| /* | 
 |  *  Driver for SiS7019 Audio Accelerator | 
 |  * | 
 |  *  Copyright (C) 2004-2007, David Dillow | 
 |  *  Written by David Dillow <dave@thedillows.org> | 
 |  *  Inspired by the Trident 4D-WaveDX/NX driver. | 
 |  * | 
 |  *  All rights reserved. | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation, version 2. | 
 |  * | 
 |  *  This program is distributed in the hope that it will be useful, | 
 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  *  GNU General Public License for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License | 
 |  *  along with this program; if not, write to the Free Software | 
 |  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/time.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/module.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <sound/core.h> | 
 | #include <sound/ac97_codec.h> | 
 | #include <sound/initval.h> | 
 | #include "sis7019.h" | 
 |  | 
 | MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); | 
 | MODULE_DESCRIPTION("SiS7019"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); | 
 |  | 
 | static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */ | 
 | static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */ | 
 | static bool enable = 1; | 
 | static int codecs = 1; | 
 |  | 
 | module_param(index, int, 0444); | 
 | MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); | 
 | module_param(id, charp, 0444); | 
 | MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); | 
 | module_param(enable, bool, 0444); | 
 | MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); | 
 | module_param(codecs, int, 0444); | 
 | MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); | 
 |  | 
 | static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = { | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, | 
 | 	{ 0, } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); | 
 |  | 
 | /* There are three timing modes for the voices. | 
 |  * | 
 |  * For both playback and capture, when the buffer is one or two periods long, | 
 |  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt | 
 |  * to let us know when the periods have ended. | 
 |  * | 
 |  * When performing playback with more than two periods per buffer, we set | 
 |  * the "Stop Sample Offset" and tell the hardware to interrupt us when we | 
 |  * reach it. We then update the offset and continue on until we are | 
 |  * interrupted for the next period. | 
 |  * | 
 |  * Capture channels do not have a SSO, so we allocate a playback channel to | 
 |  * use as a timer for the capture periods. We use the SSO on the playback | 
 |  * channel to clock out virtual periods, and adjust the virtual period length | 
 |  * to maintain synchronization. This algorithm came from the Trident driver. | 
 |  * | 
 |  * FIXME: It'd be nice to make use of some of the synth features in the | 
 |  * hardware, but a woeful lack of documentation is a significant roadblock. | 
 |  */ | 
 | struct voice { | 
 | 	u16 flags; | 
 | #define 	VOICE_IN_USE		1 | 
 | #define 	VOICE_CAPTURE		2 | 
 | #define 	VOICE_SSO_TIMING	4 | 
 | #define 	VOICE_SYNC_TIMING	8 | 
 | 	u16 sync_cso; | 
 | 	u16 period_size; | 
 | 	u16 buffer_size; | 
 | 	u16 sync_period_size; | 
 | 	u16 sync_buffer_size; | 
 | 	u32 sso; | 
 | 	u32 vperiod; | 
 | 	struct snd_pcm_substream *substream; | 
 | 	struct voice *timing; | 
 | 	void __iomem *ctrl_base; | 
 | 	void __iomem *wave_base; | 
 | 	void __iomem *sync_base; | 
 | 	int num; | 
 | }; | 
 |  | 
 | /* We need four pages to store our wave parameters during a suspend. If | 
 |  * we're not doing power management, we still need to allocate a page | 
 |  * for the silence buffer. | 
 |  */ | 
 | #ifdef CONFIG_PM_SLEEP | 
 | #define SIS_SUSPEND_PAGES	4 | 
 | #else | 
 | #define SIS_SUSPEND_PAGES	1 | 
 | #endif | 
 |  | 
 | struct sis7019 { | 
 | 	unsigned long ioport; | 
 | 	void __iomem *ioaddr; | 
 | 	int irq; | 
 | 	int codecs_present; | 
 |  | 
 | 	struct pci_dev *pci; | 
 | 	struct snd_pcm *pcm; | 
 | 	struct snd_card *card; | 
 | 	struct snd_ac97 *ac97[3]; | 
 |  | 
 | 	/* Protect against more than one thread hitting the AC97 | 
 | 	 * registers (in a more polite manner than pounding the hardware | 
 | 	 * semaphore) | 
 | 	 */ | 
 | 	struct mutex ac97_mutex; | 
 |  | 
 | 	/* voice_lock protects allocation/freeing of the voice descriptions | 
 | 	 */ | 
 | 	spinlock_t voice_lock; | 
 |  | 
 | 	struct voice voices[64]; | 
 | 	struct voice capture_voice; | 
 |  | 
 | 	/* Allocate pages to store the internal wave state during | 
 | 	 * suspends. When we're operating, this can be used as a silence | 
 | 	 * buffer for a timing channel. | 
 | 	 */ | 
 | 	void *suspend_state[SIS_SUSPEND_PAGES]; | 
 |  | 
 | 	int silence_users; | 
 | 	dma_addr_t silence_dma_addr; | 
 | }; | 
 |  | 
 | /* These values are also used by the module param 'codecs' to indicate | 
 |  * which codecs should be present. | 
 |  */ | 
 | #define SIS_PRIMARY_CODEC_PRESENT	0x0001 | 
 | #define SIS_SECONDARY_CODEC_PRESENT	0x0002 | 
 | #define SIS_TERTIARY_CODEC_PRESENT	0x0004 | 
 |  | 
 | /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a | 
 |  * documented range of 8-0xfff8 samples. Given that they are 0-based, | 
 |  * that places our period/buffer range at 9-0xfff9 samples. That makes the | 
 |  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and | 
 |  * max samples / min samples gives us the max periods in a buffer. | 
 |  * | 
 |  * We'll add a constraint upon open that limits the period and buffer sample | 
 |  * size to values that are legal for the hardware. | 
 |  */ | 
 | static struct snd_pcm_hardware sis_playback_hw_info = { | 
 | 	.info = (SNDRV_PCM_INFO_MMAP | | 
 | 		 SNDRV_PCM_INFO_MMAP_VALID | | 
 | 		 SNDRV_PCM_INFO_INTERLEAVED | | 
 | 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
 | 		 SNDRV_PCM_INFO_SYNC_START | | 
 | 		 SNDRV_PCM_INFO_RESUME), | 
 | 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | 
 | 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | 
 | 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, | 
 | 	.rate_min = 4000, | 
 | 	.rate_max = 48000, | 
 | 	.channels_min = 1, | 
 | 	.channels_max = 2, | 
 | 	.buffer_bytes_max = (0xfff9 * 4), | 
 | 	.period_bytes_min = 9, | 
 | 	.period_bytes_max = (0xfff9 * 4), | 
 | 	.periods_min = 1, | 
 | 	.periods_max = (0xfff9 / 9), | 
 | }; | 
 |  | 
 | static struct snd_pcm_hardware sis_capture_hw_info = { | 
 | 	.info = (SNDRV_PCM_INFO_MMAP | | 
 | 		 SNDRV_PCM_INFO_MMAP_VALID | | 
 | 		 SNDRV_PCM_INFO_INTERLEAVED | | 
 | 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
 | 		 SNDRV_PCM_INFO_SYNC_START | | 
 | 		 SNDRV_PCM_INFO_RESUME), | 
 | 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | 
 | 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | 
 | 	.rates = SNDRV_PCM_RATE_48000, | 
 | 	.rate_min = 4000, | 
 | 	.rate_max = 48000, | 
 | 	.channels_min = 1, | 
 | 	.channels_max = 2, | 
 | 	.buffer_bytes_max = (0xfff9 * 4), | 
 | 	.period_bytes_min = 9, | 
 | 	.period_bytes_max = (0xfff9 * 4), | 
 | 	.periods_min = 1, | 
 | 	.periods_max = (0xfff9 / 9), | 
 | }; | 
 |  | 
 | static void sis_update_sso(struct voice *voice, u16 period) | 
 | { | 
 | 	void __iomem *base = voice->ctrl_base; | 
 |  | 
 | 	voice->sso += period; | 
 | 	if (voice->sso >= voice->buffer_size) | 
 | 		voice->sso -= voice->buffer_size; | 
 |  | 
 | 	/* Enforce the documented hardware minimum offset */ | 
 | 	if (voice->sso < 8) | 
 | 		voice->sso = 8; | 
 |  | 
 | 	/* The SSO is in the upper 16 bits of the register. */ | 
 | 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); | 
 | } | 
 |  | 
 | static void sis_update_voice(struct voice *voice) | 
 | { | 
 | 	if (voice->flags & VOICE_SSO_TIMING) { | 
 | 		sis_update_sso(voice, voice->period_size); | 
 | 	} else if (voice->flags & VOICE_SYNC_TIMING) { | 
 | 		int sync; | 
 |  | 
 | 		/* If we've not hit the end of the virtual period, update | 
 | 		 * our records and keep going. | 
 | 		 */ | 
 | 		if (voice->vperiod > voice->period_size) { | 
 | 			voice->vperiod -= voice->period_size; | 
 | 			if (voice->vperiod < voice->period_size) | 
 | 				sis_update_sso(voice, voice->vperiod); | 
 | 			else | 
 | 				sis_update_sso(voice, voice->period_size); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Calculate our relative offset between the target and | 
 | 		 * the actual CSO value. Since we're operating in a loop, | 
 | 		 * if the value is more than half way around, we can | 
 | 		 * consider ourselves wrapped. | 
 | 		 */ | 
 | 		sync = voice->sync_cso; | 
 | 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); | 
 | 		if (sync > (voice->sync_buffer_size / 2)) | 
 | 			sync -= voice->sync_buffer_size; | 
 |  | 
 | 		/* If sync is positive, then we interrupted too early, and | 
 | 		 * we'll need to come back in a few samples and try again. | 
 | 		 * There's a minimum wait, as it takes some time for the DMA | 
 | 		 * engine to startup, etc... | 
 | 		 */ | 
 | 		if (sync > 0) { | 
 | 			if (sync < 16) | 
 | 				sync = 16; | 
 | 			sis_update_sso(voice, sync); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Ok, we interrupted right on time, or (hopefully) just | 
 | 		 * a bit late. We'll adjst our next waiting period based | 
 | 		 * on how close we got. | 
 | 		 * | 
 | 		 * We need to stay just behind the actual channel to ensure | 
 | 		 * it really is past a period when we get our interrupt -- | 
 | 		 * otherwise we'll fall into the early code above and have | 
 | 		 * a minimum wait time, which makes us quite late here, | 
 | 		 * eating into the user's time to refresh the buffer, esp. | 
 | 		 * if using small periods. | 
 | 		 * | 
 | 		 * If we're less than 9 samples behind, we're on target. | 
 | 		 * Otherwise, shorten the next vperiod by the amount we've | 
 | 		 * been delayed. | 
 | 		 */ | 
 | 		if (sync > -9) | 
 | 			voice->vperiod = voice->sync_period_size + 1; | 
 | 		else | 
 | 			voice->vperiod = voice->sync_period_size + sync + 10; | 
 |  | 
 | 		if (voice->vperiod < voice->buffer_size) { | 
 | 			sis_update_sso(voice, voice->vperiod); | 
 | 			voice->vperiod = 0; | 
 | 		} else | 
 | 			sis_update_sso(voice, voice->period_size); | 
 |  | 
 | 		sync = voice->sync_cso + voice->sync_period_size; | 
 | 		if (sync >= voice->sync_buffer_size) | 
 | 			sync -= voice->sync_buffer_size; | 
 | 		voice->sync_cso = sync; | 
 | 	} | 
 |  | 
 | 	snd_pcm_period_elapsed(voice->substream); | 
 | } | 
 |  | 
 | static void sis_voice_irq(u32 status, struct voice *voice) | 
 | { | 
 | 	int bit; | 
 |  | 
 | 	while (status) { | 
 | 		bit = __ffs(status); | 
 | 		status >>= bit + 1; | 
 | 		voice += bit; | 
 | 		sis_update_voice(voice); | 
 | 		voice++; | 
 | 	} | 
 | } | 
 |  | 
 | static irqreturn_t sis_interrupt(int irq, void *dev) | 
 | { | 
 | 	struct sis7019 *sis = dev; | 
 | 	unsigned long io = sis->ioport; | 
 | 	struct voice *voice; | 
 | 	u32 intr, status; | 
 |  | 
 | 	/* We only use the DMA interrupts, and we don't enable any other | 
 | 	 * source of interrupts. But, it is possible to see an interrupt | 
 | 	 * status that didn't actually interrupt us, so eliminate anything | 
 | 	 * we're not expecting to avoid falsely claiming an IRQ, and an | 
 | 	 * ensuing endless loop. | 
 | 	 */ | 
 | 	intr = inl(io + SIS_GISR); | 
 | 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | 
 | 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | 
 | 	if (!intr) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	do { | 
 | 		status = inl(io + SIS_PISR_A); | 
 | 		if (status) { | 
 | 			sis_voice_irq(status, sis->voices); | 
 | 			outl(status, io + SIS_PISR_A); | 
 | 		} | 
 |  | 
 | 		status = inl(io + SIS_PISR_B); | 
 | 		if (status) { | 
 | 			sis_voice_irq(status, &sis->voices[32]); | 
 | 			outl(status, io + SIS_PISR_B); | 
 | 		} | 
 |  | 
 | 		status = inl(io + SIS_RISR); | 
 | 		if (status) { | 
 | 			voice = &sis->capture_voice; | 
 | 			if (!voice->timing) | 
 | 				snd_pcm_period_elapsed(voice->substream); | 
 |  | 
 | 			outl(status, io + SIS_RISR); | 
 | 		} | 
 |  | 
 | 		outl(intr, io + SIS_GISR); | 
 | 		intr = inl(io + SIS_GISR); | 
 | 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | 
 | 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | 
 | 	} while (intr); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static u32 sis_rate_to_delta(unsigned int rate) | 
 | { | 
 | 	u32 delta; | 
 |  | 
 | 	/* This was copied from the trident driver, but it seems its gotten | 
 | 	 * around a bit... nevertheless, it works well. | 
 | 	 * | 
 | 	 * We special case 44100 and 8000 since rounding with the equation | 
 | 	 * does not give us an accurate enough value. For 11025 and 22050 | 
 | 	 * the equation gives us the best answer. All other frequencies will | 
 | 	 * also use the equation. JDW | 
 | 	 */ | 
 | 	if (rate == 44100) | 
 | 		delta = 0xeb3; | 
 | 	else if (rate == 8000) | 
 | 		delta = 0x2ab; | 
 | 	else if (rate == 48000) | 
 | 		delta = 0x1000; | 
 | 	else | 
 | 		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; | 
 | 	return delta; | 
 | } | 
 |  | 
 | static void __sis_map_silence(struct sis7019 *sis) | 
 | { | 
 | 	/* Helper function: must hold sis->voice_lock on entry */ | 
 | 	if (!sis->silence_users) | 
 | 		sis->silence_dma_addr = pci_map_single(sis->pci, | 
 | 						sis->suspend_state[0], | 
 | 						4096, PCI_DMA_TODEVICE); | 
 | 	sis->silence_users++; | 
 | } | 
 |  | 
 | static void __sis_unmap_silence(struct sis7019 *sis) | 
 | { | 
 | 	/* Helper function: must hold sis->voice_lock on entry */ | 
 | 	sis->silence_users--; | 
 | 	if (!sis->silence_users) | 
 | 		pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, | 
 | 					PCI_DMA_TODEVICE); | 
 | } | 
 |  | 
 | static void sis_free_voice(struct sis7019 *sis, struct voice *voice) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 	if (voice->timing) { | 
 | 		__sis_unmap_silence(sis); | 
 | 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | | 
 | 						VOICE_SYNC_TIMING); | 
 | 		voice->timing = NULL; | 
 | 	} | 
 | 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); | 
 | 	spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 | } | 
 |  | 
 | static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) | 
 | { | 
 | 	/* Must hold the voice_lock on entry */ | 
 | 	struct voice *voice; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 64; i++) { | 
 | 		voice = &sis->voices[i]; | 
 | 		if (voice->flags & VOICE_IN_USE) | 
 | 			continue; | 
 | 		voice->flags |= VOICE_IN_USE; | 
 | 		goto found_one; | 
 | 	} | 
 | 	voice = NULL; | 
 |  | 
 | found_one: | 
 | 	return voice; | 
 | } | 
 |  | 
 | static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) | 
 | { | 
 | 	struct voice *voice; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 	voice = __sis_alloc_playback_voice(sis); | 
 | 	spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 |  | 
 | 	return voice; | 
 | } | 
 |  | 
 | static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, | 
 | 					struct snd_pcm_hw_params *hw_params) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice = runtime->private_data; | 
 | 	unsigned int period_size, buffer_size; | 
 | 	unsigned long flags; | 
 | 	int needed; | 
 |  | 
 | 	/* If there are one or two periods per buffer, we don't need a | 
 | 	 * timing voice, as we can use the capture channel's interrupts | 
 | 	 * to clock out the periods. | 
 | 	 */ | 
 | 	period_size = params_period_size(hw_params); | 
 | 	buffer_size = params_buffer_size(hw_params); | 
 | 	needed = (period_size != buffer_size && | 
 | 			period_size != (buffer_size / 2)); | 
 |  | 
 | 	if (needed && !voice->timing) { | 
 | 		spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 		voice->timing = __sis_alloc_playback_voice(sis); | 
 | 		if (voice->timing) | 
 | 			__sis_map_silence(sis); | 
 | 		spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 | 		if (!voice->timing) | 
 | 			return -ENOMEM; | 
 | 		voice->timing->substream = substream; | 
 | 	} else if (!needed && voice->timing) { | 
 | 		sis_free_voice(sis, voice); | 
 | 		voice->timing = NULL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_playback_open(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice; | 
 |  | 
 | 	voice = sis_alloc_playback_voice(sis); | 
 | 	if (!voice) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	voice->substream = substream; | 
 | 	runtime->private_data = voice; | 
 | 	runtime->hw = sis_playback_hw_info; | 
 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
 | 						9, 0xfff9); | 
 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
 | 						9, 0xfff9); | 
 | 	snd_pcm_set_sync(substream); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_substream_close(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice = runtime->private_data; | 
 |  | 
 | 	sis_free_voice(sis, voice); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_playback_hw_params(struct snd_pcm_substream *substream, | 
 | 					struct snd_pcm_hw_params *hw_params) | 
 | { | 
 | 	return snd_pcm_lib_malloc_pages(substream, | 
 | 					params_buffer_bytes(hw_params)); | 
 | } | 
 |  | 
 | static int sis_hw_free(struct snd_pcm_substream *substream) | 
 | { | 
 | 	return snd_pcm_lib_free_pages(substream); | 
 | } | 
 |  | 
 | static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice = runtime->private_data; | 
 | 	void __iomem *ctrl_base = voice->ctrl_base; | 
 | 	void __iomem *wave_base = voice->wave_base; | 
 | 	u32 format, dma_addr, control, sso_eso, delta, reg; | 
 | 	u16 leo; | 
 |  | 
 | 	/* We rely on the PCM core to ensure that the parameters for this | 
 | 	 * substream do not change on us while we're programming the HW. | 
 | 	 */ | 
 | 	format = 0; | 
 | 	if (snd_pcm_format_width(runtime->format) == 8) | 
 | 		format |= SIS_PLAY_DMA_FORMAT_8BIT; | 
 | 	if (!snd_pcm_format_signed(runtime->format)) | 
 | 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; | 
 | 	if (runtime->channels == 1) | 
 | 		format |= SIS_PLAY_DMA_FORMAT_MONO; | 
 |  | 
 | 	/* The baseline setup is for a single period per buffer, and | 
 | 	 * we add bells and whistles as needed from there. | 
 | 	 */ | 
 | 	dma_addr = runtime->dma_addr; | 
 | 	leo = runtime->buffer_size - 1; | 
 | 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; | 
 | 	sso_eso = leo; | 
 |  | 
 | 	if (runtime->period_size == (runtime->buffer_size / 2)) { | 
 | 		control |= SIS_PLAY_DMA_INTR_AT_MLP; | 
 | 	} else if (runtime->period_size != runtime->buffer_size) { | 
 | 		voice->flags |= VOICE_SSO_TIMING; | 
 | 		voice->sso = runtime->period_size - 1; | 
 | 		voice->period_size = runtime->period_size; | 
 | 		voice->buffer_size = runtime->buffer_size; | 
 |  | 
 | 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO; | 
 | 		control |= SIS_PLAY_DMA_INTR_AT_SSO; | 
 | 		sso_eso |= (runtime->period_size - 1) << 16; | 
 | 	} | 
 |  | 
 | 	delta = sis_rate_to_delta(runtime->rate); | 
 |  | 
 | 	/* Ok, we're ready to go, set up the channel. | 
 | 	 */ | 
 | 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | 
 | 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); | 
 | 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); | 
 | 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); | 
 |  | 
 | 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | 
 | 		writel(0, wave_base + reg); | 
 |  | 
 | 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | 
 | 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | 
 | 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | 
 | 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | 
 | 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | 
 | 			wave_base + SIS_WAVE_CHANNEL_CONTROL); | 
 |  | 
 | 	/* Force PCI writes to post. */ | 
 | 	readl(ctrl_base); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	unsigned long io = sis->ioport; | 
 | 	struct snd_pcm_substream *s; | 
 | 	struct voice *voice; | 
 | 	void *chip; | 
 | 	int starting; | 
 | 	u32 record = 0; | 
 | 	u32 play[2] = { 0, 0 }; | 
 |  | 
 | 	/* No locks needed, as the PCM core will hold the locks on the | 
 | 	 * substreams, and the HW will only start/stop the indicated voices | 
 | 	 * without changing the state of the others. | 
 | 	 */ | 
 | 	switch (cmd) { | 
 | 	case SNDRV_PCM_TRIGGER_START: | 
 | 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: | 
 | 	case SNDRV_PCM_TRIGGER_RESUME: | 
 | 		starting = 1; | 
 | 		break; | 
 | 	case SNDRV_PCM_TRIGGER_STOP: | 
 | 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH: | 
 | 	case SNDRV_PCM_TRIGGER_SUSPEND: | 
 | 		starting = 0; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	snd_pcm_group_for_each_entry(s, substream) { | 
 | 		/* Make sure it is for us... */ | 
 | 		chip = snd_pcm_substream_chip(s); | 
 | 		if (chip != sis) | 
 | 			continue; | 
 |  | 
 | 		voice = s->runtime->private_data; | 
 | 		if (voice->flags & VOICE_CAPTURE) { | 
 | 			record |= 1 << voice->num; | 
 | 			voice = voice->timing; | 
 | 		} | 
 |  | 
 | 		/* voice could be NULL if this a recording stream, and it | 
 | 		 * doesn't have an external timing channel. | 
 | 		 */ | 
 | 		if (voice) | 
 | 			play[voice->num / 32] |= 1 << (voice->num & 0x1f); | 
 |  | 
 | 		snd_pcm_trigger_done(s, substream); | 
 | 	} | 
 |  | 
 | 	if (starting) { | 
 | 		if (record) | 
 | 			outl(record, io + SIS_RECORD_START_REG); | 
 | 		if (play[0]) | 
 | 			outl(play[0], io + SIS_PLAY_START_A_REG); | 
 | 		if (play[1]) | 
 | 			outl(play[1], io + SIS_PLAY_START_B_REG); | 
 | 	} else { | 
 | 		if (record) | 
 | 			outl(record, io + SIS_RECORD_STOP_REG); | 
 | 		if (play[0]) | 
 | 			outl(play[0], io + SIS_PLAY_STOP_A_REG); | 
 | 		if (play[1]) | 
 | 			outl(play[1], io + SIS_PLAY_STOP_B_REG); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice = runtime->private_data; | 
 | 	u32 cso; | 
 |  | 
 | 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | 
 | 	cso &= 0xffff; | 
 | 	return cso; | 
 | } | 
 |  | 
 | static int sis_capture_open(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice = &sis->capture_voice; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* FIXME: The driver only supports recording from one channel | 
 | 	 * at the moment, but it could support more. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 	if (voice->flags & VOICE_IN_USE) | 
 | 		voice = NULL; | 
 | 	else | 
 | 		voice->flags |= VOICE_IN_USE; | 
 | 	spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 |  | 
 | 	if (!voice) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	voice->substream = substream; | 
 | 	runtime->private_data = voice; | 
 | 	runtime->hw = sis_capture_hw_info; | 
 | 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; | 
 | 	snd_pcm_limit_hw_rates(runtime); | 
 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
 | 						9, 0xfff9); | 
 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
 | 						9, 0xfff9); | 
 | 	snd_pcm_set_sync(substream); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_capture_hw_params(struct snd_pcm_substream *substream, | 
 | 					struct snd_pcm_hw_params *hw_params) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	int rc; | 
 |  | 
 | 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, | 
 | 						params_rate(hw_params)); | 
 | 	if (rc) | 
 | 		goto out; | 
 |  | 
 | 	rc = snd_pcm_lib_malloc_pages(substream, | 
 | 					params_buffer_bytes(hw_params)); | 
 | 	if (rc < 0) | 
 | 		goto out; | 
 |  | 
 | 	rc = sis_alloc_timing_voice(substream, hw_params); | 
 |  | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void sis_prepare_timing_voice(struct voice *voice, | 
 | 					struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *timing = voice->timing; | 
 | 	void __iomem *play_base = timing->ctrl_base; | 
 | 	void __iomem *wave_base = timing->wave_base; | 
 | 	u16 buffer_size, period_size; | 
 | 	u32 format, control, sso_eso, delta; | 
 | 	u32 vperiod, sso, reg; | 
 |  | 
 | 	/* Set our initial buffer and period as large as we can given a | 
 | 	 * single page of silence. | 
 | 	 */ | 
 | 	buffer_size = 4096 / runtime->channels; | 
 | 	buffer_size /= snd_pcm_format_size(runtime->format, 1); | 
 | 	period_size = buffer_size; | 
 |  | 
 | 	/* Initially, we want to interrupt just a bit behind the end of | 
 | 	 * the period we're clocking out. 12 samples seems to give a good | 
 | 	 * delay. | 
 | 	 * | 
 | 	 * We want to spread our interrupts throughout the virtual period, | 
 | 	 * so that we don't end up with two interrupts back to back at the | 
 | 	 * end -- this helps minimize the effects of any jitter. Adjust our | 
 | 	 * clocking period size so that the last period is at least a fourth | 
 | 	 * of a full period. | 
 | 	 * | 
 | 	 * This is all moot if we don't need to use virtual periods. | 
 | 	 */ | 
 | 	vperiod = runtime->period_size + 12; | 
 | 	if (vperiod > period_size) { | 
 | 		u16 tail = vperiod % period_size; | 
 | 		u16 quarter_period = period_size / 4; | 
 |  | 
 | 		if (tail && tail < quarter_period) { | 
 | 			u16 loops = vperiod / period_size; | 
 |  | 
 | 			tail = quarter_period - tail; | 
 | 			tail += loops - 1; | 
 | 			tail /= loops; | 
 | 			period_size -= tail; | 
 | 		} | 
 |  | 
 | 		sso = period_size - 1; | 
 | 	} else { | 
 | 		/* The initial period will fit inside the buffer, so we | 
 | 		 * don't need to use virtual periods -- disable them. | 
 | 		 */ | 
 | 		period_size = runtime->period_size; | 
 | 		sso = vperiod - 1; | 
 | 		vperiod = 0; | 
 | 	} | 
 |  | 
 | 	/* The interrupt handler implements the timing synchronization, so | 
 | 	 * setup its state. | 
 | 	 */ | 
 | 	timing->flags |= VOICE_SYNC_TIMING; | 
 | 	timing->sync_base = voice->ctrl_base; | 
 | 	timing->sync_cso = runtime->period_size; | 
 | 	timing->sync_period_size = runtime->period_size; | 
 | 	timing->sync_buffer_size = runtime->buffer_size; | 
 | 	timing->period_size = period_size; | 
 | 	timing->buffer_size = buffer_size; | 
 | 	timing->sso = sso; | 
 | 	timing->vperiod = vperiod; | 
 |  | 
 | 	/* Using unsigned samples with the all-zero silence buffer | 
 | 	 * forces the output to the lower rail, killing playback. | 
 | 	 * So ignore unsigned vs signed -- it doesn't change the timing. | 
 | 	 */ | 
 | 	format = 0; | 
 | 	if (snd_pcm_format_width(runtime->format) == 8) | 
 | 		format = SIS_CAPTURE_DMA_FORMAT_8BIT; | 
 | 	if (runtime->channels == 1) | 
 | 		format |= SIS_CAPTURE_DMA_FORMAT_MONO; | 
 |  | 
 | 	control = timing->buffer_size - 1; | 
 | 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; | 
 | 	sso_eso = timing->buffer_size - 1; | 
 | 	sso_eso |= timing->sso << 16; | 
 |  | 
 | 	delta = sis_rate_to_delta(runtime->rate); | 
 |  | 
 | 	/* We've done the math, now configure the channel. | 
 | 	 */ | 
 | 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); | 
 | 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); | 
 | 	writel(control, play_base + SIS_PLAY_DMA_CONTROL); | 
 | 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); | 
 |  | 
 | 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | 
 | 		writel(0, wave_base + reg); | 
 |  | 
 | 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | 
 | 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | 
 | 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | 
 | 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | 
 | 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | 
 | 			wave_base + SIS_WAVE_CHANNEL_CONTROL); | 
 | } | 
 |  | 
 | static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct voice *voice = runtime->private_data; | 
 | 	void __iomem *rec_base = voice->ctrl_base; | 
 | 	u32 format, dma_addr, control; | 
 | 	u16 leo; | 
 |  | 
 | 	/* We rely on the PCM core to ensure that the parameters for this | 
 | 	 * substream do not change on us while we're programming the HW. | 
 | 	 */ | 
 | 	format = 0; | 
 | 	if (snd_pcm_format_width(runtime->format) == 8) | 
 | 		format = SIS_CAPTURE_DMA_FORMAT_8BIT; | 
 | 	if (!snd_pcm_format_signed(runtime->format)) | 
 | 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; | 
 | 	if (runtime->channels == 1) | 
 | 		format |= SIS_CAPTURE_DMA_FORMAT_MONO; | 
 |  | 
 | 	dma_addr = runtime->dma_addr; | 
 | 	leo = runtime->buffer_size - 1; | 
 | 	control = leo | SIS_CAPTURE_DMA_LOOP; | 
 |  | 
 | 	/* If we've got more than two periods per buffer, then we have | 
 | 	 * use a timing voice to clock out the periods. Otherwise, we can | 
 | 	 * use the capture channel's interrupts. | 
 | 	 */ | 
 | 	if (voice->timing) { | 
 | 		sis_prepare_timing_voice(voice, substream); | 
 | 	} else { | 
 | 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO; | 
 | 		if (runtime->period_size != runtime->buffer_size) | 
 | 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP; | 
 | 	} | 
 |  | 
 | 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); | 
 | 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); | 
 | 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); | 
 |  | 
 | 	/* Force the writes to post. */ | 
 | 	readl(rec_base); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct snd_pcm_ops sis_playback_ops = { | 
 | 	.open = sis_playback_open, | 
 | 	.close = sis_substream_close, | 
 | 	.ioctl = snd_pcm_lib_ioctl, | 
 | 	.hw_params = sis_playback_hw_params, | 
 | 	.hw_free = sis_hw_free, | 
 | 	.prepare = sis_pcm_playback_prepare, | 
 | 	.trigger = sis_pcm_trigger, | 
 | 	.pointer = sis_pcm_pointer, | 
 | }; | 
 |  | 
 | static struct snd_pcm_ops sis_capture_ops = { | 
 | 	.open = sis_capture_open, | 
 | 	.close = sis_substream_close, | 
 | 	.ioctl = snd_pcm_lib_ioctl, | 
 | 	.hw_params = sis_capture_hw_params, | 
 | 	.hw_free = sis_hw_free, | 
 | 	.prepare = sis_pcm_capture_prepare, | 
 | 	.trigger = sis_pcm_trigger, | 
 | 	.pointer = sis_pcm_pointer, | 
 | }; | 
 |  | 
 | static int sis_pcm_create(struct sis7019 *sis) | 
 | { | 
 | 	struct snd_pcm *pcm; | 
 | 	int rc; | 
 |  | 
 | 	/* We have 64 voices, and the driver currently records from | 
 | 	 * only one channel, though that could change in the future. | 
 | 	 */ | 
 | 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	pcm->private_data = sis; | 
 | 	strcpy(pcm->name, "SiS7019"); | 
 | 	sis->pcm = pcm; | 
 |  | 
 | 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); | 
 | 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); | 
 |  | 
 | 	/* Try to preallocate some memory, but it's not the end of the | 
 | 	 * world if this fails. | 
 | 	 */ | 
 | 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | 
 | 				snd_dma_pci_data(sis->pci), 64*1024, 128*1024); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) | 
 | { | 
 | 	unsigned long io = sis->ioport; | 
 | 	unsigned short val = 0xffff; | 
 | 	u16 status; | 
 | 	u16 rdy; | 
 | 	int count; | 
 | 	static const u16 codec_ready[3] = { | 
 | 		SIS_AC97_STATUS_CODEC_READY, | 
 | 		SIS_AC97_STATUS_CODEC2_READY, | 
 | 		SIS_AC97_STATUS_CODEC3_READY, | 
 | 	}; | 
 |  | 
 | 	rdy = codec_ready[codec]; | 
 |  | 
 |  | 
 | 	/* Get the AC97 semaphore -- software first, so we don't spin | 
 | 	 * pounding out IO reads on the hardware semaphore... | 
 | 	 */ | 
 | 	mutex_lock(&sis->ac97_mutex); | 
 |  | 
 | 	count = 0xffff; | 
 | 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | 
 | 		udelay(1); | 
 |  | 
 | 	if (!count) | 
 | 		goto timeout; | 
 |  | 
 | 	/* ... and wait for any outstanding commands to complete ... | 
 | 	 */ | 
 | 	count = 0xffff; | 
 | 	do { | 
 | 		status = inw(io + SIS_AC97_STATUS); | 
 | 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) | 
 | 			break; | 
 |  | 
 | 		udelay(1); | 
 | 	} while (--count); | 
 |  | 
 | 	if (!count) | 
 | 		goto timeout_sema; | 
 |  | 
 | 	/* ... before sending our command and waiting for it to finish ... | 
 | 	 */ | 
 | 	outl(cmd, io + SIS_AC97_CMD); | 
 | 	udelay(10); | 
 |  | 
 | 	count = 0xffff; | 
 | 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | 
 | 		udelay(1); | 
 |  | 
 | 	/* ... and reading the results (if any). | 
 | 	 */ | 
 | 	val = inl(io + SIS_AC97_CMD) >> 16; | 
 |  | 
 | timeout_sema: | 
 | 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | 
 | timeout: | 
 | 	mutex_unlock(&sis->ac97_mutex); | 
 |  | 
 | 	if (!count) { | 
 | 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", | 
 | 					codec, cmd); | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, | 
 | 				unsigned short val) | 
 | { | 
 | 	static const u32 cmd[3] = { | 
 | 		SIS_AC97_CMD_CODEC_WRITE, | 
 | 		SIS_AC97_CMD_CODEC2_WRITE, | 
 | 		SIS_AC97_CMD_CODEC3_WRITE, | 
 | 	}; | 
 | 	sis_ac97_rw(ac97->private_data, ac97->num, | 
 | 			(val << 16) | (reg << 8) | cmd[ac97->num]); | 
 | } | 
 |  | 
 | static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) | 
 | { | 
 | 	static const u32 cmd[3] = { | 
 | 		SIS_AC97_CMD_CODEC_READ, | 
 | 		SIS_AC97_CMD_CODEC2_READ, | 
 | 		SIS_AC97_CMD_CODEC3_READ, | 
 | 	}; | 
 | 	return sis_ac97_rw(ac97->private_data, ac97->num, | 
 | 					(reg << 8) | cmd[ac97->num]); | 
 | } | 
 |  | 
 | static int sis_mixer_create(struct sis7019 *sis) | 
 | { | 
 | 	struct snd_ac97_bus *bus; | 
 | 	struct snd_ac97_template ac97; | 
 | 	static struct snd_ac97_bus_ops ops = { | 
 | 		.write = sis_ac97_write, | 
 | 		.read = sis_ac97_read, | 
 | 	}; | 
 | 	int rc; | 
 |  | 
 | 	memset(&ac97, 0, sizeof(ac97)); | 
 | 	ac97.private_data = sis; | 
 |  | 
 | 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); | 
 | 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | 
 | 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); | 
 | 	ac97.num = 1; | 
 | 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) | 
 | 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); | 
 | 	ac97.num = 2; | 
 | 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) | 
 | 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); | 
 |  | 
 | 	/* If we return an error here, then snd_card_free() should | 
 | 	 * free up any ac97 codecs that got created, as well as the bus. | 
 | 	 */ | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void sis_free_suspend(struct sis7019 *sis) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) | 
 | 		kfree(sis->suspend_state[i]); | 
 | } | 
 |  | 
 | static int sis_chip_free(struct sis7019 *sis) | 
 | { | 
 | 	/* Reset the chip, and disable all interrputs. | 
 | 	 */ | 
 | 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); | 
 | 	udelay(25); | 
 | 	outl(0, sis->ioport + SIS_GCR); | 
 | 	outl(0, sis->ioport + SIS_GIER); | 
 |  | 
 | 	/* Now, free everything we allocated. | 
 | 	 */ | 
 | 	if (sis->irq >= 0) | 
 | 		free_irq(sis->irq, sis); | 
 |  | 
 | 	if (sis->ioaddr) | 
 | 		iounmap(sis->ioaddr); | 
 |  | 
 | 	pci_release_regions(sis->pci); | 
 | 	pci_disable_device(sis->pci); | 
 |  | 
 | 	sis_free_suspend(sis); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_dev_free(struct snd_device *dev) | 
 | { | 
 | 	struct sis7019 *sis = dev->device_data; | 
 | 	return sis_chip_free(sis); | 
 | } | 
 |  | 
 | static int sis_chip_init(struct sis7019 *sis) | 
 | { | 
 | 	unsigned long io = sis->ioport; | 
 | 	void __iomem *ioaddr = sis->ioaddr; | 
 | 	unsigned long timeout; | 
 | 	u16 status; | 
 | 	int count; | 
 | 	int i; | 
 |  | 
 | 	/* Reset the audio controller | 
 | 	 */ | 
 | 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); | 
 | 	udelay(25); | 
 | 	outl(0, io + SIS_GCR); | 
 |  | 
 | 	/* Get the AC-link semaphore, and reset the codecs | 
 | 	 */ | 
 | 	count = 0xffff; | 
 | 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | 
 | 		udelay(1); | 
 |  | 
 | 	if (!count) | 
 | 		return -EIO; | 
 |  | 
 | 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); | 
 | 	udelay(250); | 
 |  | 
 | 	count = 0xffff; | 
 | 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | 
 | 		udelay(1); | 
 |  | 
 | 	/* Command complete, we can let go of the semaphore now. | 
 | 	 */ | 
 | 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | 
 | 	if (!count) | 
 | 		return -EIO; | 
 |  | 
 | 	/* Now that we've finished the reset, find out what's attached. | 
 | 	 * There are some codec/board combinations that take an extremely | 
 | 	 * long time to come up. 350+ ms has been observed in the field, | 
 | 	 * so we'll give them up to 500ms. | 
 | 	 */ | 
 | 	sis->codecs_present = 0; | 
 | 	timeout = msecs_to_jiffies(500) + jiffies; | 
 | 	while (time_before_eq(jiffies, timeout)) { | 
 | 		status = inl(io + SIS_AC97_STATUS); | 
 | 		if (status & SIS_AC97_STATUS_CODEC_READY) | 
 | 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; | 
 | 		if (status & SIS_AC97_STATUS_CODEC2_READY) | 
 | 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; | 
 | 		if (status & SIS_AC97_STATUS_CODEC3_READY) | 
 | 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; | 
 |  | 
 | 		if (sis->codecs_present == codecs) | 
 | 			break; | 
 |  | 
 | 		msleep(1); | 
 | 	} | 
 |  | 
 | 	/* All done, check for errors. | 
 | 	 */ | 
 | 	if (!sis->codecs_present) { | 
 | 		dev_err(&sis->pci->dev, "could not find any codecs\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (sis->codecs_present != codecs) { | 
 | 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", | 
 | 					 sis->codecs_present, codecs); | 
 | 	} | 
 |  | 
 | 	/* Let the hardware know that the audio driver is alive, | 
 | 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and | 
 | 	 * record channels. We're going to want to use Variable Rate Audio | 
 | 	 * for recording, to avoid needlessly resampling from 48kHZ. | 
 | 	 */ | 
 | 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); | 
 | 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | | 
 | 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | | 
 | 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE | | 
 | 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); | 
 |  | 
 | 	/* All AC97 PCM slots should be sourced from sub-mixer 0. | 
 | 	 */ | 
 | 	outl(0, io + SIS_AC97_PSR); | 
 |  | 
 | 	/* There is only one valid DMA setup for a PCI environment. | 
 | 	 */ | 
 | 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); | 
 |  | 
 | 	/* Reset the synchronization groups for all of the channels | 
 | 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. | 
 | 	 * we'll need to change how we handle these. Until then, we just | 
 | 	 * assign sub-mixer 0 to all playback channels, and avoid any | 
 | 	 * attenuation on the audio. | 
 | 	 */ | 
 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_A); | 
 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_B); | 
 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_C); | 
 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_D); | 
 | 	outl(0, io + SIS_MIXER_SYNC_GROUP); | 
 |  | 
 | 	for (i = 0; i < 64; i++) { | 
 | 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); | 
 | 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | | 
 | 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); | 
 | 	} | 
 |  | 
 | 	/* Don't attenuate any audio set for the wave amplifier. | 
 | 	 * | 
 | 	 * FIXME: Maximum attenuation is set for the music amp, which will | 
 | 	 * need to change if we start using the synth engine. | 
 | 	 */ | 
 | 	outl(0xffff0000, io + SIS_WEVCR); | 
 |  | 
 | 	/* Ensure that the wave engine is in normal operating mode. | 
 | 	 */ | 
 | 	outl(0, io + SIS_WECCR); | 
 |  | 
 | 	/* Go ahead and enable the DMA interrupts. They won't go live | 
 | 	 * until we start a channel. | 
 | 	 */ | 
 | 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | | 
 | 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int sis_suspend(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pci = to_pci_dev(dev); | 
 | 	struct snd_card *card = dev_get_drvdata(dev); | 
 | 	struct sis7019 *sis = card->private_data; | 
 | 	void __iomem *ioaddr = sis->ioaddr; | 
 | 	int i; | 
 |  | 
 | 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); | 
 | 	snd_pcm_suspend_all(sis->pcm); | 
 | 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | 
 | 		snd_ac97_suspend(sis->ac97[0]); | 
 | 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | 
 | 		snd_ac97_suspend(sis->ac97[1]); | 
 | 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | 
 | 		snd_ac97_suspend(sis->ac97[2]); | 
 |  | 
 | 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent. | 
 | 	 */ | 
 | 	if (sis->irq >= 0) { | 
 | 		free_irq(sis->irq, sis); | 
 | 		sis->irq = -1; | 
 | 	} | 
 |  | 
 | 	/* Save the internal state away | 
 | 	 */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); | 
 | 		ioaddr += 4096; | 
 | 	} | 
 |  | 
 | 	pci_disable_device(pci); | 
 | 	pci_save_state(pci); | 
 | 	pci_set_power_state(pci, PCI_D3hot); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_resume(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pci = to_pci_dev(dev); | 
 | 	struct snd_card *card = dev_get_drvdata(dev); | 
 | 	struct sis7019 *sis = card->private_data; | 
 | 	void __iomem *ioaddr = sis->ioaddr; | 
 | 	int i; | 
 |  | 
 | 	pci_set_power_state(pci, PCI_D0); | 
 | 	pci_restore_state(pci); | 
 |  | 
 | 	if (pci_enable_device(pci) < 0) { | 
 | 		dev_err(&pci->dev, "unable to re-enable device\n"); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	if (sis_chip_init(sis)) { | 
 | 		dev_err(&pci->dev, "unable to re-init controller\n"); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, | 
 | 			KBUILD_MODNAME, sis)) { | 
 | 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	/* Restore saved state, then clear out the page we use for the | 
 | 	 * silence buffer. | 
 | 	 */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096); | 
 | 		ioaddr += 4096; | 
 | 	} | 
 |  | 
 | 	memset(sis->suspend_state[0], 0, 4096); | 
 |  | 
 | 	sis->irq = pci->irq; | 
 | 	pci_set_master(pci); | 
 |  | 
 | 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | 
 | 		snd_ac97_resume(sis->ac97[0]); | 
 | 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | 
 | 		snd_ac97_resume(sis->ac97[1]); | 
 | 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | 
 | 		snd_ac97_resume(sis->ac97[2]); | 
 |  | 
 | 	snd_power_change_state(card, SNDRV_CTL_POWER_D0); | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	snd_card_disconnect(card); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); | 
 | #define SIS_PM_OPS	&sis_pm | 
 | #else | 
 | #define SIS_PM_OPS	NULL | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | static int sis_alloc_suspend(struct sis7019 *sis) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* We need 16K to store the internal wave engine state during a | 
 | 	 * suspend, but we don't need it to be contiguous, so play nice | 
 | 	 * with the memory system. We'll also use this area for a silence | 
 | 	 * buffer. | 
 | 	 */ | 
 | 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) { | 
 | 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); | 
 | 		if (!sis->suspend_state[i]) | 
 | 			return -ENOMEM; | 
 | 	} | 
 | 	memset(sis->suspend_state[0], 0, 4096); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sis_chip_create(struct snd_card *card, | 
 | 			   struct pci_dev *pci) | 
 | { | 
 | 	struct sis7019 *sis = card->private_data; | 
 | 	struct voice *voice; | 
 | 	static struct snd_device_ops ops = { | 
 | 		.dev_free = sis_dev_free, | 
 | 	}; | 
 | 	int rc; | 
 | 	int i; | 
 |  | 
 | 	rc = pci_enable_device(pci); | 
 | 	if (rc) | 
 | 		goto error_out; | 
 |  | 
 | 	rc = pci_set_dma_mask(pci, DMA_BIT_MASK(30)); | 
 | 	if (rc < 0) { | 
 | 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); | 
 | 		goto error_out_enabled; | 
 | 	} | 
 |  | 
 | 	memset(sis, 0, sizeof(*sis)); | 
 | 	mutex_init(&sis->ac97_mutex); | 
 | 	spin_lock_init(&sis->voice_lock); | 
 | 	sis->card = card; | 
 | 	sis->pci = pci; | 
 | 	sis->irq = -1; | 
 | 	sis->ioport = pci_resource_start(pci, 0); | 
 |  | 
 | 	rc = pci_request_regions(pci, "SiS7019"); | 
 | 	if (rc) { | 
 | 		dev_err(&pci->dev, "unable request regions\n"); | 
 | 		goto error_out_enabled; | 
 | 	} | 
 |  | 
 | 	rc = -EIO; | 
 | 	sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); | 
 | 	if (!sis->ioaddr) { | 
 | 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); | 
 | 		goto error_out_cleanup; | 
 | 	} | 
 |  | 
 | 	rc = sis_alloc_suspend(sis); | 
 | 	if (rc < 0) { | 
 | 		dev_err(&pci->dev, "unable to allocate state storage\n"); | 
 | 		goto error_out_cleanup; | 
 | 	} | 
 |  | 
 | 	rc = sis_chip_init(sis); | 
 | 	if (rc) | 
 | 		goto error_out_cleanup; | 
 |  | 
 | 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, | 
 | 			 sis); | 
 | 	if (rc) { | 
 | 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); | 
 | 		goto error_out_cleanup; | 
 | 	} | 
 |  | 
 | 	sis->irq = pci->irq; | 
 | 	pci_set_master(pci); | 
 |  | 
 | 	for (i = 0; i < 64; i++) { | 
 | 		voice = &sis->voices[i]; | 
 | 		voice->num = i; | 
 | 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); | 
 | 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); | 
 | 	} | 
 |  | 
 | 	voice = &sis->capture_voice; | 
 | 	voice->flags = VOICE_CAPTURE; | 
 | 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; | 
 | 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); | 
 |  | 
 | 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); | 
 | 	if (rc) | 
 | 		goto error_out_cleanup; | 
 |  | 
 | 	snd_card_set_dev(card, &pci->dev); | 
 |  | 
 | 	return 0; | 
 |  | 
 | error_out_cleanup: | 
 | 	sis_chip_free(sis); | 
 |  | 
 | error_out_enabled: | 
 | 	pci_disable_device(pci); | 
 |  | 
 | error_out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int snd_sis7019_probe(struct pci_dev *pci, | 
 | 			     const struct pci_device_id *pci_id) | 
 | { | 
 | 	struct snd_card *card; | 
 | 	struct sis7019 *sis; | 
 | 	int rc; | 
 |  | 
 | 	rc = -ENOENT; | 
 | 	if (!enable) | 
 | 		goto error_out; | 
 |  | 
 | 	/* The user can specify which codecs should be present so that we | 
 | 	 * can wait for them to show up if they are slow to recover from | 
 | 	 * the AC97 cold reset. We default to a single codec, the primary. | 
 | 	 * | 
 | 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. | 
 | 	 */ | 
 | 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | | 
 | 		  SIS_TERTIARY_CODEC_PRESENT; | 
 | 	if (!codecs) | 
 | 		codecs = SIS_PRIMARY_CODEC_PRESENT; | 
 |  | 
 | 	rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card); | 
 | 	if (rc < 0) | 
 | 		goto error_out; | 
 |  | 
 | 	strcpy(card->driver, "SiS7019"); | 
 | 	strcpy(card->shortname, "SiS7019"); | 
 | 	rc = sis_chip_create(card, pci); | 
 | 	if (rc) | 
 | 		goto card_error_out; | 
 |  | 
 | 	sis = card->private_data; | 
 |  | 
 | 	rc = sis_mixer_create(sis); | 
 | 	if (rc) | 
 | 		goto card_error_out; | 
 |  | 
 | 	rc = sis_pcm_create(sis); | 
 | 	if (rc) | 
 | 		goto card_error_out; | 
 |  | 
 | 	snprintf(card->longname, sizeof(card->longname), | 
 | 			"%s Audio Accelerator with %s at 0x%lx, irq %d", | 
 | 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]), | 
 | 			sis->ioport, sis->irq); | 
 |  | 
 | 	rc = snd_card_register(card); | 
 | 	if (rc) | 
 | 		goto card_error_out; | 
 |  | 
 | 	pci_set_drvdata(pci, card); | 
 | 	return 0; | 
 |  | 
 | card_error_out: | 
 | 	snd_card_free(card); | 
 |  | 
 | error_out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void snd_sis7019_remove(struct pci_dev *pci) | 
 | { | 
 | 	snd_card_free(pci_get_drvdata(pci)); | 
 | } | 
 |  | 
 | static struct pci_driver sis7019_driver = { | 
 | 	.name = KBUILD_MODNAME, | 
 | 	.id_table = snd_sis7019_ids, | 
 | 	.probe = snd_sis7019_probe, | 
 | 	.remove = snd_sis7019_remove, | 
 | 	.driver = { | 
 | 		.pm = SIS_PM_OPS, | 
 | 	}, | 
 | }; | 
 |  | 
 | module_pci_driver(sis7019_driver); |