| }; |
| |
| static int __init ti_sn_gpio_register(void) |
| { |
| return auxiliary_driver_register(&ti_sn_gpio_driver); |
| } |
| |
| static void ti_sn_gpio_unregister(void) |
| { |
| auxiliary_driver_unregister(&ti_sn_gpio_driver); |
| } |
| |
| #else |
| |
| static inline int ti_sn_gpio_register(void) { return 0; } |
| static inline void ti_sn_gpio_unregister(void) {} |
| |
| #endif |
| |
| /* ----------------------------------------------------------------------------- |
| * Probe & Remove |
| */ |
| |
| static void ti_sn65dsi86_runtime_disable(void *data) |
| { |
| pm_runtime_dont_use_autosuspend(data); |
| pm_runtime_disable(data); |
| } |
| |
| static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata) |
| { |
| unsigned int i; |
| const char * const ti_sn_bridge_supply_names[] = { |
| "vcca", "vcc", "vccio", "vpll", |
| }; |
| |
| for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) |
| pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; |
| |
| return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, |
| pdata->supplies); |
| } |
| |
| static int ti_sn65dsi86_probe(struct i2c_client *client) |
| { |
| struct device *dev = &client->dev; |
| struct ti_sn65dsi86 *pdata; |
| int ret; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { |
| DRM_ERROR("device doesn't support I2C\n"); |
| return -ENODEV; |
| } |
| |
| pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| dev_set_drvdata(dev, pdata); |
| pdata->dev = dev; |
| |
| mutex_init(&pdata->comms_mutex); |
| |
| pdata->regmap = devm_regmap_init_i2c(client, |
| &ti_sn65dsi86_regmap_config); |
| if (IS_ERR(pdata->regmap)) |
| return dev_err_probe(dev, PTR_ERR(pdata->regmap), |
| "regmap i2c init failed\n"); |
| |
| pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable", |
| GPIOD_OUT_LOW); |
| if (IS_ERR(pdata->enable_gpio)) |
| return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio), |
| "failed to get enable gpio from DT\n"); |
| |
| ret = ti_sn65dsi86_parse_regulators(pdata); |
| if (ret) |
| return dev_err_probe(dev, ret, "failed to parse regulators\n"); |
| |
| pdata->refclk = devm_clk_get_optional(dev, "refclk"); |
| if (IS_ERR(pdata->refclk)) |
| return dev_err_probe(dev, PTR_ERR(pdata->refclk), |
| "failed to get reference clock\n"); |
| |
| pm_runtime_enable(dev); |
| pm_runtime_set_autosuspend_delay(pdata->dev, 500); |
| pm_runtime_use_autosuspend(pdata->dev); |
| ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev); |
| if (ret) |
| return ret; |
| |
| ti_sn65dsi86_debugfs_init(pdata); |
| |
| /* |
| * Break ourselves up into a collection of aux devices. The only real |
| * motiviation here is to solve the chicken-and-egg problem of probe |
| * ordering. The bridge wants the panel to be there when it probes. |
| * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards) |
| * when it probes. The panel and maybe backlight might want the DDC |
| * bus or the pwm_chip. Having sub-devices allows the some sub devices |
| * to finish probing even if others return -EPROBE_DEFER and gets us |
| * around the problems. |
| */ |
| |
| if (IS_ENABLED(CONFIG_OF_GPIO)) { |
| ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio"); |
| if (ret) |
| return ret; |
| } |
| |
| if (IS_ENABLED(CONFIG_PWM)) { |
| ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm"); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * NOTE: At the end of the AUX channel probe we'll add the aux device |
| * for the bridge. This is because the bridge can't be used until the |
| * AUX channel is there and this is a very simple solution to the |
| * dependency problem. |
| */ |
| return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux"); |
| } |
| |
| static struct i2c_device_id ti_sn65dsi86_id[] = { |
| { "ti,sn65dsi86", 0}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id); |
| |
| static const struct of_device_id ti_sn65dsi86_match_table[] = { |
| {.compatible = "ti,sn65dsi86"}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table); |
| |
| static struct i2c_driver ti_sn65dsi86_driver = { |
| .driver = { |
| .name = "ti_sn65dsi86", |
| .of_match_table = ti_sn65dsi86_match_table, |
| .pm = &ti_sn65dsi86_pm_ops, |
| }, |
| .probe_new = ti_sn65dsi86_probe, |
| .id_table = ti_sn65dsi86_id, |
| }; |
| |
| static int __init ti_sn65dsi86_init(void) |
| { |
| int ret; |
| |
| ret = i2c_add_driver(&ti_sn65dsi86_driver); |
| if (ret) |
| return ret; |
| |
| ret = ti_sn_gpio_register(); |
| if (ret) |
| goto err_main_was_registered; |
| |
| ret = ti_sn_pwm_register(); |
| if (ret) |
| goto err_gpio_was_registered; |
| |
| ret = auxiliary_driver_register(&ti_sn_aux_driver); |
| if (ret) |
| goto err_pwm_was_registered; |
| |
| ret = auxiliary_driver_register(&ti_sn_bridge_driver); |
| if (ret) |
| goto err_aux_was_registered; |
| |
| return 0; |
| |
| err_aux_was_registered: |
| auxiliary_driver_unregister(&ti_sn_aux_driver); |
| err_pwm_was_registered: |
| ti_sn_pwm_unregister(); |
| err_gpio_was_registered: |
| ti_sn_gpio_unregister(); |
| err_main_was_registered: |
| i2c_del_driver(&ti_sn65dsi86_driver); |
| |
| return ret; |
| } |
| module_init(ti_sn65dsi86_init); |
| |
| static void __exit ti_sn65dsi86_exit(void) |
| { |
| auxiliary_driver_unregister(&ti_sn_bridge_driver); |
| auxiliary_driver_unregister(&ti_sn_aux_driver); |
| ti_sn_pwm_unregister(); |
| ti_sn_gpio_unregister(); |
| i2c_del_driver(&ti_sn65dsi86_driver); |
| } |
| module_exit(ti_sn65dsi86_exit); |
| |
| MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>"); |
| MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); |
| MODULE_LICENSE("GPL v2"); |