| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2018-2023 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/atomic.h> |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/bug.h> |
| #include <linux/io.h> |
| #include <linux/firmware.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_address.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/firmware/qcom/qcom_scm.h> |
| #include <linux/soc/qcom/mdt_loader.h> |
| |
| #include "ipa.h" |
| #include "ipa_power.h" |
| #include "ipa_data.h" |
| #include "ipa_endpoint.h" |
| #include "ipa_resource.h" |
| #include "ipa_cmd.h" |
| #include "ipa_reg.h" |
| #include "ipa_mem.h" |
| #include "ipa_table.h" |
| #include "ipa_smp2p.h" |
| #include "ipa_modem.h" |
| #include "ipa_uc.h" |
| #include "ipa_interrupt.h" |
| #include "gsi_trans.h" |
| #include "ipa_sysfs.h" |
| |
| /** |
| * DOC: The IP Accelerator |
| * |
| * This driver supports the Qualcomm IP Accelerator (IPA), which is a |
| * networking component found in many Qualcomm SoCs. The IPA is connected |
| * to the application processor (AP), but is also connected (and partially |
| * controlled by) other "execution environments" (EEs), such as a modem. |
| * |
| * The IPA is the conduit between the AP and the modem that carries network |
| * traffic. This driver presents a network interface representing the |
| * connection of the modem to external (e.g. LTE) networks. |
| * |
| * The IPA provides protocol checksum calculation, offloading this work |
| * from the AP. The IPA offers additional functionality, including routing, |
| * filtering, and NAT support, but that more advanced functionality is not |
| * currently supported. Despite that, some resources--including routing |
| * tables and filter tables--are defined in this driver because they must |
| * be initialized even when the advanced hardware features are not used. |
| * |
| * There are two distinct layers that implement the IPA hardware, and this |
| * is reflected in the organization of the driver. The generic software |
| * interface (GSI) is an integral component of the IPA, providing a |
| * well-defined communication layer between the AP subsystem and the IPA |
| * core. The GSI implements a set of "channels" used for communication |
| * between the AP and the IPA. |
| * |
| * The IPA layer uses GSI channels to implement its "endpoints". And while |
| * a GSI channel carries data between the AP and the IPA, a pair of IPA |
| * endpoints is used to carry traffic between two EEs. Specifically, the main |
| * modem network interface is implemented by two pairs of endpoints: a TX |
| * endpoint on the AP coupled with an RX endpoint on the modem; and another |
| * RX endpoint on the AP receiving data from a TX endpoint on the modem. |
| */ |
| |
| /* The name of the GSI firmware file relative to /lib/firmware */ |
| #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" |
| #define IPA_PAS_ID 15 |
| |
| /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ |
| #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ |
| #define TAG_TIMESTAMP_SHIFT 14 |
| #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ |
| |
| /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ |
| #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ |
| |
| /** |
| * enum ipa_firmware_loader: How GSI firmware gets loaded |
| * |
| * @IPA_LOADER_DEFER: System not ready; try again later |
| * @IPA_LOADER_SELF: AP loads GSI firmware |
| * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done |
| * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware |
| * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid |
| */ |
| enum ipa_firmware_loader { |
| IPA_LOADER_DEFER, |
| IPA_LOADER_SELF, |
| IPA_LOADER_MODEM, |
| IPA_LOADER_SKIP, |
| IPA_LOADER_INVALID, |
| }; |
| |
| /** |
| * ipa_setup() - Set up IPA hardware |
| * @ipa: IPA pointer |
| * |
| * Perform initialization that requires issuing immediate commands on |
| * the command TX endpoint. If the modem is doing GSI firmware load |
| * and initialization, this function will be called when an SMP2P |
| * interrupt has been signaled by the modem. Otherwise it will be |
| * called from ipa_probe() after GSI firmware has been successfully |
| * loaded, authenticated, and started by Trust Zone. |
| */ |
| int ipa_setup(struct ipa *ipa) |
| { |
| struct ipa_endpoint *exception_endpoint; |
| struct ipa_endpoint *command_endpoint; |
| struct device *dev = &ipa->pdev->dev; |
| int ret; |
| |
| ret = gsi_setup(&ipa->gsi); |
| if (ret) |
| return ret; |
| |
| ret = ipa_power_setup(ipa); |
| if (ret) |
| goto err_gsi_teardown; |
| |
| ipa_endpoint_setup(ipa); |
| |
| /* We need to use the AP command TX endpoint to perform other |
| * initialization, so we enable first. |
| */ |
| command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; |
| ret = ipa_endpoint_enable_one(command_endpoint); |
| if (ret) |
| goto err_endpoint_teardown; |
| |
| ret = ipa_mem_setup(ipa); /* No matching teardown required */ |
| if (ret) |
| goto err_command_disable; |
| |
| ret = ipa_table_setup(ipa); /* No matching teardown required */ |
| if (ret) |
| goto err_command_disable; |
| |
| /* Enable the exception handling endpoint, and tell the hardware |
| * to use it by default. |
| */ |
| exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; |
| ret = ipa_endpoint_enable_one(exception_endpoint); |
| if (ret) |
| goto err_command_disable; |
| |
| ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); |
| |
| /* We're all set. Now prepare for communication with the modem */ |
| ret = ipa_qmi_setup(ipa); |
| if (ret) |
| goto err_default_route_clear; |
| |
| ipa->setup_complete = true; |
| |
| dev_info(dev, "IPA driver setup completed successfully\n"); |
| |
| return 0; |
| |
| err_default_route_clear: |
| ipa_endpoint_default_route_clear(ipa); |
| ipa_endpoint_disable_one(exception_endpoint); |
| err_command_disable: |
| ipa_endpoint_disable_one(command_endpoint); |
| err_endpoint_teardown: |
| ipa_endpoint_teardown(ipa); |
| ipa_power_teardown(ipa); |
| err_gsi_teardown: |
| gsi_teardown(&ipa->gsi); |
| |
| return ret; |
| } |
| |
| /** |
| * ipa_teardown() - Inverse of ipa_setup() |
| * @ipa: IPA pointer |
| */ |
| static void ipa_teardown(struct ipa *ipa) |
| { |
| struct ipa_endpoint *exception_endpoint; |
| struct ipa_endpoint *command_endpoint; |
| |
| /* We're going to tear everything down, as if setup never completed */ |
| ipa->setup_complete = false; |
| |
| ipa_qmi_teardown(ipa); |
| ipa_endpoint_default_route_clear(ipa); |
| exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; |
| ipa_endpoint_disable_one(exception_endpoint); |
| command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; |
| ipa_endpoint_disable_one(command_endpoint); |
| ipa_endpoint_teardown(ipa); |
| ipa_power_teardown(ipa); |
| gsi_teardown(&ipa->gsi); |
| } |
| |
| static void |
| ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) |
| { |
| const struct reg *reg; |
| u32 val; |
| |
| /* IPA v4.5+ has no backward compatibility register */ |
| if (ipa->version >= IPA_VERSION_4_5) |
| return; |
| |
| reg = ipa_reg(ipa, IPA_BCR); |
| val = data->backward_compat; |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| } |
| |
| static void ipa_hardware_config_tx(struct ipa *ipa) |
| { |
| enum ipa_version version = ipa->version; |
| const struct reg *reg; |
| u32 offset; |
| u32 val; |
| |
| if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) |
| return; |
| |
| /* Disable PA mask to allow HOLB drop */ |
| reg = ipa_reg(ipa, IPA_TX_CFG); |
| offset = reg_offset(reg); |
| |
| val = ioread32(ipa->reg_virt + offset); |
| |
| val &= ~reg_bit(reg, PA_MASK_EN); |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| static void ipa_hardware_config_clkon(struct ipa *ipa) |
| { |
| enum ipa_version version = ipa->version; |
| const struct reg *reg; |
| u32 val; |
| |
| if (version >= IPA_VERSION_4_5) |
| return; |
| |
| if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) |
| return; |
| |
| /* Implement some hardware workarounds */ |
| reg = ipa_reg(ipa, CLKON_CFG); |
| if (version == IPA_VERSION_3_1) { |
| /* Disable MISC clock gating */ |
| val = reg_bit(reg, CLKON_MISC); |
| } else { /* IPA v4.0+ */ |
| /* Enable open global clocks in the CLKON configuration */ |
| val = reg_bit(reg, CLKON_GLOBAL); |
| val |= reg_bit(reg, GLOBAL_2X_CLK); |
| } |
| |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| } |
| |
| /* Configure bus access behavior for IPA components */ |
| static void ipa_hardware_config_comp(struct ipa *ipa) |
| { |
| const struct reg *reg; |
| u32 offset; |
| u32 val; |
| |
| /* Nothing to configure prior to IPA v4.0 */ |
| if (ipa->version < IPA_VERSION_4_0) |
| return; |
| |
| reg = ipa_reg(ipa, COMP_CFG); |
| offset = reg_offset(reg); |
| |
| val = ioread32(ipa->reg_virt + offset); |
| |
| if (ipa->version == IPA_VERSION_4_0) { |
| val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN); |
| val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN); |
| val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); |
| } else if (ipa->version < IPA_VERSION_4_5) { |
| val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); |
| } else { |
| /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ |
| } |
| |
| val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); |
| val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| /* Configure DDR and (possibly) PCIe max read/write QSB values */ |
| static void |
| ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) |
| { |
| const struct ipa_qsb_data *data0; |
| const struct ipa_qsb_data *data1; |
| const struct reg *reg; |
| u32 val; |
| |
| /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ |
| data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; |
| if (data->qsb_count > 1) |
| data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; |
| |
| /* Max outstanding write accesses for QSB masters */ |
| reg = ipa_reg(ipa, QSB_MAX_WRITES); |
| |
| val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); |
| if (data->qsb_count > 1) |
| val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes); |
| |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| |
| /* Max outstanding read accesses for QSB masters */ |
| reg = ipa_reg(ipa, QSB_MAX_READS); |
| |
| val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); |
| if (ipa->version >= IPA_VERSION_4_0) |
| val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, |
| data0->max_reads_beats); |
| if (data->qsb_count > 1) { |
| val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads); |
| if (ipa->version >= IPA_VERSION_4_0) |
| val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, |
| data1->max_reads_beats); |
| } |
| |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| } |
| |
| /* The internal inactivity timer clock is used for the aggregation timer */ |
| #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ |
| |
| /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY |
| * field to represent the given number of microseconds. The value is one |
| * less than the number of timer ticks in the requested period. 0 is not |
| * a valid granularity value (so for example @usec must be at least 16 for |
| * a TIMER_FREQUENCY of 32000). |
| */ |
| static __always_inline u32 ipa_aggr_granularity_val(u32 usec) |
| { |
| return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; |
| } |
| |
| /* IPA uses unified Qtime starting at IPA v4.5, implementing various |
| * timestamps and timers independent of the IPA core clock rate. The |
| * Qtimer is based on a 56-bit timestamp incremented at each tick of |
| * a 19.2 MHz SoC crystal oscillator (XO clock). |
| * |
| * For IPA timestamps (tag, NAT, data path logging) a lower resolution |
| * timestamp is achieved by shifting the Qtimer timestamp value right |
| * some number of bits to produce the low-order bits of the coarser |
| * granularity timestamp. |
| * |
| * For timers, a common timer clock is derived from the XO clock using |
| * a divider (we use 192, to produce a 100kHz timer clock). From |
| * this common clock, three "pulse generators" are used to produce |
| * timer ticks at a configurable frequency. IPA timers (such as |
| * those used for aggregation or head-of-line block handling) now |
| * define their period based on one of these pulse generators. |
| */ |
| static void ipa_qtime_config(struct ipa *ipa) |
| { |
| const struct reg *reg; |
| u32 offset; |
| u32 val; |
| |
| /* Timer clock divider must be disabled when we change the rate */ |
| reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); |
| iowrite32(0, ipa->reg_virt + reg_offset(reg)); |
| |
| reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); |
| /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ |
| val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); |
| val |= reg_bit(reg, DPL_TIMESTAMP_SEL); |
| /* Configure tag and NAT Qtime timestamp resolution as well */ |
| val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); |
| val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); |
| |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| |
| /* Set granularity of pulse generators used for other timers */ |
| reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); |
| val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); |
| val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); |
| if (ipa->version >= IPA_VERSION_5_0) { |
| val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS); |
| val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS); |
| } else { |
| val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); |
| } |
| |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| |
| /* Actual divider is 1 more than value supplied here */ |
| reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); |
| offset = reg_offset(reg); |
| |
| val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| |
| /* Divider value is set; re-enable the common timer clock divider */ |
| val |= reg_bit(reg, DIV_ENABLE); |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| /* Before IPA v4.5 timing is controlled by a counter register */ |
| static void ipa_hardware_config_counter(struct ipa *ipa) |
| { |
| u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); |
| const struct reg *reg; |
| u32 val; |
| |
| reg = ipa_reg(ipa, COUNTER_CFG); |
| /* If defined, EOT_COAL_GRANULARITY is 0 */ |
| val = reg_encode(reg, AGGR_GRANULARITY, granularity); |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| } |
| |
| static void ipa_hardware_config_timing(struct ipa *ipa) |
| { |
| if (ipa->version < IPA_VERSION_4_5) |
| ipa_hardware_config_counter(ipa); |
| else |
| ipa_qtime_config(ipa); |
| } |
| |
| static void ipa_hardware_config_hashing(struct ipa *ipa) |
| { |
| const struct reg *reg; |
| |
| /* Other than IPA v4.2, all versions enable "hashing". Starting |
| * with IPA v5.0, the filter and router tables are implemented |
| * differently, but the default configuration enables this feature |
| * (now referred to as "cacheing"), so there's nothing to do here. |
| */ |
| if (ipa->version != IPA_VERSION_4_2) |
| return; |
| |
| /* IPA v4.2 does not support hashed tables, so disable them */ |
| reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); |
| |
| /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, |
| * IPV4_FILTER_HASH are all zero. |
| */ |
| iowrite32(0, ipa->reg_virt + reg_offset(reg)); |
| } |
| |
| static void ipa_idle_indication_cfg(struct ipa *ipa, |
| u32 enter_idle_debounce_thresh, |
| bool const_non_idle_enable) |
| { |
| const struct reg *reg; |
| u32 val; |
| |
| if (ipa->version < IPA_VERSION_3_5_1) |
| return; |
| |
| reg = ipa_reg(ipa, IDLE_INDICATION_CFG); |
| val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, |
| enter_idle_debounce_thresh); |
| if (const_non_idle_enable) |
| val |= reg_bit(reg, CONST_NON_IDLE_ENABLE); |
| |
| iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| } |
| |
| /** |
| * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA |
| * @ipa: IPA pointer |
| * |
| * Configures when the IPA signals it is idle to the global clock |
| * controller, which can respond by scaling down the clock to save |
| * power. |
| */ |
| static void ipa_hardware_dcd_config(struct ipa *ipa) |
| { |
| /* Recommended values for IPA 3.5 and later according to IPA HPG */ |
| ipa_idle_indication_cfg(ipa, 256, false); |
| } |
| |
| static void ipa_hardware_dcd_deconfig(struct ipa *ipa) |
| { |
| /* Power-on reset values */ |
| ipa_idle_indication_cfg(ipa, 0, true); |
| } |
| |
| /** |
| * ipa_hardware_config() - Primitive hardware initialization |
| * @ipa: IPA pointer |
| * @data: IPA configuration data |
| */ |
| static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) |
| { |
| ipa_hardware_config_bcr(ipa, data); |
| ipa_hardware_config_tx(ipa); |
| ipa_hardware_config_clkon(ipa); |
| ipa_hardware_config_comp(ipa); |
| ipa_hardware_config_qsb(ipa, data); |
| ipa_hardware_config_timing(ipa); |
| ipa_hardware_config_hashing(ipa); |
| ipa_hardware_dcd_config(ipa); |
| } |
| |
| /** |
| * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() |
| * @ipa: IPA pointer |
| * |
| * This restores the power-on reset values (even if they aren't different) |
| */ |
| static void ipa_hardware_deconfig(struct ipa *ipa) |
| { |
| /* Mostly we just leave things as we set them. */ |
| ipa_hardware_dcd_deconfig(ipa); |
| } |
| |
| /** |
| * ipa_config() - Configure IPA hardware |
| * @ipa: IPA pointer |
| * @data: IPA configuration data |
| * |
| * Perform initialization requiring IPA power to be enabled. |
| */ |
| static int ipa_config(struct ipa *ipa, const struct ipa_data *data) |
| { |
| int ret; |
| |
| ipa_hardware_config(ipa, data); |
| |
| ret = ipa_mem_config(ipa); |
| if (ret) |
| goto err_hardware_deconfig; |
| |
| ipa->interrupt = ipa_interrupt_config(ipa); |
| if (IS_ERR(ipa->interrupt)) { |
| ret = PTR_ERR(ipa->interrupt); |
| ipa->interrupt = NULL; |
| goto err_mem_deconfig; |
| } |
| |
| ipa_uc_config(ipa); |
| |
| ret = ipa_endpoint_config(ipa); |
| if (ret) |
| goto err_uc_deconfig; |
| |
| ipa_table_config(ipa); /* No deconfig required */ |
| |
| /* Assign resource limitation to each group; no deconfig required */ |
| ret = ipa_resource_config(ipa, data->resource_data); |
| if (ret) |
| goto err_endpoint_deconfig; |
| |
| ret = ipa_modem_config(ipa); |
| if (ret) |
| goto err_endpoint_deconfig; |
| |
| return 0; |
| |
| err_endpoint_deconfig: |
| ipa_endpoint_deconfig(ipa); |
| err_uc_deconfig: |
| ipa_uc_deconfig(ipa); |
| ipa_interrupt_deconfig(ipa->interrupt); |
| ipa->interrupt = NULL; |
| err_mem_deconfig: |
| ipa_mem_deconfig(ipa); |
| err_hardware_deconfig: |
| ipa_hardware_deconfig(ipa); |
| |
| return ret; |
| } |
| |
| /** |
| * ipa_deconfig() - Inverse of ipa_config() |
| * @ipa: IPA pointer |
| */ |
| static void ipa_deconfig(struct ipa *ipa) |
| { |
| ipa_modem_deconfig(ipa); |
| ipa_endpoint_deconfig(ipa); |
| ipa_uc_deconfig(ipa); |
| ipa_interrupt_deconfig(ipa->interrupt); |
| ipa->interrupt = NULL; |
| ipa_mem_deconfig(ipa); |
| ipa_hardware_deconfig(ipa); |
| } |
| |
| static int ipa_firmware_load(struct device *dev) |
| { |
| const struct firmware *fw; |
| struct device_node *node; |
| struct resource res; |
| phys_addr_t phys; |
| const char *path; |
| ssize_t size; |
| void *virt; |
| int ret; |
| |
| node = of_parse_phandle(dev->of_node, "memory-region", 0); |
| if (!node) { |
| dev_err(dev, "DT error getting \"memory-region\" property\n"); |
| return -EINVAL; |
| } |
| |
| ret = of_address_to_resource(node, 0, &res); |
| of_node_put(node); |
| if (ret) { |
| dev_err(dev, "error %d getting \"memory-region\" resource\n", |
| ret); |
| return ret; |
| } |
| |
| /* Use name from DTB if specified; use default for *any* error */ |
| ret = of_property_read_string(dev->of_node, "firmware-name", &path); |
| if (ret) { |
| dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", |
| ret); |
| path = IPA_FW_PATH_DEFAULT; |
| } |
| |
| ret = request_firmware(&fw, path, dev); |
| if (ret) { |
| dev_err(dev, "error %d requesting \"%s\"\n", ret, path); |
| return ret; |
| } |
| |
| phys = res.start; |
| size = (size_t)resource_size(&res); |
| virt = memremap(phys, size, MEMREMAP_WC); |
| if (!virt) { |
| dev_err(dev, "unable to remap firmware memory\n"); |
| ret = -ENOMEM; |
| goto out_release_firmware; |
| } |
| |
| ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); |
| if (ret) |
| dev_err(dev, "error %d loading \"%s\"\n", ret, path); |
| else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) |
| dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); |
| |
| memunmap(virt); |
| out_release_firmware: |
| release_firmware(fw); |
| |
| return ret; |
| } |
| |
| static const struct of_device_id ipa_match[] = { |
| { |
| .compatible = "qcom,msm8998-ipa", |
| .data = &ipa_data_v3_1, |
| }, |
| { |
| .compatible = "qcom,sdm845-ipa", |
| .data = &ipa_data_v3_5_1, |
| }, |
| { |
| .compatible = "qcom,sc7180-ipa", |
| .data = &ipa_data_v4_2, |
| }, |
| { |
| .compatible = "qcom,sdx55-ipa", |
| .data = &ipa_data_v4_5, |
| }, |
| { |
| .compatible = "qcom,sm6350-ipa", |
| .data = &ipa_data_v4_7, |
| }, |
| { |
| .compatible = "qcom,sm8350-ipa", |
| .data = &ipa_data_v4_9, |
| }, |
| { |
| .compatible = "qcom,sc7280-ipa", |
| .data = &ipa_data_v4_11, |
| }, |
| { |
| .compatible = "qcom,sdx65-ipa", |
| .data = &ipa_data_v5_0, |
| }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, ipa_match); |
| |
| /* Check things that can be validated at build time. This just |
| * groups these things BUILD_BUG_ON() calls don't clutter the rest |
| * of the code. |
| * */ |
| static void ipa_validate_build(void) |
| { |
| /* At one time we assumed a 64-bit build, allowing some do_div() |
| * calls to be replaced by simple division or modulo operations. |
| * We currently only perform divide and modulo operations on u32, |
| * u16, or size_t objects, and of those only size_t has any chance |
| * of being a 64-bit value. (It should be guaranteed 32 bits wide |
| * on a 32-bit build, but there is no harm in verifying that.) |
| */ |
| BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); |
| |
| /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ |
| BUILD_BUG_ON(GSI_EE_AP != 0); |
| |
| /* There's no point if we have no channels or event rings */ |
| BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); |
| BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); |
| |
| /* GSI hardware design limits */ |
| BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); |
| BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); |
| |
| /* The number of TREs in a transaction is limited by the channel's |
| * TLV FIFO size. A transaction structure uses 8-bit fields |
| * to represents the number of TREs it has allocated and used. |
| */ |
| BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); |
| |
| /* This is used as a divisor */ |
| BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); |
| |
| /* Aggregation granularity value can't be 0, and must fit */ |
| BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); |
| } |
| |
| static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev) |
| { |
| bool modem_init; |
| const char *str; |
| int ret; |
| |
| /* Look up the old and new properties by name */ |
| modem_init = of_property_read_bool(dev->of_node, "modem-init"); |
| ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str); |
| |
| /* If the new property doesn't exist, it's legacy behavior */ |
| if (ret == -EINVAL) { |
| if (modem_init) |
| return IPA_LOADER_MODEM; |
| goto out_self; |
| } |
| |
| /* Any other error on the new property means it's poorly defined */ |
| if (ret) |
| return IPA_LOADER_INVALID; |
| |
| /* New property value exists; if old one does too, that's invalid */ |
| if (modem_init) |
| return IPA_LOADER_INVALID; |
| |
| /* Modem loads GSI firmware for "modem" */ |
| if (!strcmp(str, "modem")) |
| return IPA_LOADER_MODEM; |
| |
| /* No GSI firmware load is needed for "skip" */ |
| if (!strcmp(str, "skip")) |
| return IPA_LOADER_SKIP; |
| |
| /* Any value other than "self" is an error */ |
| if (strcmp(str, "self")) |
| return IPA_LOADER_INVALID; |
| out_self: |
| /* We need Trust Zone to load firmware; make sure it's available */ |
| if (qcom_scm_is_available()) |
| return IPA_LOADER_SELF; |
| |
| return IPA_LOADER_DEFER; |
| } |
| |
| /** |
| * ipa_probe() - IPA platform driver probe function |
| * @pdev: Platform device pointer |
| * |
| * Return: 0 if successful, or a negative error code (possibly |
| * EPROBE_DEFER) |
| * |
| * This is the main entry point for the IPA driver. Initialization proceeds |
| * in several stages: |
| * - The "init" stage involves activities that can be initialized without |
| * access to the IPA hardware. |
| * - The "config" stage requires IPA power to be active so IPA registers |
| * can be accessed, but does not require the use of IPA immediate commands. |
| * - The "setup" stage uses IPA immediate commands, and so requires the GSI |
| * layer to be initialized. |
| * |
| * A Boolean Device Tree "modem-init" property determines whether GSI |
| * initialization will be performed by the AP (Trust Zone) or the modem. |
| * If the AP does GSI initialization, the setup phase is entered after |
| * this has completed successfully. Otherwise the modem initializes |
| * the GSI layer and signals it has finished by sending an SMP2P interrupt |
| * to the AP; this triggers the start if IPA setup. |
| */ |
| static int ipa_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| enum ipa_firmware_loader loader; |
| const struct ipa_data *data; |
| struct ipa_power *power; |
| struct ipa *ipa; |
| int ret; |
| |
| ipa_validate_build(); |
| |
| /* Get configuration data early; needed for power initialization */ |
| data = of_device_get_match_data(dev); |
| if (!data) { |
| dev_err(dev, "matched hardware not supported\n"); |
| return -ENODEV; |
| } |
| |
| if (!ipa_version_supported(data->version)) { |
| dev_err(dev, "unsupported IPA version %u\n", data->version); |
| return -EINVAL; |
| } |
| |
| if (!data->modem_route_count) { |
| dev_err(dev, "modem_route_count cannot be zero\n"); |
| return -EINVAL; |
| } |
| |
| loader = ipa_firmware_loader(dev); |
| if (loader == IPA_LOADER_INVALID) |
| return -EINVAL; |
| if (loader == IPA_LOADER_DEFER) |
| return -EPROBE_DEFER; |
| |
| /* The clock and interconnects might not be ready when we're |
| * probed, so might return -EPROBE_DEFER. |
| */ |
| power = ipa_power_init(dev, data->power_data); |
| if (IS_ERR(power)) |
| return PTR_ERR(power); |
| |
| /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ |
| ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); |
| if (!ipa) { |
| ret = -ENOMEM; |
| goto err_power_exit; |
| } |
| |
| ipa->pdev = pdev; |
| dev_set_drvdata(dev, ipa); |
| ipa->power = power; |
| ipa->version = data->version; |
| ipa->modem_route_count = data->modem_route_count; |
| init_completion(&ipa->completion); |
| |
| ret = ipa_reg_init(ipa); |
| if (ret) |
| goto err_kfree_ipa; |
| |
| ret = ipa_mem_init(ipa, data->mem_data); |
| if (ret) |
| goto err_reg_exit; |
| |
| ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, |
| data->endpoint_data); |
| if (ret) |
| goto err_mem_exit; |
| |
| /* Result is a non-zero mask of endpoints that support filtering */ |
| ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); |
| if (ret) |
| goto err_gsi_exit; |
| |
| ret = ipa_table_init(ipa); |
| if (ret) |
| goto err_endpoint_exit; |
| |
| ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM); |
| if (ret) |
| goto err_table_exit; |
| |
| /* Power needs to be active for config and setup */ |
| ret = pm_runtime_get_sync(dev); |
| if (WARN_ON(ret < 0)) |
| goto err_power_put; |
| |
| ret = ipa_config(ipa, data); |
| if (ret) |
| goto err_power_put; |
| |
| dev_info(dev, "IPA driver initialized"); |
| |
| /* If the modem is loading GSI firmware, it will trigger a call to |
| * ipa_setup() when it has finished. In that case we're done here. |
| */ |
| if (loader == IPA_LOADER_MODEM) |
| goto done; |
| |
| if (loader == IPA_LOADER_SELF) { |
| /* The AP is loading GSI firmware; do so now */ |
| ret = ipa_firmware_load(dev); |
| if (ret) |
| goto err_deconfig; |
| } /* Otherwise loader == IPA_LOADER_SKIP */ |
| |
| /* GSI firmware is loaded; proceed to setup */ |
| ret = ipa_setup(ipa); |
| if (ret) |
| goto err_deconfig; |
| done: |
| pm_runtime_mark_last_busy(dev); |
| (void)pm_runtime_put_autosuspend(dev); |
| |
| return 0; |
| |
| err_deconfig: |
| ipa_deconfig(ipa); |
| err_power_put: |
| pm_runtime_put_noidle(dev); |
| ipa_smp2p_exit(ipa); |
| err_table_exit: |
| ipa_table_exit(ipa); |
| err_endpoint_exit: |
| ipa_endpoint_exit(ipa); |
| err_gsi_exit: |
| gsi_exit(&ipa->gsi); |
| err_mem_exit: |
| ipa_mem_exit(ipa); |
| err_reg_exit: |
| ipa_reg_exit(ipa); |
| err_kfree_ipa: |
| kfree(ipa); |
| err_power_exit: |
| ipa_power_exit(power); |
| |
| return ret; |
| } |
| |
| static int ipa_remove(struct platform_device *pdev) |
| { |
| struct ipa *ipa = dev_get_drvdata(&pdev->dev); |
| struct ipa_power *power = ipa->power; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| /* Prevent the modem from triggering a call to ipa_setup(). This |
| * also ensures a modem-initiated setup that's underway completes. |
| */ |
| ipa_smp2p_irq_disable_setup(ipa); |
| |
| ret = pm_runtime_get_sync(dev); |
| if (WARN_ON(ret < 0)) |
| goto out_power_put; |
| |
| if (ipa->setup_complete) { |
| ret = ipa_modem_stop(ipa); |
| /* If starting or stopping is in progress, try once more */ |
| if (ret == -EBUSY) { |
| usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); |
| ret = ipa_modem_stop(ipa); |
| } |
| if (ret) |
| return ret; |
| |
| ipa_teardown(ipa); |
| } |
| |
| ipa_deconfig(ipa); |
| out_power_put: |
| pm_runtime_put_noidle(dev); |
| ipa_smp2p_exit(ipa); |
| ipa_table_exit(ipa); |
| ipa_endpoint_exit(ipa); |
| gsi_exit(&ipa->gsi); |
| ipa_mem_exit(ipa); |
| ipa_reg_exit(ipa); |
| kfree(ipa); |
| ipa_power_exit(power); |
| |
| dev_info(dev, "IPA driver removed"); |
| |
| return 0; |
| } |
| |
| static void ipa_shutdown(struct platform_device *pdev) |
| { |
| int ret; |
| |
| ret = ipa_remove(pdev); |
| if (ret) |
| dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); |
| } |
| |
| static const struct attribute_group *ipa_attribute_groups[] = { |
| &ipa_attribute_group, |
| &ipa_feature_attribute_group, |
| &ipa_endpoint_id_attribute_group, |
| &ipa_modem_attribute_group, |
| NULL, |
| }; |
| |
| static struct platform_driver ipa_driver = { |
| .probe = ipa_probe, |
| .remove = ipa_remove, |
| .shutdown = ipa_shutdown, |
| .driver = { |
| .name = "ipa", |
| .pm = &ipa_pm_ops, |
| .of_match_table = ipa_match, |
| .dev_groups = ipa_attribute_groups, |
| }, |
| }; |
| |
| module_platform_driver(ipa_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver"); |