blob: 9cd180bda0920304467165cef1365c7291575347 [file] [log] [blame]
/*
* count the number of connections matching an arbitrary key.
*
* (C) 2017 Red Hat GmbH
* Author: Florian Westphal <fw@strlen.de>
*
* split from xt_connlimit.c:
* (c) 2000 Gerd Knorr <kraxel@bytesex.org>
* Nov 2002: Martin Bene <martin.bene@icomedias.com>:
* only ignore TIME_WAIT or gone connections
* (C) CC Computer Consultants GmbH, 2007
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/jhash.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/netfilter/nf_conntrack_tcp.h>
#include <linux/netfilter/x_tables.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_count.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_tuple.h>
#include <net/netfilter/nf_conntrack_zones.h>
#define CONNCOUNT_SLOTS 256U
#ifdef CONFIG_LOCKDEP
#define CONNCOUNT_LOCK_SLOTS 8U
#else
#define CONNCOUNT_LOCK_SLOTS 256U
#endif
#define CONNCOUNT_GC_MAX_NODES 8
#define MAX_KEYLEN 5
/* we will save the tuples of all connections we care about */
struct nf_conncount_tuple {
struct list_head node;
struct nf_conntrack_tuple tuple;
struct nf_conntrack_zone zone;
int cpu;
u32 jiffies32;
bool dead;
struct rcu_head rcu_head;
};
struct nf_conncount_rb {
struct rb_node node;
struct nf_conncount_list list;
u32 key[MAX_KEYLEN];
struct rcu_head rcu_head;
};
static spinlock_t nf_conncount_locks[CONNCOUNT_LOCK_SLOTS] __cacheline_aligned_in_smp;
struct nf_conncount_data {
unsigned int keylen;
struct rb_root root[CONNCOUNT_SLOTS];
struct net *net;
struct work_struct gc_work;
unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)];
unsigned int gc_tree;
};
static u_int32_t conncount_rnd __read_mostly;
static struct kmem_cache *conncount_rb_cachep __read_mostly;
static struct kmem_cache *conncount_conn_cachep __read_mostly;
static inline bool already_closed(const struct nf_conn *conn)
{
if (nf_ct_protonum(conn) == IPPROTO_TCP)
return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT ||
conn->proto.tcp.state == TCP_CONNTRACK_CLOSE;
else
return false;
}
static int key_diff(const u32 *a, const u32 *b, unsigned int klen)
{
return memcmp(a, b, klen * sizeof(u32));
}
enum nf_conncount_list_add
nf_conncount_add(struct nf_conncount_list *list,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
struct nf_conncount_tuple *conn;
if (WARN_ON_ONCE(list->count > INT_MAX))
return NF_CONNCOUNT_ERR;
conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
if (conn == NULL)
return NF_CONNCOUNT_ERR;
conn->tuple = *tuple;
conn->zone = *zone;
conn->cpu = raw_smp_processor_id();
conn->jiffies32 = (u32)jiffies;
conn->dead = false;
spin_lock_bh(&list->list_lock);
if (list->dead == true) {
kmem_cache_free(conncount_conn_cachep, conn);
spin_unlock_bh(&list->list_lock);
return NF_CONNCOUNT_SKIP;
}
list_add_tail(&conn->node, &list->head);
list->count++;
spin_unlock_bh(&list->list_lock);
return NF_CONNCOUNT_ADDED;
}
EXPORT_SYMBOL_GPL(nf_conncount_add);
static void __conn_free(struct rcu_head *h)
{
struct nf_conncount_tuple *conn;
conn = container_of(h, struct nf_conncount_tuple, rcu_head);
kmem_cache_free(conncount_conn_cachep, conn);
}
static bool conn_free(struct nf_conncount_list *list,
struct nf_conncount_tuple *conn)
{
bool free_entry = false;
spin_lock_bh(&list->list_lock);
if (conn->dead) {
spin_unlock_bh(&list->list_lock);
return free_entry;
}
list->count--;
conn->dead = true;
list_del_rcu(&conn->node);
if (list->count == 0) {
list->dead = true;
free_entry = true;
}
spin_unlock_bh(&list->list_lock);
call_rcu(&conn->rcu_head, __conn_free);
return free_entry;
}
static const struct nf_conntrack_tuple_hash *
find_or_evict(struct net *net, struct nf_conncount_list *list,
struct nf_conncount_tuple *conn, bool *free_entry)
{
const struct nf_conntrack_tuple_hash *found;
unsigned long a, b;
int cpu = raw_smp_processor_id();
__s32 age;
found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple);
if (found)
return found;
b = conn->jiffies32;
a = (u32)jiffies;
/* conn might have been added just before by another cpu and
* might still be unconfirmed. In this case, nf_conntrack_find()
* returns no result. Thus only evict if this cpu added the
* stale entry or if the entry is older than two jiffies.
*/
age = a - b;
if (conn->cpu == cpu || age >= 2) {
*free_entry = conn_free(list, conn);
return ERR_PTR(-ENOENT);
}
return ERR_PTR(-EAGAIN);
}
void nf_conncount_lookup(struct net *net,
struct nf_conncount_list *list,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone,
bool *addit)
{
const struct nf_conntrack_tuple_hash *found;
struct nf_conncount_tuple *conn, *conn_n;
struct nf_conn *found_ct;
unsigned int collect = 0;
bool free_entry = false;
/* best effort only */
*addit = tuple ? true : false;
/* check the saved connections */
list_for_each_entry_safe(conn, conn_n, &list->head, node) {
if (collect > CONNCOUNT_GC_MAX_NODES)
break;
found = find_or_evict(net, list, conn, &free_entry);
if (IS_ERR(found)) {
/* Not found, but might be about to be confirmed */
if (PTR_ERR(found) == -EAGAIN) {
if (!tuple)
continue;
if (nf_ct_tuple_equal(&conn->tuple, tuple) &&
nf_ct_zone_id(&conn->zone, conn->zone.dir) ==
nf_ct_zone_id(zone, zone->dir))
*addit = false;
} else if (PTR_ERR(found) == -ENOENT)
collect++;
continue;
}
found_ct = nf_ct_tuplehash_to_ctrack(found);
if (tuple && nf_ct_tuple_equal(&conn->tuple, tuple) &&
nf_ct_zone_equal(found_ct, zone, zone->dir)) {
/*
* We should not see tuples twice unless someone hooks
* this into a table without "-p tcp --syn".
*
* Attempt to avoid a re-add in this case.
*/
*addit = false;
} else if (already_closed(found_ct)) {
/*
* we do not care about connections which are
* closed already -> ditch it
*/
nf_ct_put(found_ct);
conn_free(list, conn);
collect++;
continue;
}
nf_ct_put(found_ct);
}
}
EXPORT_SYMBOL_GPL(nf_conncount_lookup);
void nf_conncount_list_init(struct nf_conncount_list *list)
{
spin_lock_init(&list->list_lock);
INIT_LIST_HEAD(&list->head);
list->count = 0;
list->dead = false;
}
EXPORT_SYMBOL_GPL(nf_conncount_list_init);
/* Return true if the list is empty */
bool nf_conncount_gc_list(struct net *net,
struct nf_conncount_list *list)
{
const struct nf_conntrack_tuple_hash *found;
struct nf_conncount_tuple *conn, *conn_n;
struct nf_conn *found_ct;
unsigned int collected = 0;
bool free_entry = false;
bool ret = false;
list_for_each_entry_safe(conn, conn_n, &list->head, node) {
found = find_or_evict(net, list, conn, &free_entry);
if (IS_ERR(found)) {
if (PTR_ERR(found) == -ENOENT) {
if (free_entry)
return true;
collected++;
}
continue;
}
found_ct = nf_ct_tuplehash_to_ctrack(found);
if (already_closed(found_ct)) {
/*
* we do not care about connections which are
* closed already -> ditch it
*/
nf_ct_put(found_ct);
if (conn_free(list, conn))
return true;
collected++;
continue;
}
nf_ct_put(found_ct);
if (collected > CONNCOUNT_GC_MAX_NODES)
return false;
}
spin_lock_bh(&list->list_lock);
if (!list->count) {
list->dead = true;
ret = true;
}
spin_unlock_bh(&list->list_lock);
return ret;
}
EXPORT_SYMBOL_GPL(nf_conncount_gc_list);
static void __tree_nodes_free(struct rcu_head *h)
{
struct nf_conncount_rb *rbconn;
rbconn = container_of(h, struct nf_conncount_rb, rcu_head);
kmem_cache_free(conncount_rb_cachep, rbconn);
}
static void tree_nodes_free(struct rb_root *root,
struct nf_conncount_rb *gc_nodes[],
unsigned int gc_count)
{
struct nf_conncount_rb *rbconn;
while (gc_count) {
rbconn = gc_nodes[--gc_count];
spin_lock(&rbconn->list.list_lock);
rb_erase(&rbconn->node, root);
call_rcu(&rbconn->rcu_head, __tree_nodes_free);
spin_unlock(&rbconn->list.list_lock);
}
}
static void schedule_gc_worker(struct nf_conncount_data *data, int tree)
{
set_bit(tree, data->pending_trees);
schedule_work(&data->gc_work);
}
static unsigned int
insert_tree(struct net *net,
struct nf_conncount_data *data,
struct rb_root *root,
unsigned int hash,
const u32 *key,
u8 keylen,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
enum nf_conncount_list_add ret;
struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES];
struct rb_node **rbnode, *parent;
struct nf_conncount_rb *rbconn;
struct nf_conncount_tuple *conn;
unsigned int count = 0, gc_count = 0;
bool node_found = false;
spin_lock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]);
parent = NULL;
rbnode = &(root->rb_node);
while (*rbnode) {
int diff;
rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node);
parent = *rbnode;
diff = key_diff(key, rbconn->key, keylen);
if (diff < 0) {
rbnode = &((*rbnode)->rb_left);
} else if (diff > 0) {
rbnode = &((*rbnode)->rb_right);
} else {
/* unlikely: other cpu added node already */
node_found = true;
ret = nf_conncount_add(&rbconn->list, tuple, zone);
if (ret == NF_CONNCOUNT_ERR) {
count = 0; /* hotdrop */
} else if (ret == NF_CONNCOUNT_ADDED) {
count = rbconn->list.count;
} else {
/* NF_CONNCOUNT_SKIP, rbconn is already
* reclaimed by gc, insert a new tree node
*/
node_found = false;
}
break;
}
if (gc_count >= ARRAY_SIZE(gc_nodes))
continue;
if (nf_conncount_gc_list(net, &rbconn->list))
gc_nodes[gc_count++] = rbconn;
}
if (gc_count) {
tree_nodes_free(root, gc_nodes, gc_count);
/* tree_node_free before new allocation permits
* allocator to re-use newly free'd object.
*
* This is a rare event; in most cases we will find
* existing node to re-use. (or gc_count is 0).
*/
if (gc_count >= ARRAY_SIZE(gc_nodes))
schedule_gc_worker(data, hash);
}
if (node_found)
goto out_unlock;
/* expected case: match, insert new node */
rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC);
if (rbconn == NULL)
goto out_unlock;
conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
if (conn == NULL) {
kmem_cache_free(conncount_rb_cachep, rbconn);
goto out_unlock;
}
conn->tuple = *tuple;
conn->zone = *zone;
memcpy(rbconn->key, key, sizeof(u32) * keylen);
nf_conncount_list_init(&rbconn->list);
list_add(&conn->node, &rbconn->list.head);
count = 1;
rbconn->list.count = count;
rb_link_node_rcu(&rbconn->node, parent, rbnode);
rb_insert_color(&rbconn->node, root);
out_unlock:
spin_unlock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]);
return count;
}
static unsigned int
count_tree(struct net *net,
struct nf_conncount_data *data,
const u32 *key,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
enum nf_conncount_list_add ret;
struct rb_root *root;
struct rb_node *parent;
struct nf_conncount_rb *rbconn;
unsigned int hash;
u8 keylen = data->keylen;
hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS;
root = &data->root[hash];
parent = rcu_dereference_raw(root->rb_node);
while (parent) {
int diff;
bool addit;
rbconn = rb_entry(parent, struct nf_conncount_rb, node);
diff = key_diff(key, rbconn->key, keylen);
if (diff < 0) {
parent = rcu_dereference_raw(parent->rb_left);
} else if (diff > 0) {
parent = rcu_dereference_raw(parent->rb_right);
} else {
/* same source network -> be counted! */
nf_conncount_lookup(net, &rbconn->list, tuple, zone,
&addit);
if (!addit)
return rbconn->list.count;
ret = nf_conncount_add(&rbconn->list, tuple, zone);
if (ret == NF_CONNCOUNT_ERR) {
return 0; /* hotdrop */
} else if (ret == NF_CONNCOUNT_ADDED) {
return rbconn->list.count;
} else {
/* NF_CONNCOUNT_SKIP, rbconn is already
* reclaimed by gc, insert a new tree node
*/
break;
}
}
}
if (!tuple)
return 0;
return insert_tree(net, data, root, hash, key, keylen, tuple, zone);
}
static void tree_gc_worker(struct work_struct *work)
{
struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work);
struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn;
struct rb_root *root;
struct rb_node *node;
unsigned int tree, next_tree, gc_count = 0;
tree = data->gc_tree % CONNCOUNT_LOCK_SLOTS;
root = &data->root[tree];
rcu_read_lock();
for (node = rb_first(root); node != NULL; node = rb_next(node)) {
rbconn = rb_entry(node, struct nf_conncount_rb, node);
if (nf_conncount_gc_list(data->net, &rbconn->list))
gc_nodes[gc_count++] = rbconn;
}
rcu_read_unlock();
spin_lock_bh(&nf_conncount_locks[tree]);
if (gc_count) {
tree_nodes_free(root, gc_nodes, gc_count);
}
clear_bit(tree, data->pending_trees);
next_tree = (tree + 1) % CONNCOUNT_SLOTS;
next_tree = find_next_bit(data->pending_trees, next_tree, CONNCOUNT_SLOTS);
if (next_tree < CONNCOUNT_SLOTS) {
data->gc_tree = next_tree;
schedule_work(work);
}
spin_unlock_bh(&nf_conncount_locks[tree]);
}
/* Count and return number of conntrack entries in 'net' with particular 'key'.
* If 'tuple' is not null, insert it into the accounting data structure.
* Call with RCU read lock.
*/
unsigned int nf_conncount_count(struct net *net,
struct nf_conncount_data *data,
const u32 *key,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
return count_tree(net, data, key, tuple, zone);
}
EXPORT_SYMBOL_GPL(nf_conncount_count);
struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family,
unsigned int keylen)
{
struct nf_conncount_data *data;
int ret, i;
if (keylen % sizeof(u32) ||
keylen / sizeof(u32) > MAX_KEYLEN ||
keylen == 0)
return ERR_PTR(-EINVAL);
net_get_random_once(&conncount_rnd, sizeof(conncount_rnd));
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return ERR_PTR(-ENOMEM);
ret = nf_ct_netns_get(net, family);
if (ret < 0) {
kfree(data);
return ERR_PTR(ret);
}
for (i = 0; i < ARRAY_SIZE(data->root); ++i)
data->root[i] = RB_ROOT;
data->keylen = keylen / sizeof(u32);
data->net = net;
INIT_WORK(&data->gc_work, tree_gc_worker);
return data;
}
EXPORT_SYMBOL_GPL(nf_conncount_init);
void nf_conncount_cache_free(struct nf_conncount_list *list)
{
struct nf_conncount_tuple *conn, *conn_n;
list_for_each_entry_safe(conn, conn_n, &list->head, node)
kmem_cache_free(conncount_conn_cachep, conn);
}
EXPORT_SYMBOL_GPL(nf_conncount_cache_free);
static void destroy_tree(struct rb_root *r)
{
struct nf_conncount_rb *rbconn;
struct rb_node *node;
while ((node = rb_first(r)) != NULL) {
rbconn = rb_entry(node, struct nf_conncount_rb, node);
rb_erase(node, r);
nf_conncount_cache_free(&rbconn->list);
kmem_cache_free(conncount_rb_cachep, rbconn);
}
}
void nf_conncount_destroy(struct net *net, unsigned int family,
struct nf_conncount_data *data)
{
unsigned int i;
cancel_work_sync(&data->gc_work);
nf_ct_netns_put(net, family);
for (i = 0; i < ARRAY_SIZE(data->root); ++i)
destroy_tree(&data->root[i]);
kfree(data);
}
EXPORT_SYMBOL_GPL(nf_conncount_destroy);
static int __init nf_conncount_modinit(void)
{
int i;
BUILD_BUG_ON(CONNCOUNT_LOCK_SLOTS > CONNCOUNT_SLOTS);
BUILD_BUG_ON((CONNCOUNT_SLOTS % CONNCOUNT_LOCK_SLOTS) != 0);
for (i = 0; i < CONNCOUNT_LOCK_SLOTS; ++i)
spin_lock_init(&nf_conncount_locks[i]);
conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple",
sizeof(struct nf_conncount_tuple),
0, 0, NULL);
if (!conncount_conn_cachep)
return -ENOMEM;
conncount_rb_cachep = kmem_cache_create("nf_conncount_rb",
sizeof(struct nf_conncount_rb),
0, 0, NULL);
if (!conncount_rb_cachep) {
kmem_cache_destroy(conncount_conn_cachep);
return -ENOMEM;
}
return 0;
}
static void __exit nf_conncount_modexit(void)
{
kmem_cache_destroy(conncount_conn_cachep);
kmem_cache_destroy(conncount_rb_cachep);
}
module_init(nf_conncount_modinit);
module_exit(nf_conncount_modexit);
MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>");
MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
MODULE_DESCRIPTION("netfilter: count number of connections matching a key");
MODULE_LICENSE("GPL");