blob: 05f392501c0ae3572250061b31defef7cde51fb5 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "ObjectID.h"
#include "atomfirmware.h"
#include "dc_bios_types.h"
#include "include/grph_object_ctrl_defs.h"
#include "include/bios_parser_interface.h"
#include "include/logger_interface.h"
#include "command_table2.h"
#include "bios_parser_helper.h"
#include "command_table_helper2.h"
#include "bios_parser2.h"
#include "bios_parser_types_internal2.h"
#include "bios_parser_interface.h"
#include "bios_parser_common.h"
#define DC_LOGGER \
bp->base.ctx->logger
#define LAST_RECORD_TYPE 0xff
#define SMU9_SYSPLL0_ID 0
static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
struct atom_i2c_record *record,
struct graphics_object_i2c_info *info);
static enum bp_result bios_parser_get_firmware_info(
struct dc_bios *dcb,
struct dc_firmware_info *info);
static enum bp_result bios_parser_get_encoder_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_encoder_cap_info *info);
static enum bp_result get_firmware_info_v3_1(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v3_2(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v3_4(
struct bios_parser *bp,
struct dc_firmware_info *info);
static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp,
struct atom_display_object_path_v2 *object);
static struct atom_encoder_caps_record *get_encoder_cap_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object);
#define BIOS_IMAGE_SIZE_OFFSET 2
#define BIOS_IMAGE_SIZE_UNIT 512
#define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table)
static void bios_parser2_destruct(struct bios_parser *bp)
{
kfree(bp->base.bios_local_image);
kfree(bp->base.integrated_info);
}
static void firmware_parser_destroy(struct dc_bios **dcb)
{
struct bios_parser *bp = BP_FROM_DCB(*dcb);
if (!bp) {
BREAK_TO_DEBUGGER();
return;
}
bios_parser2_destruct(bp);
kfree(bp);
*dcb = NULL;
}
static void get_atom_data_table_revision(
struct atom_common_table_header *atom_data_tbl,
struct atom_data_revision *tbl_revision)
{
if (!tbl_revision)
return;
/* initialize the revision to 0 which is invalid revision */
tbl_revision->major = 0;
tbl_revision->minor = 0;
if (!atom_data_tbl)
return;
tbl_revision->major =
(uint32_t) atom_data_tbl->format_revision & 0x3f;
tbl_revision->minor =
(uint32_t) atom_data_tbl->content_revision & 0x3f;
}
/* BIOS oject table displaypath is per connector.
* There is extra path not for connector. BIOS fill its encoderid as 0
*/
static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
unsigned int count = 0;
unsigned int i;
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++)
if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0)
count++;
break;
case 5:
for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++)
if (bp->object_info_tbl.v1_5->display_path[i].encoderobjid != 0)
count++;
break;
}
return count;
}
static struct graphics_object_id bios_parser_get_connector_id(
struct dc_bios *dcb,
uint8_t i)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct graphics_object_id object_id = dal_graphics_object_id_init(
0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
struct object_info_table *tbl = &bp->object_info_tbl;
struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4;
struct display_object_info_table_v1_5 *v1_5 = tbl->v1_5;
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
if (v1_4->number_of_path > i) {
/* If display_objid is generic object id, the encoderObj
* /extencoderobjId should be 0
*/
if (v1_4->display_path[i].encoderobjid != 0 &&
v1_4->display_path[i].display_objid != 0)
object_id = object_id_from_bios_object_id(
v1_4->display_path[i].display_objid);
}
break;
case 5:
if (v1_5->number_of_path > i) {
/* If display_objid is generic object id, the encoderObjId
* should be 0
*/
if (v1_5->display_path[i].encoderobjid != 0 &&
v1_5->display_path[i].display_objid != 0)
object_id = object_id_from_bios_object_id(
v1_5->display_path[i].display_objid);
}
break;
}
return object_id;
}
static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
struct graphics_object_id object_id, uint32_t index,
struct graphics_object_id *src_object_id)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
unsigned int i;
enum bp_result bp_result = BP_RESULT_BADINPUT;
struct graphics_object_id obj_id = { 0 };
struct object_info_table *tbl = &bp->object_info_tbl;
if (!src_object_id)
return bp_result;
switch (object_id.type) {
/* Encoder's Source is GPU. BIOS does not provide GPU, since all
* displaypaths point to same GPU (0x1100). Hardcode GPU object type
*/
case OBJECT_TYPE_ENCODER:
/* TODO: since num of src must be less than 2.
* If found in for loop, should break.
* DAL2 implementation may be changed too
*/
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
for (i = 0; i < tbl->v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_4->display_path[i].encoderobjid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id =
object_id_from_bios_object_id(
0x1100);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
case 5:
for (i = 0; i < tbl->v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_5->display_path[i].encoderobjid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id =
object_id_from_bios_object_id(
0x1100);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
}
break;
case OBJECT_TYPE_CONNECTOR:
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
for (i = 0; i < tbl->v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_4->display_path[i]
.display_objid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id =
object_id_from_bios_object_id(
tbl->v1_4
->display_path[i]
.encoderobjid);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
}
bp_result = BP_RESULT_OK;
break;
case 5:
for (i = 0; i < tbl->v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_5->display_path[i].display_objid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id = object_id_from_bios_object_id(
tbl->v1_5->display_path[i].encoderobjid);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
default:
bp_result = BP_RESULT_OK;
break;
}
return bp_result;
}
/* from graphics_object_id, find display path which includes the object_id */
static struct atom_display_object_path_v2 *get_bios_object(
struct bios_parser *bp,
struct graphics_object_id id)
{
unsigned int i;
struct graphics_object_id obj_id = {0};
switch (id.type) {
case OBJECT_TYPE_ENCODER:
for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_4->display_path[i].encoderobjid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_4->display_path[i];
}
fallthrough;
case OBJECT_TYPE_CONNECTOR:
case OBJECT_TYPE_GENERIC:
/* Both Generic and Connector Object ID
* will be stored on display_objid
*/
for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_4->display_path[i].display_objid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_4->display_path[i];
}
fallthrough;
default:
return NULL;
}
}
/* from graphics_object_id, find display path which includes the object_id */
static struct atom_display_object_path_v3 *get_bios_object_from_path_v3(struct bios_parser *bp,
struct graphics_object_id id)
{
unsigned int i;
struct graphics_object_id obj_id = {0};
switch (id.type) {
case OBJECT_TYPE_ENCODER:
for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_5->display_path[i].encoderobjid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_5->display_path[i];
}
break;
case OBJECT_TYPE_CONNECTOR:
case OBJECT_TYPE_GENERIC:
/* Both Generic and Connector Object ID
* will be stored on display_objid
*/
for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_5->display_path[i].display_objid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_5->display_path[i];
}
break;
default:
return NULL;
}
return NULL;
}
static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_i2c_info *info)
{
uint32_t offset;
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
struct atom_common_record_header *header;
struct atom_i2c_record *record;
struct atom_i2c_record dummy_record = {0};
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!info)
return BP_RESULT_BADINPUT;
if (id.type == OBJECT_TYPE_GENERIC) {
dummy_record.i2c_id = id.id;
if (get_gpio_i2c_info(bp, &dummy_record, info) == BP_RESULT_OK)
return BP_RESULT_OK;
else
return BP_RESULT_NORECORD;
}
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
offset = object_path_v3->disp_recordoffset + bp->object_info_tbl_offset;
break;
}
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type == ATOM_I2C_RECORD_TYPE
&& sizeof(struct atom_i2c_record) <=
header->record_size) {
/* get the I2C info */
record = (struct atom_i2c_record *) header;
if (get_gpio_i2c_info(bp, record, info) ==
BP_RESULT_OK)
return BP_RESULT_OK;
}
offset += header->record_size;
}
return BP_RESULT_NORECORD;
}
static enum bp_result get_gpio_i2c_info(
struct bios_parser *bp,
struct atom_i2c_record *record,
struct graphics_object_i2c_info *info)
{
struct atom_gpio_pin_lut_v2_1 *header;
uint32_t count = 0;
unsigned int table_index = 0;
bool find_valid = false;
struct atom_gpio_pin_assignment *pin;
if (!info)
return BP_RESULT_BADINPUT;
/* get the GPIO_I2C info */
if (!DATA_TABLES(gpio_pin_lut))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
DATA_TABLES(gpio_pin_lut));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(struct atom_common_table_header) +
sizeof(struct atom_gpio_pin_assignment) >
le16_to_cpu(header->table_header.structuresize))
return BP_RESULT_BADBIOSTABLE;
/* TODO: is version change? */
if (header->table_header.content_revision != 1)
return BP_RESULT_UNSUPPORTED;
/* get data count */
count = (le16_to_cpu(header->table_header.structuresize)
- sizeof(struct atom_common_table_header))
/ sizeof(struct atom_gpio_pin_assignment);
pin = (struct atom_gpio_pin_assignment *) header->gpio_pin;
for (table_index = 0; table_index < count; table_index++) {
if (((record->i2c_id & I2C_HW_CAP) == (pin->gpio_id & I2C_HW_CAP)) &&
((record->i2c_id & I2C_HW_ENGINE_ID_MASK) == (pin->gpio_id & I2C_HW_ENGINE_ID_MASK)) &&
((record->i2c_id & I2C_HW_LANE_MUX) == (pin->gpio_id & I2C_HW_LANE_MUX))) {
/* still valid */
find_valid = true;
break;
}
pin = (struct atom_gpio_pin_assignment *)((uint8_t *)pin + sizeof(struct atom_gpio_pin_assignment));
}
/* If we don't find the entry that we are looking for then
* we will return BP_Result_BadBiosTable.
*/
if (find_valid == false)
return BP_RESULT_BADBIOSTABLE;
/* get the GPIO_I2C_INFO */
info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false;
info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX;
info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4;
info->i2c_slave_address = record->i2c_slave_addr;
/* TODO: check how to get register offset for en, Y, etc. */
info->gpio_info.clk_a_register_index = le16_to_cpu(pin->data_a_reg_index);
info->gpio_info.clk_a_shift = pin->gpio_bitshift;
return BP_RESULT_OK;
}
static struct atom_hpd_int_record *get_hpd_record_for_path_v3(struct bios_parser *bp,
struct atom_display_object_path_v3 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
if (header->record_type == ATOM_RECORD_END_TYPE ||
!header->record_size)
break;
if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
&& sizeof(struct atom_hpd_int_record) <=
header->record_size)
return (struct atom_hpd_int_record *) header;
offset += header->record_size;
}
return NULL;
}
static enum bp_result bios_parser_get_hpd_info(
struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_hpd_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
struct atom_hpd_int_record *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_hpd_record(bp, object);
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
record = get_hpd_record_for_path_v3(bp, object_path_v3);
break;
}
if (record != NULL) {
info->hpd_int_gpio_uid = record->pin_id;
info->hpd_active = record->plugin_pin_state;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static struct atom_hpd_int_record *get_hpd_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = le16_to_cpu(object->disp_recordoffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
&& sizeof(struct atom_hpd_int_record) <=
header->record_size)
return (struct atom_hpd_int_record *) header;
offset += header->record_size;
}
return NULL;
}
/**
* bios_parser_get_gpio_pin_info
* Get GpioPin information of input gpio id
*
* @dcb: pointer to the DC BIOS
* @gpio_id: GPIO ID
* @info: GpioPin information structure
* return: Bios parser result code
* note:
* to get the GPIO PIN INFO, we need:
* 1. get the GPIO_ID from other object table, see GetHPDInfo()
* 2. in DATA_TABLE.GPIO_Pin_LUT, search all records,
* to get the registerA offset/mask
*/
static enum bp_result bios_parser_get_gpio_pin_info(
struct dc_bios *dcb,
uint32_t gpio_id,
struct gpio_pin_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_gpio_pin_lut_v2_1 *header;
uint32_t count = 0;
uint32_t i = 0;
if (!DATA_TABLES(gpio_pin_lut))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
DATA_TABLES(gpio_pin_lut));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(struct atom_common_table_header) +
sizeof(struct atom_gpio_pin_assignment)
> le16_to_cpu(header->table_header.structuresize))
return BP_RESULT_BADBIOSTABLE;
if (header->table_header.content_revision != 1)
return BP_RESULT_UNSUPPORTED;
/* Temporary hard code gpio pin info */
count = (le16_to_cpu(header->table_header.structuresize)
- sizeof(struct atom_common_table_header))
/ sizeof(struct atom_gpio_pin_assignment);
for (i = 0; i < count; ++i) {
if (header->gpio_pin[i].gpio_id != gpio_id)
continue;
info->offset =
(uint32_t) le16_to_cpu(
header->gpio_pin[i].data_a_reg_index);
info->offset_y = info->offset + 2;
info->offset_en = info->offset + 1;
info->offset_mask = info->offset - 1;
info->mask = (uint32_t) (1 <<
header->gpio_pin[i].gpio_bitshift);
info->mask_y = info->mask + 2;
info->mask_en = info->mask + 1;
info->mask_mask = info->mask - 1;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static struct device_id device_type_from_device_id(uint16_t device_id)
{
struct device_id result_device_id;
result_device_id.raw_device_tag = device_id;
switch (device_id) {
case ATOM_DISPLAY_LCD1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 1;
break;
case ATOM_DISPLAY_LCD2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 2;
break;
case ATOM_DISPLAY_DFP1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 1;
break;
case ATOM_DISPLAY_DFP2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 2;
break;
case ATOM_DISPLAY_DFP3_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 3;
break;
case ATOM_DISPLAY_DFP4_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 4;
break;
case ATOM_DISPLAY_DFP5_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 5;
break;
case ATOM_DISPLAY_DFP6_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 6;
break;
default:
BREAK_TO_DEBUGGER(); /* Invalid device Id */
result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
result_device_id.enum_id = 0;
}
return result_device_id;
}
static enum bp_result bios_parser_get_device_tag(
struct dc_bios *dcb,
struct graphics_object_id connector_object_id,
uint32_t device_tag_index,
struct connector_device_tag_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
if (!info)
return BP_RESULT_BADINPUT;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
/* getBiosObject will return MXM object */
object = get_bios_object(bp, connector_object_id);
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
info->acpi_device = 0; /* BIOS no longer provides this */
info->dev_id = device_type_from_device_id(object->device_tag);
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, connector_object_id);
if (!object_path_v3) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
info->acpi_device = 0; /* BIOS no longer provides this */
info->dev_id = device_type_from_device_id(object_path_v3->device_tag);
break;
}
return BP_RESULT_OK;
}
static enum bp_result get_ss_info_v4_1(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
struct atom_smu_info_v3_3 *smu_info = NULL;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
ss_info->type.STEP_AND_DELAY_INFO = false;
ss_info->spread_percentage_divider = 1000;
/* BIOS no longer uses target clock. Always enable for now */
ss_info->target_clock_range = 0xffffffff;
switch (id) {
case AS_SIGNAL_TYPE_DVI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dvi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dvi_ss_rate_10hz * 10;
if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_HDMI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->hdmi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
/* TODO LVDS not support anymore? */
case AS_SIGNAL_TYPE_DISPLAY_PORT:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dp_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dp_ss_rate_10hz * 10;
if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_GPU_PLL:
/* atom_firmware: DAL only get data from dce_info table.
* if data within smu_info is needed for DAL, VBIOS should
* copy it into dce_info
*/
result = BP_RESULT_UNSUPPORTED;
break;
case AS_SIGNAL_TYPE_XGMI:
smu_info = GET_IMAGE(struct atom_smu_info_v3_3,
DATA_TABLES(smu_info));
if (!smu_info)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info->gpuclk_ss_percentage);
ss_info->spread_spectrum_percentage =
smu_info->waflclk_ss_percentage;
ss_info->spread_spectrum_range =
smu_info->gpuclk_ss_rate_10hz * 10;
if (smu_info->waflclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_XGMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
default:
result = BP_RESULT_UNSUPPORTED;
}
return result;
}
static enum bp_result get_ss_info_v4_2(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
struct atom_smu_info_v3_1 *smu_info = NULL;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
if (!DATA_TABLES(smu_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
smu_info = GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info));
if (!smu_info)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info->gpuclk_ss_percentage);
ss_info->type.STEP_AND_DELAY_INFO = false;
ss_info->spread_percentage_divider = 1000;
/* BIOS no longer uses target clock. Always enable for now */
ss_info->target_clock_range = 0xffffffff;
switch (id) {
case AS_SIGNAL_TYPE_DVI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dvi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dvi_ss_rate_10hz * 10;
if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_HDMI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->hdmi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
/* TODO LVDS not support anymore? */
case AS_SIGNAL_TYPE_DISPLAY_PORT:
ss_info->spread_spectrum_percentage =
smu_info->gpuclk_ss_percentage;
ss_info->spread_spectrum_range =
smu_info->gpuclk_ss_rate_10hz * 10;
if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_GPU_PLL:
/* atom_firmware: DAL only get data from dce_info table.
* if data within smu_info is needed for DAL, VBIOS should
* copy it into dce_info
*/
result = BP_RESULT_UNSUPPORTED;
break;
default:
result = BP_RESULT_UNSUPPORTED;
}
return result;
}
static enum bp_result get_ss_info_v4_5(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
ss_info->type.STEP_AND_DELAY_INFO = false;
ss_info->spread_percentage_divider = 1000;
/* BIOS no longer uses target clock. Always enable for now */
ss_info->target_clock_range = 0xffffffff;
switch (id) {
case AS_SIGNAL_TYPE_DVI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dvi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dvi_ss_rate_10hz * 10;
if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_HDMI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->hdmi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_DISPLAY_PORT:
if (bp->base.integrated_info) {
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", bp->base.integrated_info->gpuclk_ss_percentage);
ss_info->spread_spectrum_percentage =
bp->base.integrated_info->gpuclk_ss_percentage;
ss_info->type.CENTER_MODE =
bp->base.integrated_info->gpuclk_ss_type;
} else {
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dp_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dp_ss_rate_10hz * 10;
if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
}
DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_GPU_PLL:
/* atom_smu_info_v4_0 does not have fields for SS for SMU Display PLL anymore.
* SMU Display PLL supposed to be without spread.
* Better place for it would be in atom_display_controller_info_v4_5 table.
*/
result = BP_RESULT_UNSUPPORTED;
break;
default:
result = BP_RESULT_UNSUPPORTED;
break;
}
return result;
}
/**
* bios_parser_get_spread_spectrum_info
* Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
* ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
* ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info
* ver 3.1,
* there is only one entry for each signal /ss id. However, there is
* no planning of supporting multiple spread Sprectum entry for EverGreen
* @dcb: pointer to the DC BIOS
* @signal: ASSignalType to be converted to info index
* @index: number of entries that match the converted info index
* @ss_info: sprectrum information structure,
* return: Bios parser result code
*/
static enum bp_result bios_parser_get_spread_spectrum_info(
struct dc_bios *dcb,
enum as_signal_type signal,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!ss_info) /* check for bad input */
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
return get_ss_info_v4_1(bp, signal, index, ss_info);
case 2:
case 3:
case 4:
return get_ss_info_v4_2(bp, signal, index, ss_info);
case 5:
return get_ss_info_v4_5(bp, signal, index, ss_info);
default:
ASSERT(0);
break;
}
break;
default:
break;
}
/* there can not be more then one entry for SS Info table */
return result;
}
static enum bp_result get_soc_bb_info_v4_4(
struct bios_parser *bp,
struct bp_soc_bb_info *soc_bb_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_4 *disp_cntl_tbl = NULL;
if (!soc_bb_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
if (!DATA_TABLES(smu_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
soc_bb_info->dram_clock_change_latency_100ns = disp_cntl_tbl->max_mclk_chg_lat;
soc_bb_info->dram_sr_enter_exit_latency_100ns = disp_cntl_tbl->max_sr_enter_exit_lat;
soc_bb_info->dram_sr_exit_latency_100ns = disp_cntl_tbl->max_sr_exit_lat;
return result;
}
static enum bp_result get_soc_bb_info_v4_5(
struct bios_parser *bp,
struct bp_soc_bb_info *soc_bb_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL;
if (!soc_bb_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
soc_bb_info->dram_clock_change_latency_100ns = disp_cntl_tbl->max_mclk_chg_lat;
soc_bb_info->dram_sr_enter_exit_latency_100ns = disp_cntl_tbl->max_sr_enter_exit_lat;
soc_bb_info->dram_sr_exit_latency_100ns = disp_cntl_tbl->max_sr_exit_lat;
return result;
}
static enum bp_result bios_parser_get_soc_bb_info(
struct dc_bios *dcb,
struct bp_soc_bb_info *soc_bb_info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!soc_bb_info) /* check for bad input */
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
case 2:
case 3:
break;
case 4:
result = get_soc_bb_info_v4_4(bp, soc_bb_info);
break;
case 5:
result = get_soc_bb_info_v4_5(bp, soc_bb_info);
break;
default:
break;
}
break;
default:
break;
}
return result;
}
static enum bp_result get_disp_caps_v4_1(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_2(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_3(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_3 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_3,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_4(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_4 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_5(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result bios_parser_get_lttpr_interop(
struct dc_bios *dcb,
uint8_t *dce_caps)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
result = get_disp_caps_v4_1(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 2:
result = get_disp_caps_v4_2(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 3:
result = get_disp_caps_v4_3(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 4:
result = get_disp_caps_v4_4(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 5:
result = get_disp_caps_v4_5(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
default:
break;
}
break;
default:
break;
}
DC_LOG_BIOS("DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE: %d tbl_revision.major = %d tbl_revision.minor = %d\n", *dce_caps, tbl_revision.major, tbl_revision.minor);
return result;
}
static enum bp_result bios_parser_get_lttpr_caps(
struct dc_bios *dcb,
uint8_t *dce_caps)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
*dce_caps = 0;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
result = get_disp_caps_v4_1(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 2:
result = get_disp_caps_v4_2(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 3:
result = get_disp_caps_v4_3(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 4:
result = get_disp_caps_v4_4(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 5:
result = get_disp_caps_v4_5(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
default:
break;
}
break;
default:
break;
}
DC_LOG_BIOS("DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE: %d tbl_revision.major = %d tbl_revision.minor = %d\n", *dce_caps, tbl_revision.major, tbl_revision.minor);
if (dcb->ctx->dc->config.force_bios_enable_lttpr && *dce_caps == 0) {
*dce_caps = 1;
DC_LOG_BIOS("DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE: forced enabled");
}
return result;
}
static enum bp_result get_embedded_panel_info_v2_1(
struct bios_parser *bp,
struct embedded_panel_info *info)
{
struct lcd_info_v2_1 *lvds;
if (!info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(lcd_info))
return BP_RESULT_UNSUPPORTED;
lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info));
if (!lvds)
return BP_RESULT_BADBIOSTABLE;
/* TODO: previous vv1_3, should v2_1 */
if (!((lvds->table_header.format_revision == 2)
&& (lvds->table_header.content_revision >= 1)))
return BP_RESULT_UNSUPPORTED;
memset(info, 0, sizeof(struct embedded_panel_info));
/* We need to convert from 10KHz units into KHz units */
info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10;
/* usHActive does not include borders, according to VBIOS team */
info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active);
/* usHBlanking_Time includes borders, so we should really be
* subtractingborders duing this translation, but LVDS generally
* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders
*/
info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time);
/* usVActive does not include borders, according to VBIOS team*/
info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active);
/* usVBlanking_Time includes borders, so we should really be
* subtracting borders duing this translation, but LVDS generally
* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders
*/
info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time);
info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset);
info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width);
info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset);
info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth);
info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border;
info->lcd_timing.vertical_border = lvds->lcd_timing.v_border;
/* not provided by VBIOS */
info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0;
info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
& ATOM_HSYNC_POLARITY);
info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
& ATOM_VSYNC_POLARITY);
/* not provided by VBIOS */
info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0;
info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
& ATOM_H_REPLICATIONBY2);
info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
& ATOM_V_REPLICATIONBY2);
info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo
& ATOM_COMPOSITESYNC);
info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE);
/* not provided by VBIOS*/
info->lcd_timing.misc_info.DOUBLE_CLOCK = 0;
/* not provided by VBIOS*/
info->ss_id = 0;
info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID);
return BP_RESULT_OK;
}
static enum bp_result bios_parser_get_embedded_panel_info(
struct dc_bios *dcb,
struct embedded_panel_info *info)
{
struct bios_parser
*bp = BP_FROM_DCB(dcb);
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!DATA_TABLES(lcd_info))
return BP_RESULT_FAILURE;
header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info));
if (!header)
return BP_RESULT_BADBIOSTABLE;
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 2:
switch (tbl_revision.minor) {
case 1:
return get_embedded_panel_info_v2_1(bp, info);
default:
break;
}
break;
default:
break;
}
return BP_RESULT_FAILURE;
}
static uint32_t get_support_mask_for_device_id(struct device_id device_id)
{
enum dal_device_type device_type = device_id.device_type;
uint32_t enum_id = device_id.enum_id;
switch (device_type) {
case DEVICE_TYPE_LCD:
switch (enum_id) {
case 1:
return ATOM_DISPLAY_LCD1_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_DFP:
switch (enum_id) {
case 1:
return ATOM_DISPLAY_DFP1_SUPPORT;
case 2:
return ATOM_DISPLAY_DFP2_SUPPORT;
case 3:
return ATOM_DISPLAY_DFP3_SUPPORT;
case 4:
return ATOM_DISPLAY_DFP4_SUPPORT;
case 5:
return ATOM_DISPLAY_DFP5_SUPPORT;
case 6:
return ATOM_DISPLAY_DFP6_SUPPORT;
default:
break;
}
break;
default:
break;
}
/* Unidentified device ID, return empty support mask. */
return 0;
}
static bool bios_parser_is_device_id_supported(
struct dc_bios *dcb,
struct device_id id)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
uint32_t mask = get_support_mask_for_device_id(id);
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) & mask) != 0;
break;
case 5:
return (le16_to_cpu(bp->object_info_tbl.v1_5->supporteddevices) & mask) != 0;
break;
}
return false;
}
static uint32_t bios_parser_get_ss_entry_number(
struct dc_bios *dcb,
enum as_signal_type signal)
{
/* TODO: DAL2 atomfirmware implementation does not need this.
* why DAL3 need this?
*/
return 1;
}
static enum bp_result bios_parser_transmitter_control(
struct dc_bios *dcb,
struct bp_transmitter_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.transmitter_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.transmitter_control(bp, cntl);
}
static enum bp_result bios_parser_encoder_control(
struct dc_bios *dcb,
struct bp_encoder_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.dig_encoder_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.dig_encoder_control(bp, cntl);
}
static enum bp_result bios_parser_set_pixel_clock(
struct dc_bios *dcb,
struct bp_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_pixel_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
}
static enum bp_result bios_parser_set_dce_clock(
struct dc_bios *dcb,
struct bp_set_dce_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_dce_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_dce_clock(bp, bp_params);
}
static enum bp_result bios_parser_program_crtc_timing(
struct dc_bios *dcb,
struct bp_hw_crtc_timing_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_crtc_timing)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
}
static enum bp_result bios_parser_enable_crtc(
struct dc_bios *dcb,
enum controller_id id,
bool enable)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_crtc)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_crtc(bp, id, enable);
}
static enum bp_result bios_parser_enable_disp_power_gating(
struct dc_bios *dcb,
enum controller_id controller_id,
enum bp_pipe_control_action action)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_disp_power_gating)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
action);
}
static enum bp_result bios_parser_enable_lvtma_control(
struct dc_bios *dcb,
uint8_t uc_pwr_on,
uint8_t pwrseq_instance,
uint8_t bypass_panel_control_wait)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_lvtma_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_lvtma_control(bp, uc_pwr_on, pwrseq_instance, bypass_panel_control_wait);
}
static bool bios_parser_is_accelerated_mode(
struct dc_bios *dcb)
{
return bios_is_accelerated_mode(dcb);
}
/**
* bios_parser_set_scratch_critical_state - update critical state bit
* in VBIOS scratch register
*
* @dcb: pointer to the DC BIO
* @state: set or reset state
*/
static void bios_parser_set_scratch_critical_state(
struct dc_bios *dcb,
bool state)
{
bios_set_scratch_critical_state(dcb, state);
}
static enum bp_result bios_parser_get_firmware_info(
struct dc_bios *dcb,
struct dc_firmware_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
static enum bp_result result = BP_RESULT_BADBIOSTABLE;
struct atom_common_table_header *header;
struct atom_data_revision revision;
if (info && DATA_TABLES(firmwareinfo)) {
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(firmwareinfo));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 3:
switch (revision.minor) {
case 1:
result = get_firmware_info_v3_1(bp, info);
break;
case 2:
case 3:
result = get_firmware_info_v3_2(bp, info);
break;
case 4:
result = get_firmware_info_v3_4(bp, info);
break;
default:
break;
}
break;
default:
break;
}
}
return result;
}
static enum bp_result get_firmware_info_v3_1(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
struct atom_firmware_info_v3_1 *firmware_info;
struct atom_display_controller_info_v4_1 *dce_info = NULL;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1,
DATA_TABLES(firmwareinfo));
dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!firmware_info || !dce_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. */
/* We need to convert from 10KHz units into KHz units */
info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10;
/* 27MHz for Vega10: */
info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
/* Hardcode frequency if BIOS gives no DCE Ref Clk */
if (info->pll_info.crystal_frequency == 0)
info->pll_info.crystal_frequency = 27000;
/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10;
info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;
/* Get GPU PLL VCO Clock */
if (bp->cmd_tbl.get_smu_clock_info != NULL) {
/* VBIOS gives in 10KHz */
info->smu_gpu_pll_output_freq =
bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
}
info->oem_i2c_present = false;
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v3_2(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
struct atom_firmware_info_v3_2 *firmware_info;
struct atom_display_controller_info_v4_1 *dce_info = NULL;
struct atom_common_table_header *header;
struct atom_data_revision revision;
struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL;
struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2,
DATA_TABLES(firmwareinfo));
dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!firmware_info || !dce_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(smu_info));
get_atom_data_table_revision(header, &revision);
if (revision.minor == 2) {
/* Vega12 */
smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2,
DATA_TABLES(smu_info));
if (!smu_info_v3_2)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_2->gpuclk_ss_percentage);
info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10;
} else if (revision.minor == 3) {
/* Vega20 */
smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3,
DATA_TABLES(smu_info));
if (!smu_info_v3_3)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_3->gpuclk_ss_percentage);
info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10;
}
// We need to convert from 10KHz units into KHz units.
info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
/* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */
info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
/* Hardcode frequency if BIOS gives no DCE Ref Clk */
if (info->pll_info.crystal_frequency == 0) {
if (revision.minor == 2)
info->pll_info.crystal_frequency = 27000;
else if (revision.minor == 3)
info->pll_info.crystal_frequency = 100000;
}
/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10;
info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;
/* Get GPU PLL VCO Clock */
if (bp->cmd_tbl.get_smu_clock_info != NULL) {
if (revision.minor == 2)
info->smu_gpu_pll_output_freq =
bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
else if (revision.minor == 3)
info->smu_gpu_pll_output_freq =
bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10;
}
if (firmware_info->board_i2c_feature_id == 0x2) {
info->oem_i2c_present = true;
info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id;
} else {
info->oem_i2c_present = false;
}
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v3_4(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
struct atom_firmware_info_v3_4 *firmware_info;
struct atom_common_table_header *header;
struct atom_data_revision revision;
struct atom_display_controller_info_v4_1 *dce_info_v4_1 = NULL;
struct atom_display_controller_info_v4_4 *dce_info_v4_4 = NULL;
struct atom_smu_info_v3_5 *smu_info_v3_5 = NULL;
struct atom_display_controller_info_v4_5 *dce_info_v4_5 = NULL;
struct atom_smu_info_v4_0 *smu_info_v4_0 = NULL;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(struct atom_firmware_info_v3_4,
DATA_TABLES(firmwareinfo));
if (!firmware_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 4:
switch (revision.minor) {
case 5:
dce_info_v4_5 = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!dce_info_v4_5)
return BP_RESULT_BADBIOSTABLE;
/* 100MHz expected */
info->pll_info.crystal_frequency = dce_info_v4_5->dce_refclk_10khz * 10;
info->dp_phy_ref_clk = dce_info_v4_5->dpphy_refclk_10khz * 10;
/* 50MHz expected */
info->i2c_engine_ref_clk = dce_info_v4_5->i2c_engine_refclk_10khz * 10;
/* For DCN32/321 Display PLL VCO Frequency from dce_info_v4_5 may not be reliable */
break;
case 4:
dce_info_v4_4 = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!dce_info_v4_4)
return BP_RESULT_BADBIOSTABLE;
/* 100MHz expected */
info->pll_info.crystal_frequency = dce_info_v4_4->dce_refclk_10khz * 10;
info->dp_phy_ref_clk = dce_info_v4_4->dpphy_refclk_10khz * 10;
/* 50MHz expected */
info->i2c_engine_ref_clk = dce_info_v4_4->i2c_engine_refclk_10khz * 10;
/* Get SMU Display PLL VCO Frequency in KHz*/
info->smu_gpu_pll_output_freq = dce_info_v4_4->dispclk_pll_vco_freq * 10;
break;
default:
/* should not come here, keep as backup, as was before */
dce_info_v4_1 = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!dce_info_v4_1)
return BP_RESULT_BADBIOSTABLE;
info->pll_info.crystal_frequency = dce_info_v4_1->dce_refclk_10khz * 10;
info->dp_phy_ref_clk = dce_info_v4_1->dpphy_refclk_10khz * 10;
info->i2c_engine_ref_clk = dce_info_v4_1->i2c_engine_refclk_10khz * 10;
break;
}
break;
default:
ASSERT(0);
break;
}
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(smu_info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 3:
switch (revision.minor) {
case 5:
smu_info_v3_5 = GET_IMAGE(struct atom_smu_info_v3_5,
DATA_TABLES(smu_info));
if (!smu_info_v3_5)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_5->gpuclk_ss_percentage);
info->default_engine_clk = smu_info_v3_5->bootup_dcefclk_10khz * 10;
break;
default:
break;
}
break;
case 4:
switch (revision.minor) {
case 0:
smu_info_v4_0 = GET_IMAGE(struct atom_smu_info_v4_0,
DATA_TABLES(smu_info));
if (!smu_info_v4_0)
return BP_RESULT_BADBIOSTABLE;
/* For DCN32/321 bootup DCFCLK from smu_info_v4_0 may not be reliable */
break;
default:
break;
}
break;
default:
break;
}
// We need to convert from 10KHz units into KHz units.
info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
if (firmware_info->board_i2c_feature_id == 0x2) {
info->oem_i2c_present = true;
info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id;
} else {
info->oem_i2c_present = false;
}
return BP_RESULT_OK;
}
static enum bp_result bios_parser_get_encoder_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_encoder_cap_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_encoder_caps_record *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
#if defined(CONFIG_DRM_AMD_DC_FP)
/* encoder cap record not available in v1_5 */
if (bp->object_info_tbl.revision.minor == 5)
return BP_RESULT_NORECORD;
#endif
object = get_bios_object(bp, object_id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_encoder_cap_record(bp, object);
if (!record)
return BP_RESULT_NORECORD;
DC_LOG_BIOS("record->encodercaps 0x%x for object_id 0x%x", record->encodercaps, object_id.id);
info->DP_HBR2_CAP = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0;
info->DP_HBR2_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0;
info->DP_HBR3_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0;
info->HDMI_6GB_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0;
info->IS_DP2_CAPABLE = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_DP2) ? 1 : 0;
info->DP_UHBR10_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_UHBR10_EN) ? 1 : 0;
info->DP_UHBR13_5_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_UHBR13_5_EN) ? 1 : 0;
info->DP_UHBR20_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_UHBR20_EN) ? 1 : 0;
info->DP_IS_USB_C = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_USB_C_TYPE) ? 1 : 0;
DC_LOG_BIOS("\t info->DP_IS_USB_C %d", info->DP_IS_USB_C);
return BP_RESULT_OK;
}
static struct atom_encoder_caps_record *get_encoder_cap_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->encoder_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE)
continue;
if (sizeof(struct atom_encoder_caps_record) <=
header->record_size)
return (struct atom_encoder_caps_record *)header;
}
return NULL;
}
static struct atom_disp_connector_caps_record *get_disp_connector_caps_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_DISP_CONNECTOR_CAPS_RECORD_TYPE)
continue;
if (sizeof(struct atom_disp_connector_caps_record) <=
header->record_size)
return (struct atom_disp_connector_caps_record *)header;
}
return NULL;
}
static struct atom_connector_caps_record *get_connector_caps_record(struct bios_parser *bp,
struct atom_display_object_path_v3 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == ATOM_RECORD_END_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_CONNECTOR_CAP_RECORD_TYPE)
continue;
if (sizeof(struct atom_connector_caps_record) <= header->record_size)
return (struct atom_connector_caps_record *)header;
}
return NULL;
}
static enum bp_result bios_parser_get_disp_connector_caps_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_disp_connector_caps_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
struct atom_connector_caps_record *record_path_v3;
struct atom_disp_connector_caps_record *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
object = get_bios_object(bp, object_id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_disp_connector_caps_record(bp, object);
if (!record)
return BP_RESULT_NORECORD;
info->INTERNAL_DISPLAY =
(record->connectcaps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY) ? 1 : 0;
info->INTERNAL_DISPLAY_BL =
(record->connectcaps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY_BL) ? 1 : 0;
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, object_id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
record_path_v3 = get_connector_caps_record(bp, object_path_v3);
if (!record_path_v3)
return BP_RESULT_NORECORD;
info->INTERNAL_DISPLAY = (record_path_v3->connector_caps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY)
? 1 : 0;
info->INTERNAL_DISPLAY_BL = (record_path_v3->connector_caps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY_BL)
? 1 : 0;
break;
}
return BP_RESULT_OK;
}
static struct atom_connector_speed_record *get_connector_speed_cap_record(struct bios_parser *bp,
struct atom_display_object_path_v3 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == ATOM_RECORD_END_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_CONNECTOR_SPEED_UPTO)
continue;
if (sizeof(struct atom_connector_speed_record) <= header->record_size)
return (struct atom_connector_speed_record *)header;
}
return NULL;
}
static enum bp_result bios_parser_get_connector_speed_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_connector_speed_cap_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v3 *object_path_v3;
//struct atom_connector_speed_record *record = NULL;
struct atom_connector_speed_record *record;
if (!info)
return BP_RESULT_BADINPUT;
object_path_v3 = get_bios_object_from_path_v3(bp, object_id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
record = get_connector_speed_cap_record(bp, object_path_v3);
if (!record)
return BP_RESULT_NORECORD;
info->DP_HBR2_EN = (record->connector_max_speed >= 5400) ? 1 : 0;
info->DP_HBR3_EN = (record->connector_max_speed >= 8100) ? 1 : 0;
info->HDMI_6GB_EN = (record->connector_max_speed >= 5940) ? 1 : 0;
info->DP_UHBR10_EN = (record->connector_max_speed >= 10000) ? 1 : 0;
info->DP_UHBR13_5_EN = (record->connector_max_speed >= 13500) ? 1 : 0;
info->DP_UHBR20_EN = (record->connector_max_speed >= 20000) ? 1 : 0;
return BP_RESULT_OK;
}
static enum bp_result get_vram_info_v23(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v2_3 *info_v23;
static enum bp_result result = BP_RESULT_OK;
info_v23 = GET_IMAGE(struct atom_vram_info_header_v2_3,
DATA_TABLES(vram_info));
if (info_v23 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v23->vram_module[0].channel_num;
info->dram_channel_width_bytes = (1 << info_v23->vram_module[0].channel_width) / 8;
return result;
}
static enum bp_result get_vram_info_v24(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v2_4 *info_v24;
static enum bp_result result = BP_RESULT_OK;
info_v24 = GET_IMAGE(struct atom_vram_info_header_v2_4,
DATA_TABLES(vram_info));
if (info_v24 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v24->vram_module[0].channel_num;
info->dram_channel_width_bytes = (1 << info_v24->vram_module[0].channel_width) / 8;
return result;
}
static enum bp_result get_vram_info_v25(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v2_5 *info_v25;
static enum bp_result result = BP_RESULT_OK;
info_v25 = GET_IMAGE(struct atom_vram_info_header_v2_5,
DATA_TABLES(vram_info));
if (info_v25 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v25->vram_module[0].channel_num;
info->dram_channel_width_bytes = (1 << info_v25->vram_module[0].channel_width) / 8;
return result;
}
static enum bp_result get_vram_info_v30(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v3_0 *info_v30;
enum bp_result result = BP_RESULT_OK;
info_v30 = GET_IMAGE(struct atom_vram_info_header_v3_0,
DATA_TABLES(vram_info));
if (info_v30 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v30->channel_num;
info->dram_channel_width_bytes = (1 << info_v30->channel_width) / 8;
return result;
}
/*
* get_integrated_info_v11
*
* @brief
* Get V8 integrated BIOS information
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* static enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result get_integrated_info_v11(
struct bios_parser *bp,
struct integrated_info *info)
{
struct atom_integrated_system_info_v1_11 *info_v11;
uint32_t i;
info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11,
DATA_TABLES(integratedsysteminfo));
if (info_v11 == NULL)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v11->gpuclk_ss_percentage);
info->gpu_cap_info =
le32_to_cpu(info_v11->gpucapinfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v11->system_config);
info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo);
info->memory_type = info_v11->memorytype;
info->ma_channel_number = info_v11->umachannelnumber;
info->lvds_ss_percentage =
le16_to_cpu(info_v11->lvds_ss_percentage);
info->dp_ss_control =
le16_to_cpu(info_v11->reserved1);
info->lvds_sspread_rate_in_10hz =
le16_to_cpu(info_v11->lvds_ss_rate_10hz);
info->hdmi_ss_percentage =
le16_to_cpu(info_v11->hdmi_ss_percentage);
info->hdmi_sspread_rate_in_10hz =
le16_to_cpu(info_v11->hdmi_ss_rate_10hz);
info->dvi_ss_percentage =
le16_to_cpu(info_v11->dvi_ss_percentage);
info->dvi_sspread_rate_in_10_hz =
le16_to_cpu(info_v11->dvi_ss_rate_10hz);
info->lvds_misc = info_v11->lvds_misc;
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v11->extdispconninfo.guid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(
info_v11->extdispconninfo.path[i].ext_encoder_objid));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(
info_v11->extdispconninfo.path[i].device_tag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(
info_v11->extdispconninfo.path[i].device_acpi_enum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v11->extdispconninfo.path[i].auxddclut_index;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v11->extdispconninfo.path[i].hpdlut_index;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v11->extdispconninfo.path[i].channelmapping;
info->ext_disp_conn_info.path[i].caps =
le16_to_cpu(info_v11->extdispconninfo.path[i].caps);
}
info->ext_disp_conn_info.checksum =
info_v11->extdispconninfo.checksum;
info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr;
info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr;
info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr;
info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr;
info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
/** TODO - review **/
#if 0
info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock)
* 10;
info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10;
info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
/* Convert [10KHz] into [KHz] */
info->disp_clk_voltage[i].max_supported_clk =
le32_to_cpu(info_v11->sDISPCLK_Voltage[i].
ulMaximumSupportedCLK) * 10;
info->disp_clk_voltage[i].voltage_index =
le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex);
}
info->boot_up_req_display_vector =
le32_to_cpu(info_v11->ulBootUpReqDisplayVector);
info->boot_up_nb_voltage =
le16_to_cpu(info_v11->usBootUpNBVoltage);
info->ext_disp_conn_info_offset =
le16_to_cpu(info_v11->usExtDispConnInfoOffset);
info->gmc_restore_reset_time =
le32_to_cpu(info_v11->ulGMCRestoreResetTime);
info->minimum_n_clk =
le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]);
for (i = 1; i < 4; ++i)
info->minimum_n_clk =
info->minimum_n_clk <
le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ?
info->minimum_n_clk : le32_to_cpu(
info_v11->ulNbpStateNClkFreq[i]);
info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk);
info->ddr_dll_power_up_time =
le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime);
info->ddr_pll_power_up_time =
le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime);
info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
info->lvds_off_to_on_delay_in_4ms =
info_v11->ucLVDSOffToOnDelay_in4Ms;
info->lvds_bit_depth_control_val =
le32_to_cpu(info_v11->ulLCDBitDepthControlVal);
for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
/* Convert [10KHz] into [KHz] */
info->avail_s_clk[i].supported_s_clk =
le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK)
* 10;
info->avail_s_clk[i].voltage_index =
le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex);
info->avail_s_clk[i].voltage_id =
le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID);
}
#endif /* TODO*/
return BP_RESULT_OK;
}
static enum bp_result get_integrated_info_v2_1(
struct bios_parser *bp,
struct integrated_info *info)
{
struct atom_integrated_system_info_v2_1 *info_v2_1;
uint32_t i;
info_v2_1 = GET_IMAGE(struct atom_integrated_system_info_v2_1,
DATA_TABLES(integratedsysteminfo));
if (info_v2_1 == NULL)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v2_1->gpuclk_ss_percentage);
info->gpu_cap_info =
le32_to_cpu(info_v2_1->gpucapinfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v2_1->system_config);
info->cpu_cap_info = le32_to_cpu(info_v2_1->cpucapinfo);
info->memory_type = info_v2_1->memorytype;
info->ma_channel_number = info_v2_1->umachannelnumber;
info->dp_ss_control =
le16_to_cpu(info_v2_1->reserved1);
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v2_1->extdispconninfo.guid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v2_1->extdispconninfo.path[i].connectorobjid));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(
info_v2_1->extdispconninfo.path[i].ext_encoder_objid));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(
info_v2_1->extdispconninfo.path[i].device_tag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(
info_v2_1->extdispconninfo.path[i].device_acpi_enum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v2_1->extdispconninfo.path[i].auxddclut_index;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v2_1->extdispconninfo.path[i].hpdlut_index;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v2_1->extdispconninfo.path[i].channelmapping;
info->ext_disp_conn_info.path[i].caps =
le16_to_cpu(info_v2_1->extdispconninfo.path[i].caps);
}
info->ext_disp_conn_info.checksum =
info_v2_1->extdispconninfo.checksum;
info->dp0_ext_hdmi_slv_addr = info_v2_1->dp0_retimer_set.HdmiSlvAddr;
info->dp0_ext_hdmi_reg_num = info_v2_1->dp0_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp0_ext_hdmi_6g_reg_num = info_v2_1->dp0_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_slv_addr = info_v2_1->dp1_retimer_set.HdmiSlvAddr;
info->dp1_ext_hdmi_reg_num = info_v2_1->dp1_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_6g_reg_num = info_v2_1->dp1_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_slv_addr = info_v2_1->dp2_retimer_set.HdmiSlvAddr;
info->dp2_ext_hdmi_reg_num = info_v2_1->dp2_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_6g_reg_num = info_v2_1->dp2_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_slv_addr = info_v2_1->dp3_retimer_set.HdmiSlvAddr;
info->dp3_ext_hdmi_reg_num = info_v2_1->dp3_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_6g_reg_num = info_v2_1->dp3_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->edp1_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_1->edp1_info.edp_backlight_pwm_hz);
info->edp1_info.edp_ss_percentage =
le16_to_cpu(info_v2_1->edp1_info.edp_ss_percentage);
info->edp1_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_1->edp1_info.edp_ss_rate_10hz);
info->edp1_info.edp_pwr_on_off_delay =
info_v2_1->edp1_info.edp_pwr_on_off_delay;
info->edp1_info.edp_pwr_on_vary_bl_to_blon =
info_v2_1->edp1_info.edp_pwr_on_vary_bl_to_blon;
info->edp1_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_1->edp1_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp1_info.edp_panel_bpc =
info_v2_1->edp1_info.edp_panel_bpc;
info->edp1_info.edp_bootup_bl_level = info_v2_1->edp1_info.edp_bootup_bl_level;
info->edp2_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_1->edp2_info.edp_backlight_pwm_hz);
info->edp2_info.edp_ss_percentage =
le16_to_cpu(info_v2_1->edp2_info.edp_ss_percentage);
info->edp2_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_1->edp2_info.edp_ss_rate_10hz);
info->edp2_info.edp_pwr_on_off_delay =
info_v2_1->edp2_info.edp_pwr_on_off_delay;
info->edp2_info.edp_pwr_on_vary_bl_to_blon =
info_v2_1->edp2_info.edp_pwr_on_vary_bl_to_blon;
info->edp2_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_1->edp2_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp2_info.edp_panel_bpc =
info_v2_1->edp2_info.edp_panel_bpc;
info->edp2_info.edp_bootup_bl_level =
info_v2_1->edp2_info.edp_bootup_bl_level;
return BP_RESULT_OK;
}
static enum bp_result get_integrated_info_v2_2(
struct bios_parser *bp,
struct integrated_info *info)
{
struct atom_integrated_system_info_v2_2 *info_v2_2;
uint32_t i;
info_v2_2 = GET_IMAGE(struct atom_integrated_system_info_v2_2,
DATA_TABLES(integratedsysteminfo));
if (info_v2_2 == NULL)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v2_2->gpuclk_ss_percentage);
info->gpu_cap_info =
le32_to_cpu(info_v2_2->gpucapinfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v2_2->system_config);
info->cpu_cap_info = le32_to_cpu(info_v2_2->cpucapinfo);
info->memory_type = info_v2_2->memorytype;
info->ma_channel_number = info_v2_2->umachannelnumber;
info->dp_ss_control =
le16_to_cpu(info_v2_2->reserved1);
info->gpuclk_ss_percentage = info_v2_2->gpuclk_ss_percentage;
info->gpuclk_ss_type = info_v2_2->gpuclk_ss_type;
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v2_2->extdispconninfo.guid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v2_2->extdispconninfo.path[i].connectorobjid));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(
info_v2_2->extdispconninfo.path[i].ext_encoder_objid));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(
info_v2_2->extdispconninfo.path[i].device_tag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(
info_v2_2->extdispconninfo.path[i].device_acpi_enum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v2_2->extdispconninfo.path[i].auxddclut_index;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v2_2->extdispconninfo.path[i].hpdlut_index;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v2_2->extdispconninfo.path[i].channelmapping;
info->ext_disp_conn_info.path[i].caps =
le16_to_cpu(info_v2_2->extdispconninfo.path[i].caps);
}
info->ext_disp_conn_info.checksum =
info_v2_2->extdispconninfo.checksum;
info->ext_disp_conn_info.fixdpvoltageswing =
info_v2_2->extdispconninfo.fixdpvoltageswing;
info->edp1_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_2->edp1_info.edp_backlight_pwm_hz);
info->edp1_info.edp_ss_percentage =
le16_to_cpu(info_v2_2->edp1_info.edp_ss_percentage);
info->edp1_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_2->edp1_info.edp_ss_rate_10hz);
info->edp1_info.edp_pwr_on_off_delay =
info_v2_2->edp1_info.edp_pwr_on_off_delay;
info->edp1_info.edp_pwr_on_vary_bl_to_blon =
info_v2_2->edp1_info.edp_pwr_on_vary_bl_to_blon;
info->edp1_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_2->edp1_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp1_info.edp_panel_bpc =
info_v2_2->edp1_info.edp_panel_bpc;
info->edp1_info.edp_bootup_bl_level =
info->edp2_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_2->edp2_info.edp_backlight_pwm_hz);
info->edp2_info.edp_ss_percentage =
le16_to_cpu(info_v2_2->edp2_info.edp_ss_percentage);
info->edp2_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_2->edp2_info.edp_ss_rate_10hz);
info->edp2_info.edp_pwr_on_off_delay =
info_v2_2->edp2_info.edp_pwr_on_off_delay;
info->edp2_info.edp_pwr_on_vary_bl_to_blon =
info_v2_2->edp2_info.edp_pwr_on_vary_bl_to_blon;
info->edp2_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_2->edp2_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp2_info.edp_panel_bpc =
info_v2_2->edp2_info.edp_panel_bpc;
info->edp2_info.edp_bootup_bl_level =
info_v2_2->edp2_info.edp_bootup_bl_level;
return BP_RESULT_OK;
}
/*
* construct_integrated_info
*
* @brief
* Get integrated BIOS information based on table revision
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* static enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result construct_integrated_info(
struct bios_parser *bp,
struct integrated_info *info)
{
static enum bp_result result = BP_RESULT_BADBIOSTABLE;
struct atom_common_table_header *header;
struct atom_data_revision revision;
uint32_t i;
uint32_t j;
if (info && DATA_TABLES(integratedsysteminfo)) {
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(integratedsysteminfo));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 1:
switch (revision.minor) {
case 11:
case 12:
result = get_integrated_info_v11(bp, info);
break;
default:
return result;
}
break;
case 2:
switch (revision.minor) {
case 1:
result = get_integrated_info_v2_1(bp, info);
break;
case 2:
result = get_integrated_info_v2_2(bp, info);
break;
default:
return result;
}
break;
default:
return result;
}
if (result == BP_RESULT_OK) {
DC_LOG_BIOS("edp1:\n"
"\tedp_pwr_on_off_delay = %d\n"
"\tedp_pwr_on_vary_bl_to_blon = %d\n"
"\tedp_pwr_down_bloff_to_vary_bloff = %d\n"
"\tedp_bootup_bl_level = %d\n",
info->edp1_info.edp_pwr_on_off_delay,
info->edp1_info.edp_pwr_on_vary_bl_to_blon,
info->edp1_info.edp_pwr_down_bloff_to_vary_bloff,
info->edp1_info.edp_bootup_bl_level);
DC_LOG_BIOS("edp2:\n"
"\tedp_pwr_on_off_delayv = %d\n"
"\tedp_pwr_on_vary_bl_to_blon = %d\n"
"\tedp_pwr_down_bloff_to_vary_bloff = %d\n"
"\tedp_bootup_bl_level = %d\n",
info->edp2_info.edp_pwr_on_off_delay,
info->edp2_info.edp_pwr_on_vary_bl_to_blon,
info->edp2_info.edp_pwr_down_bloff_to_vary_bloff,
info->edp2_info.edp_bootup_bl_level);
}
}
if (result != BP_RESULT_OK)
return result;
else {
// Log each external path
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; i++) {
if (info->ext_disp_conn_info.path[i].device_tag != 0)
DC_LOG_BIOS("integrated_info:For EXTERNAL DISPLAY PATH %d --------------\n"
"DEVICE_TAG: 0x%x\n"
"DEVICE_ACPI_ENUM: 0x%x\n"
"DEVICE_CONNECTOR_ID: 0x%x\n"
"EXT_AUX_DDC_LUT_INDEX: %d\n"
"EXT_HPD_PIN_LUT_INDEX: %d\n"
"EXT_ENCODER_OBJ_ID: 0x%x\n"
"Encoder CAPS: 0x%x\n",
i,
info->ext_disp_conn_info.path[i].device_tag,
info->ext_disp_conn_info.path[i].device_acpi_enum,
info->ext_disp_conn_info.path[i].device_connector_id.id,
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index,
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index,
info->ext_disp_conn_info.path[i].ext_encoder_obj_id.id,
info->ext_disp_conn_info.path[i].caps
);
if (info->ext_disp_conn_info.path[i].caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN)
DC_LOG_BIOS("BIOS EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN on path %d\n", i);
else if (bp->base.ctx->dc->config.force_bios_fixed_vs) {
info->ext_disp_conn_info.path[i].caps |= EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN;
DC_LOG_BIOS("driver forced EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN on path %d\n", i);
}
}
// Log the Checksum and Voltage Swing
DC_LOG_BIOS("Integrated info table CHECKSUM: %d\n"
"Integrated info table FIX_DP_VOLTAGE_SWING: %d\n",
info->ext_disp_conn_info.checksum,
info->ext_disp_conn_info.fixdpvoltageswing);
if (bp->base.ctx->dc->config.force_bios_fixed_vs && info->ext_disp_conn_info.fixdpvoltageswing == 0) {
info->ext_disp_conn_info.fixdpvoltageswing = bp->base.ctx->dc->config.force_bios_fixed_vs & 0xF;
DC_LOG_BIOS("driver forced fixdpvoltageswing = %d\n", info->ext_disp_conn_info.fixdpvoltageswing);
}
}
/* Sort voltage table from low to high*/
for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
for (j = i; j > 0; --j) {
if (info->disp_clk_voltage[j].max_supported_clk <
info->disp_clk_voltage[j-1].max_supported_clk)
swap(info->disp_clk_voltage[j-1], info->disp_clk_voltage[j]);
}
}
return result;
}
static enum bp_result bios_parser_get_vram_info(
struct dc_bios *dcb,
struct dc_vram_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
static enum bp_result result = BP_RESULT_BADBIOSTABLE;
struct atom_common_table_header *header;
struct atom_data_revision revision;
if (info && DATA_TABLES(vram_info)) {
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(vram_info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 2:
switch (revision.minor) {
case 3:
result = get_vram_info_v23(bp, info);
break;
case 4:
result = get_vram_info_v24(bp, info);
break;
case 5:
result = get_vram_info_v25(bp, info);
break;
default:
break;
}
break;
case 3:
switch (revision.minor) {
case 0:
result = get_vram_info_v30(bp, info);
break;
default:
break;
}
break;
default:
return result;
}
}
return result;
}
static struct integrated_info *bios_parser_create_integrated_info(
struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct integrated_info *info;
info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);
if (info == NULL) {
ASSERT_CRITICAL(0);
return NULL;
}
if (construct_integrated_info(bp, info) == BP_RESULT_OK)
return info;
kfree(info);
return NULL;
}
static enum bp_result update_slot_layout_info(
struct dc_bios *dcb,
unsigned int i,
struct slot_layout_info *slot_layout_info)
{
unsigned int record_offset;
unsigned int j;
struct atom_display_object_path_v2 *object;
struct atom_bracket_layout_record *record;
struct atom_common_record_header *record_header;
static enum bp_result result;
struct bios_parser *bp;
struct object_info_table *tbl;
struct display_object_info_table_v1_4 *v1_4;
record = NULL;
record_header = NULL;
result = BP_RESULT_NORECORD;
bp = BP_FROM_DCB(dcb);
tbl = &bp->object_info_tbl;
v1_4 = tbl->v1_4;
object = &v1_4->display_path[i];
record_offset = (unsigned int)
(object->disp_recordoffset) +
(unsigned int)(bp->object_info_tbl_offset);
for (;;) {
record_header = (struct atom_common_record_header *)
GET_IMAGE(struct atom_common_record_header,
record_offset);
if (record_header == NULL) {
result = BP_RESULT_BADBIOSTABLE;
break;
}
/* the end of the list */
if (record_header->record_type == 0xff ||
record_header->record_size == 0) {
break;
}
if (record_header->record_type ==
ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
sizeof(struct atom_bracket_layout_record)
<= record_header->record_size) {
record = (struct atom_bracket_layout_record *)
(record_header);
result = BP_RESULT_OK;
break;
}
record_offset += record_header->record_size;
}
/* return if the record not found */
if (result != BP_RESULT_OK)
return result;
/* get slot sizes */
slot_layout_info->length = record->bracketlen;
slot_layout_info->width = record->bracketwidth;
/* get info for each connector in the slot */
slot_layout_info->num_of_connectors = record->conn_num;
for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
slot_layout_info->connectors[j].connector_type =
(enum connector_layout_type)
(record->conn_info[j].connector_type);
switch (record->conn_info[j].connector_type) {
case CONNECTOR_TYPE_DVI_D:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DVI_D;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DVI;
break;
case CONNECTOR_TYPE_HDMI:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_HDMI;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_HDMI;
break;
case CONNECTOR_TYPE_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DP;
break;
case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_MINI_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_MINI_DP;
break;
default:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_UNKNOWN;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_UNKNOWN;
}
slot_layout_info->connectors[j].position =
record->conn_info[j].position;
slot_layout_info->connectors[j].connector_id =
object_id_from_bios_object_id(
record->conn_info[j].connectorobjid);
}
return result;
}
static enum bp_result update_slot_layout_info_v2(
struct dc_bios *dcb,
unsigned int i,
struct slot_layout_info *slot_layout_info)
{
unsigned int record_offset;
struct atom_display_object_path_v3 *object;
struct atom_bracket_layout_record_v2 *record;
struct atom_common_record_header *record_header;
static enum bp_result result;
struct bios_parser *bp;
struct object_info_table *tbl;
struct display_object_info_table_v1_5 *v1_5;
struct graphics_object_id connector_id;
record = NULL;
record_header = NULL;
result = BP_RESULT_NORECORD;
bp = BP_FROM_DCB(dcb);
tbl = &bp->object_info_tbl;
v1_5 = tbl->v1_5;
object = &v1_5->display_path[i];
record_offset = (unsigned int)
(object->disp_recordoffset) +
(unsigned int)(bp->object_info_tbl_offset);
for (;;) {
record_header = (struct atom_common_record_header *)
GET_IMAGE(struct atom_common_record_header,
record_offset);
if (record_header == NULL) {
result = BP_RESULT_BADBIOSTABLE;
break;
}
/* the end of the list */
if (record_header->record_type == ATOM_RECORD_END_TYPE ||
record_header->record_size == 0) {
break;
}
if (record_header->record_type ==
ATOM_BRACKET_LAYOUT_V2_RECORD_TYPE &&
sizeof(struct atom_bracket_layout_record_v2)
<= record_header->record_size) {
record = (struct atom_bracket_layout_record_v2 *)
(record_header);
result = BP_RESULT_OK;
break;
}
record_offset += record_header->record_size;
}
/* return if the record not found */
if (result != BP_RESULT_OK)
return result;
/* get slot sizes */
connector_id = object_id_from_bios_object_id(object->display_objid);
slot_layout_info->length = record->bracketlen;
slot_layout_info->width = record->bracketwidth;
slot_layout_info->num_of_connectors = v1_5->number_of_path;
slot_layout_info->connectors[i].position = record->conn_num;
slot_layout_info->connectors[i].connector_id = connector_id;
switch (connector_id.id) {
case CONNECTOR_ID_SINGLE_LINK_DVID:
case CONNECTOR_ID_DUAL_LINK_DVID:
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_DVI_D;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_DVI;
break;
case CONNECTOR_ID_HDMI_TYPE_A:
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_HDMI;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_HDMI;
break;
case CONNECTOR_ID_DISPLAY_PORT:
case CONNECTOR_ID_USBC:
if (record->mini_type == MINI_TYPE_NORMAL) {
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_DP;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_DP;
} else {
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_MINI_DP;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_MINI_DP;
}
break;
default:
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_UNKNOWN;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_UNKNOWN;
}
return result;
}
static enum bp_result get_bracket_layout_record(
struct dc_bios *dcb,
unsigned int bracket_layout_id,
struct slot_layout_info *slot_layout_info)
{
unsigned int i;
struct bios_parser *bp = BP_FROM_DCB(dcb);
static enum bp_result result;
struct object_info_table *tbl;
struct display_object_info_table_v1_4 *v1_4;
struct display_object_info_table_v1_5 *v1_5;
if (slot_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
return BP_RESULT_BADINPUT;
}
tbl = &bp->object_info_tbl;
v1_4 = tbl->v1_4;
v1_5 = tbl->v1_5;
result = BP_RESULT_NORECORD;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
for (i = 0; i < v1_4->number_of_path; ++i) {
if (bracket_layout_id == v1_4->display_path[i].display_objid) {
result = update_slot_layout_info(dcb, i, slot_layout_info);
break;
}
}
break;
case 5:
for (i = 0; i < v1_5->number_of_path; ++i)
result = update_slot_layout_info_v2(dcb, i, slot_layout_info);
break;
}
return result;
}
static enum bp_result bios_get_board_layout_info(
struct dc_bios *dcb,
struct board_layout_info *board_layout_info)
{
unsigned int i;
struct bios_parser *bp;
static enum bp_result record_result;
unsigned int max_slots;
const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
0, 0
};
bp = BP_FROM_DCB(dcb);
if (board_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
return BP_RESULT_BADINPUT;
}
board_layout_info->num_of_slots = 0;
max_slots = MAX_BOARD_SLOTS;
// Assume single slot on v1_5
if (bp->object_info_tbl.revision.minor == 5) {
max_slots = 1;
}
for (i = 0; i < max_slots; ++i) {
record_result = get_bracket_layout_record(dcb,
slot_index_to_vbios_id[i],
&board_layout_info->slots[i]);
if (record_result == BP_RESULT_NORECORD && i > 0)
break; /* no more slots present in bios */
else if (record_result != BP_RESULT_OK)
return record_result; /* fail */
++board_layout_info->num_of_slots;
}
/* all data is valid */
board_layout_info->is_number_of_slots_valid = 1;
board_layout_info->is_slots_size_valid = 1;
board_layout_info->is_connector_offsets_valid = 1;
board_layout_info->is_connector_lengths_valid = 1;
return BP_RESULT_OK;
}
static uint16_t bios_parser_pack_data_tables(
struct dc_bios *dcb,
void *dst)
{
// TODO: There is data bytes alignment issue, disable it for now.
return 0;
}
static struct atom_dc_golden_table_v1 *bios_get_golden_table(
struct bios_parser *bp,
uint32_t rev_major,
uint32_t rev_minor,
uint16_t *dc_golden_table_ver)
{
struct atom_display_controller_info_v4_4 *disp_cntl_tbl_4_4 = NULL;
uint32_t dc_golden_offset = 0;
*dc_golden_table_ver = 0;
if (!DATA_TABLES(dce_info))
return NULL;
/* ver.4.4 or higher */
switch (rev_major) {
case 4:
switch (rev_minor) {
case 4:
disp_cntl_tbl_4_4 = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl_4_4)
return NULL;
dc_golden_offset = DATA_TABLES(dce_info) + disp_cntl_tbl_4_4->dc_golden_table_offset;
*dc_golden_table_ver = disp_cntl_tbl_4_4->dc_golden_table_ver;
break;
case 5:
default:
/* For atom_display_controller_info_v4_5 there is no need to get golden table from
* dc_golden_table_offset as all these fields previously in golden table used for AUX
* pre-charge settings are now available directly in atom_display_controller_info_v4_5.
*/
break;
}
break;
}
if (!dc_golden_offset)
return NULL;
if (*dc_golden_table_ver != 1)
return NULL;
return GET_IMAGE(struct atom_dc_golden_table_v1,
dc_golden_offset);
}
static enum bp_result bios_get_atom_dc_golden_table(
struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_OK;
struct atom_dc_golden_table_v1 *atom_dc_golden_table = NULL;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
uint16_t dc_golden_table_ver = 0;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
if (!header)
return BP_RESULT_UNSUPPORTED;
get_atom_data_table_revision(header, &tbl_revision);
atom_dc_golden_table = bios_get_golden_table(bp,
tbl_revision.major,
tbl_revision.minor,
&dc_golden_table_ver);
if (!atom_dc_golden_table)
return BP_RESULT_UNSUPPORTED;
dcb->golden_table.dc_golden_table_ver = dc_golden_table_ver;
dcb->golden_table.aux_dphy_rx_control0_val = atom_dc_golden_table->aux_dphy_rx_control0_val;
dcb->golden_table.aux_dphy_rx_control1_val = atom_dc_golden_table->aux_dphy_rx_control1_val;
dcb->golden_table.aux_dphy_tx_control_val = atom_dc_golden_table->aux_dphy_tx_control_val;
dcb->golden_table.dc_gpio_aux_ctrl_0_val = atom_dc_golden_table->dc_gpio_aux_ctrl_0_val;
dcb->golden_table.dc_gpio_aux_ctrl_1_val = atom_dc_golden_table->dc_gpio_aux_ctrl_1_val;
dcb->golden_table.dc_gpio_aux_ctrl_2_val = atom_dc_golden_table->dc_gpio_aux_ctrl_2_val;
dcb->golden_table.dc_gpio_aux_ctrl_3_val = atom_dc_golden_table->dc_gpio_aux_ctrl_3_val;
dcb->golden_table.dc_gpio_aux_ctrl_4_val = atom_dc_golden_table->dc_gpio_aux_ctrl_4_val;
dcb->golden_table.dc_gpio_aux_ctrl_5_val = atom_dc_golden_table->dc_gpio_aux_ctrl_5_val;
return result;
}
static const struct dc_vbios_funcs vbios_funcs = {
.get_connectors_number = bios_parser_get_connectors_number,
.get_connector_id = bios_parser_get_connector_id,
.get_src_obj = bios_parser_get_src_obj,
.get_i2c_info = bios_parser_get_i2c_info,
.get_hpd_info = bios_parser_get_hpd_info,
.get_device_tag = bios_parser_get_device_tag,
.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,
.get_ss_entry_number = bios_parser_get_ss_entry_number,
.get_embedded_panel_info = bios_parser_get_embedded_panel_info,
.get_gpio_pin_info = bios_parser_get_gpio_pin_info,
.get_encoder_cap_info = bios_parser_get_encoder_cap_info,
.is_device_id_supported = bios_parser_is_device_id_supported,
.is_accelerated_mode = bios_parser_is_accelerated_mode,
.set_scratch_critical_state = bios_parser_set_scratch_critical_state,
/* COMMANDS */
.encoder_control = bios_parser_encoder_control,
.transmitter_control = bios_parser_transmitter_control,
.enable_crtc = bios_parser_enable_crtc,
.set_pixel_clock = bios_parser_set_pixel_clock,
.set_dce_clock = bios_parser_set_dce_clock,
.program_crtc_timing = bios_parser_program_crtc_timing,
.enable_disp_power_gating = bios_parser_enable_disp_power_gating,
.bios_parser_destroy = firmware_parser_destroy,
.get_board_layout_info = bios_get_board_layout_info,
.pack_data_tables = bios_parser_pack_data_tables,
.get_atom_dc_golden_table = bios_get_atom_dc_golden_table,
.enable_lvtma_control = bios_parser_enable_lvtma_control,
.get_soc_bb_info = bios_parser_get_soc_bb_info,
.get_disp_connector_caps_info = bios_parser_get_disp_connector_caps_info,
.get_lttpr_caps = bios_parser_get_lttpr_caps,
.get_lttpr_interop = bios_parser_get_lttpr_interop,
.get_connector_speed_cap_info = bios_parser_get_connector_speed_cap_info,
};
static bool bios_parser2_construct(
struct bios_parser *bp,
struct bp_init_data *init,
enum dce_version dce_version)
{
uint16_t *rom_header_offset = NULL;
struct atom_rom_header_v2_2 *rom_header = NULL;
struct display_object_info_table_v1_4 *object_info_tbl;
struct atom_data_revision tbl_rev = {0};
if (!init)
return false;
if (!init->bios)
return false;
bp->base.funcs = &vbios_funcs;
bp->base.bios = init->bios;
bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT;
bp->base.ctx = init->ctx;
bp->base.bios_local_image = NULL;
rom_header_offset =
GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER);
if (!rom_header_offset)
return false;
rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset);
if (!rom_header)
return false;
get_atom_data_table_revision(&rom_header->table_header, &tbl_rev);
if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2))
return false;
bp->master_data_tbl =
GET_IMAGE(struct atom_master_data_table_v2_1,
rom_header->masterdatatable_offset);
if (!bp->master_data_tbl)
return false;
bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo);
if (!bp->object_info_tbl_offset)
return false;
object_info_tbl =
GET_IMAGE(struct display_object_info_table_v1_4,
bp->object_info_tbl_offset);
if (!object_info_tbl)
return false;
get_atom_data_table_revision(&object_info_tbl->table_header,
&bp->object_info_tbl.revision);
if (bp->object_info_tbl.revision.major == 1
&& bp->object_info_tbl.revision.minor == 4) {
struct display_object_info_table_v1_4 *tbl_v1_4;
tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4,
bp->object_info_tbl_offset);
if (!tbl_v1_4)
return false;
bp->object_info_tbl.v1_4 = tbl_v1_4;
} else if (bp->object_info_tbl.revision.major == 1
&& bp->object_info_tbl.revision.minor == 5) {
struct display_object_info_table_v1_5 *tbl_v1_5;
tbl_v1_5 = GET_IMAGE(struct display_object_info_table_v1_5,
bp->object_info_tbl_offset);
if (!tbl_v1_5)
return false;
bp->object_info_tbl.v1_5 = tbl_v1_5;
} else {
ASSERT(0);
return false;
}
dal_firmware_parser_init_cmd_tbl(bp);
dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version);
bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base);
bp->base.fw_info_valid = bios_parser_get_firmware_info(&bp->base, &bp->base.fw_info) == BP_RESULT_OK;
bios_parser_get_vram_info(&bp->base, &bp->base.vram_info);
return true;
}
struct dc_bios *firmware_parser_create(
struct bp_init_data *init,
enum dce_version dce_version)
{
struct bios_parser *bp;
bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
if (!bp)
return NULL;
if (bios_parser2_construct(bp, init, dce_version))
return &bp->base;
kfree(bp);
return NULL;
}