| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * MTK NAND Flash controller driver. |
| * Copyright (C) 2016 MediaTek Inc. |
| * Authors: Xiaolei Li <xiaolei.li@mediatek.com> |
| * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/module.h> |
| #include <linux/iopoll.h> |
| #include <linux/of.h> |
| #include <linux/mtd/nand-ecc-mtk.h> |
| |
| /* NAND controller register definition */ |
| #define NFI_CNFG (0x00) |
| #define CNFG_AHB BIT(0) |
| #define CNFG_READ_EN BIT(1) |
| #define CNFG_DMA_BURST_EN BIT(2) |
| #define CNFG_BYTE_RW BIT(6) |
| #define CNFG_HW_ECC_EN BIT(8) |
| #define CNFG_AUTO_FMT_EN BIT(9) |
| #define CNFG_OP_CUST (6 << 12) |
| #define NFI_PAGEFMT (0x04) |
| #define PAGEFMT_FDM_ECC_SHIFT (12) |
| #define PAGEFMT_FDM_SHIFT (8) |
| #define PAGEFMT_SEC_SEL_512 BIT(2) |
| #define PAGEFMT_512_2K (0) |
| #define PAGEFMT_2K_4K (1) |
| #define PAGEFMT_4K_8K (2) |
| #define PAGEFMT_8K_16K (3) |
| /* NFI control */ |
| #define NFI_CON (0x08) |
| #define CON_FIFO_FLUSH BIT(0) |
| #define CON_NFI_RST BIT(1) |
| #define CON_BRD BIT(8) /* burst read */ |
| #define CON_BWR BIT(9) /* burst write */ |
| #define CON_SEC_SHIFT (12) |
| /* Timming control register */ |
| #define NFI_ACCCON (0x0C) |
| #define NFI_INTR_EN (0x10) |
| #define INTR_AHB_DONE_EN BIT(6) |
| #define NFI_INTR_STA (0x14) |
| #define NFI_CMD (0x20) |
| #define NFI_ADDRNOB (0x30) |
| #define NFI_COLADDR (0x34) |
| #define NFI_ROWADDR (0x38) |
| #define NFI_STRDATA (0x40) |
| #define STAR_EN (1) |
| #define STAR_DE (0) |
| #define NFI_CNRNB (0x44) |
| #define NFI_DATAW (0x50) |
| #define NFI_DATAR (0x54) |
| #define NFI_PIO_DIRDY (0x58) |
| #define PIO_DI_RDY (0x01) |
| #define NFI_STA (0x60) |
| #define STA_CMD BIT(0) |
| #define STA_ADDR BIT(1) |
| #define STA_BUSY BIT(8) |
| #define STA_EMP_PAGE BIT(12) |
| #define NFI_FSM_CUSTDATA (0xe << 16) |
| #define NFI_FSM_MASK (0xf << 16) |
| #define NFI_ADDRCNTR (0x70) |
| #define CNTR_MASK GENMASK(16, 12) |
| #define ADDRCNTR_SEC_SHIFT (12) |
| #define ADDRCNTR_SEC(val) \ |
| (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) |
| #define NFI_STRADDR (0x80) |
| #define NFI_BYTELEN (0x84) |
| #define NFI_CSEL (0x90) |
| #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) |
| #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) |
| #define NFI_FDM_MAX_SIZE (8) |
| #define NFI_FDM_MIN_SIZE (1) |
| #define NFI_DEBUG_CON1 (0x220) |
| #define STROBE_MASK GENMASK(4, 3) |
| #define STROBE_SHIFT (3) |
| #define MAX_STROBE_DLY (3) |
| #define NFI_MASTER_STA (0x224) |
| #define MASTER_STA_MASK (0x0FFF) |
| #define NFI_EMPTY_THRESH (0x23C) |
| |
| #define MTK_NAME "mtk-nand" |
| #define KB(x) ((x) * 1024UL) |
| #define MB(x) (KB(x) * 1024UL) |
| |
| #define MTK_TIMEOUT (500000) |
| #define MTK_RESET_TIMEOUT (1000000) |
| #define MTK_NAND_MAX_NSELS (2) |
| #define MTK_NFC_MIN_SPARE (16) |
| #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ |
| ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \ |
| (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt)) |
| |
| struct mtk_nfc_caps { |
| const u8 *spare_size; |
| u8 num_spare_size; |
| u8 pageformat_spare_shift; |
| u8 nfi_clk_div; |
| u8 max_sector; |
| u32 max_sector_size; |
| }; |
| |
| struct mtk_nfc_bad_mark_ctl { |
| void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); |
| u32 sec; |
| u32 pos; |
| }; |
| |
| /* |
| * FDM: region used to store free OOB data |
| */ |
| struct mtk_nfc_fdm { |
| u32 reg_size; |
| u32 ecc_size; |
| }; |
| |
| struct mtk_nfc_nand_chip { |
| struct list_head node; |
| struct nand_chip nand; |
| |
| struct mtk_nfc_bad_mark_ctl bad_mark; |
| struct mtk_nfc_fdm fdm; |
| u32 spare_per_sector; |
| |
| int nsels; |
| u8 sels[] __counted_by(nsels); |
| /* nothing after this field */ |
| }; |
| |
| struct mtk_nfc_clk { |
| struct clk *nfi_clk; |
| struct clk *pad_clk; |
| }; |
| |
| struct mtk_nfc { |
| struct nand_controller controller; |
| struct mtk_ecc_config ecc_cfg; |
| struct mtk_nfc_clk clk; |
| struct mtk_ecc *ecc; |
| |
| struct device *dev; |
| const struct mtk_nfc_caps *caps; |
| void __iomem *regs; |
| |
| struct completion done; |
| struct list_head chips; |
| |
| u8 *buffer; |
| |
| unsigned long assigned_cs; |
| }; |
| |
| /* |
| * supported spare size of each IP. |
| * order should be the same with the spare size bitfiled defination of |
| * register NFI_PAGEFMT. |
| */ |
| static const u8 spare_size_mt2701[] = { |
| 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64 |
| }; |
| |
| static const u8 spare_size_mt2712[] = { |
| 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, |
| 74 |
| }; |
| |
| static const u8 spare_size_mt7622[] = { |
| 16, 26, 27, 28 |
| }; |
| |
| static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) |
| { |
| return container_of(nand, struct mtk_nfc_nand_chip, nand); |
| } |
| |
| static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) |
| { |
| return (u8 *)p + i * chip->ecc.size; |
| } |
| |
| static inline u8 *oob_ptr(struct nand_chip *chip, int i) |
| { |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| u8 *poi; |
| |
| /* map the sector's FDM data to free oob: |
| * the beginning of the oob area stores the FDM data of bad mark sectors |
| */ |
| |
| if (i < mtk_nand->bad_mark.sec) |
| poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; |
| else if (i == mtk_nand->bad_mark.sec) |
| poi = chip->oob_poi; |
| else |
| poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; |
| |
| return poi; |
| } |
| |
| static inline int mtk_data_len(struct nand_chip *chip) |
| { |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| |
| return chip->ecc.size + mtk_nand->spare_per_sector; |
| } |
| |
| static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| |
| return nfc->buffer + i * mtk_data_len(chip); |
| } |
| |
| static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| |
| return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; |
| } |
| |
| static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) |
| { |
| writel(val, nfc->regs + reg); |
| } |
| |
| static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) |
| { |
| writew(val, nfc->regs + reg); |
| } |
| |
| static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) |
| { |
| writeb(val, nfc->regs + reg); |
| } |
| |
| static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) |
| { |
| return readl_relaxed(nfc->regs + reg); |
| } |
| |
| static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) |
| { |
| return readw_relaxed(nfc->regs + reg); |
| } |
| |
| static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) |
| { |
| return readb_relaxed(nfc->regs + reg); |
| } |
| |
| static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) |
| { |
| struct device *dev = nfc->dev; |
| u32 val; |
| int ret; |
| |
| /* reset all registers and force the NFI master to terminate */ |
| nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); |
| |
| /* wait for the master to finish the last transaction */ |
| ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, |
| !(val & MASTER_STA_MASK), 50, |
| MTK_RESET_TIMEOUT); |
| if (ret) |
| dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", |
| NFI_MASTER_STA, val); |
| |
| /* ensure any status register affected by the NFI master is reset */ |
| nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); |
| nfi_writew(nfc, STAR_DE, NFI_STRDATA); |
| } |
| |
| static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) |
| { |
| struct device *dev = nfc->dev; |
| u32 val; |
| int ret; |
| |
| nfi_writel(nfc, command, NFI_CMD); |
| |
| ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, |
| !(val & STA_CMD), 10, MTK_TIMEOUT); |
| if (ret) { |
| dev_warn(dev, "nfi core timed out entering command mode\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) |
| { |
| struct device *dev = nfc->dev; |
| u32 val; |
| int ret; |
| |
| nfi_writel(nfc, addr, NFI_COLADDR); |
| nfi_writel(nfc, 0, NFI_ROWADDR); |
| nfi_writew(nfc, 1, NFI_ADDRNOB); |
| |
| ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, |
| !(val & STA_ADDR), 10, MTK_TIMEOUT); |
| if (ret) { |
| dev_warn(dev, "nfi core timed out entering address mode\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| u32 fmt, spare, i; |
| |
| if (!mtd->writesize) |
| return 0; |
| |
| spare = mtk_nand->spare_per_sector; |
| |
| switch (mtd->writesize) { |
| case 512: |
| fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; |
| break; |
| case KB(2): |
| if (chip->ecc.size == 512) |
| fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; |
| else |
| fmt = PAGEFMT_512_2K; |
| break; |
| case KB(4): |
| if (chip->ecc.size == 512) |
| fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; |
| else |
| fmt = PAGEFMT_2K_4K; |
| break; |
| case KB(8): |
| if (chip->ecc.size == 512) |
| fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; |
| else |
| fmt = PAGEFMT_4K_8K; |
| break; |
| case KB(16): |
| fmt = PAGEFMT_8K_16K; |
| break; |
| default: |
| dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); |
| return -EINVAL; |
| } |
| |
| /* |
| * the hardware will double the value for this eccsize, so we need to |
| * halve it |
| */ |
| if (chip->ecc.size == 1024) |
| spare >>= 1; |
| |
| for (i = 0; i < nfc->caps->num_spare_size; i++) { |
| if (nfc->caps->spare_size[i] == spare) |
| break; |
| } |
| |
| if (i == nfc->caps->num_spare_size) { |
| dev_err(nfc->dev, "invalid spare size %d\n", spare); |
| return -EINVAL; |
| } |
| |
| fmt |= i << nfc->caps->pageformat_spare_shift; |
| |
| fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; |
| fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; |
| nfi_writel(nfc, fmt, NFI_PAGEFMT); |
| |
| nfc->ecc_cfg.strength = chip->ecc.strength; |
| nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; |
| |
| return 0; |
| } |
| |
| static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) |
| { |
| int rc; |
| u8 val; |
| |
| rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, |
| val & PIO_DI_RDY, 10, MTK_TIMEOUT); |
| if (rc < 0) |
| dev_err(nfc->dev, "data not ready\n"); |
| } |
| |
| static inline u8 mtk_nfc_read_byte(struct nand_chip *chip) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| u32 reg; |
| |
| /* after each byte read, the NFI_STA reg is reset by the hardware */ |
| reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; |
| if (reg != NFI_FSM_CUSTDATA) { |
| reg = nfi_readw(nfc, NFI_CNFG); |
| reg |= CNFG_BYTE_RW | CNFG_READ_EN; |
| nfi_writew(nfc, reg, NFI_CNFG); |
| |
| /* |
| * set to max sector to allow the HW to continue reading over |
| * unaligned accesses |
| */ |
| reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD; |
| nfi_writel(nfc, reg, NFI_CON); |
| |
| /* trigger to fetch data */ |
| nfi_writew(nfc, STAR_EN, NFI_STRDATA); |
| } |
| |
| mtk_nfc_wait_ioready(nfc); |
| |
| return nfi_readb(nfc, NFI_DATAR); |
| } |
| |
| static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| buf[i] = mtk_nfc_read_byte(chip); |
| } |
| |
| static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| u32 reg; |
| |
| reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; |
| |
| if (reg != NFI_FSM_CUSTDATA) { |
| reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; |
| nfi_writew(nfc, reg, NFI_CNFG); |
| |
| reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR; |
| nfi_writel(nfc, reg, NFI_CON); |
| |
| nfi_writew(nfc, STAR_EN, NFI_STRDATA); |
| } |
| |
| mtk_nfc_wait_ioready(nfc); |
| nfi_writeb(nfc, byte, NFI_DATAW); |
| } |
| |
| static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| mtk_nfc_write_byte(chip, buf[i]); |
| } |
| |
| static int mtk_nfc_exec_instr(struct nand_chip *chip, |
| const struct nand_op_instr *instr) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| unsigned int i; |
| u32 status; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| mtk_nfc_send_command(nfc, instr->ctx.cmd.opcode); |
| return 0; |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) |
| mtk_nfc_send_address(nfc, instr->ctx.addr.addrs[i]); |
| return 0; |
| case NAND_OP_DATA_IN_INSTR: |
| mtk_nfc_read_buf(chip, instr->ctx.data.buf.in, |
| instr->ctx.data.len); |
| return 0; |
| case NAND_OP_DATA_OUT_INSTR: |
| mtk_nfc_write_buf(chip, instr->ctx.data.buf.out, |
| instr->ctx.data.len); |
| return 0; |
| case NAND_OP_WAITRDY_INSTR: |
| return readl_poll_timeout(nfc->regs + NFI_STA, status, |
| !(status & STA_BUSY), 20, |
| instr->ctx.waitrdy.timeout_ms * 1000); |
| default: |
| break; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void mtk_nfc_select_target(struct nand_chip *nand, unsigned int cs) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(nand); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); |
| |
| mtk_nfc_hw_runtime_config(nand_to_mtd(nand)); |
| |
| nfi_writel(nfc, mtk_nand->sels[cs], NFI_CSEL); |
| } |
| |
| static int mtk_nfc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| unsigned int i; |
| int ret = 0; |
| |
| if (check_only) |
| return 0; |
| |
| mtk_nfc_hw_reset(nfc); |
| nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); |
| mtk_nfc_select_target(chip, op->cs); |
| |
| for (i = 0; i < op->ninstrs; i++) { |
| ret = mtk_nfc_exec_instr(chip, &op->instrs[i]); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int mtk_nfc_setup_interface(struct nand_chip *chip, int csline, |
| const struct nand_interface_config *conf) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| const struct nand_sdr_timings *timings; |
| u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0; |
| u32 temp, tsel = 0; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return -ENOTSUPP; |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| rate = clk_get_rate(nfc->clk.nfi_clk); |
| /* There is a frequency divider in some IPs */ |
| rate /= nfc->caps->nfi_clk_div; |
| |
| /* turn clock rate into KHZ */ |
| rate /= 1000; |
| |
| tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; |
| tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); |
| tpoecs &= 0xf; |
| |
| tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; |
| tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); |
| tprecs &= 0x3f; |
| |
| /* sdr interface has no tCR which means CE# low to RE# low */ |
| tc2r = 0; |
| |
| tw2r = timings->tWHR_min / 1000; |
| tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); |
| tw2r = DIV_ROUND_UP(tw2r - 1, 2); |
| tw2r &= 0xf; |
| |
| twh = max(timings->tREH_min, timings->tWH_min) / 1000; |
| twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; |
| twh &= 0xf; |
| |
| /* Calculate real WE#/RE# hold time in nanosecond */ |
| temp = (twh + 1) * 1000000 / rate; |
| /* nanosecond to picosecond */ |
| temp *= 1000; |
| |
| /* |
| * WE# low level time should be expaned to meet WE# pulse time |
| * and WE# cycle time at the same time. |
| */ |
| if (temp < timings->tWC_min) |
| twst = timings->tWC_min - temp; |
| twst = max(timings->tWP_min, twst) / 1000; |
| twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; |
| twst &= 0xf; |
| |
| /* |
| * RE# low level time should be expaned to meet RE# pulse time |
| * and RE# cycle time at the same time. |
| */ |
| if (temp < timings->tRC_min) |
| trlt = timings->tRC_min - temp; |
| trlt = max(trlt, timings->tRP_min) / 1000; |
| trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; |
| trlt &= 0xf; |
| |
| /* Calculate RE# pulse time in nanosecond. */ |
| temp = (trlt + 1) * 1000000 / rate; |
| /* nanosecond to picosecond */ |
| temp *= 1000; |
| /* |
| * If RE# access time is bigger than RE# pulse time, |
| * delay sampling data timing. |
| */ |
| if (temp < timings->tREA_max) { |
| tsel = timings->tREA_max / 1000; |
| tsel = DIV_ROUND_UP(tsel * rate, 1000000); |
| tsel -= (trlt + 1); |
| if (tsel > MAX_STROBE_DLY) { |
| trlt += tsel - MAX_STROBE_DLY; |
| tsel = MAX_STROBE_DLY; |
| } |
| } |
| temp = nfi_readl(nfc, NFI_DEBUG_CON1); |
| temp &= ~STROBE_MASK; |
| temp |= tsel << STROBE_SHIFT; |
| nfi_writel(nfc, temp, NFI_DEBUG_CON1); |
| |
| /* |
| * ACCON: access timing control register |
| * ------------------------------------- |
| * 31:28: tpoecs, minimum required time for CS post pulling down after |
| * accessing the device |
| * 27:22: tprecs, minimum required time for CS pre pulling down before |
| * accessing the device |
| * 21:16: tc2r, minimum required time from NCEB low to NREB low |
| * 15:12: tw2r, minimum required time from NWEB high to NREB low. |
| * 11:08: twh, write enable hold time |
| * 07:04: twst, write wait states |
| * 03:00: trlt, read wait states |
| */ |
| trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); |
| nfi_writel(nfc, trlt, NFI_ACCCON); |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| int size = chip->ecc.size + mtk_nand->fdm.reg_size; |
| |
| nfc->ecc_cfg.mode = ECC_DMA_MODE; |
| nfc->ecc_cfg.op = ECC_ENCODE; |
| |
| return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); |
| } |
| |
| static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) |
| { |
| /* nop */ |
| } |
| |
| static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); |
| u32 bad_pos = nand->bad_mark.pos; |
| |
| if (raw) |
| bad_pos += nand->bad_mark.sec * mtk_data_len(chip); |
| else |
| bad_pos += nand->bad_mark.sec * chip->ecc.size; |
| |
| swap(chip->oob_poi[0], buf[bad_pos]); |
| } |
| |
| static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, |
| u32 len, const u8 *buf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; |
| u32 start, end; |
| int i, ret; |
| |
| start = offset / chip->ecc.size; |
| end = DIV_ROUND_UP(offset + len, chip->ecc.size); |
| |
| memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); |
| for (i = 0; i < chip->ecc.steps; i++) { |
| memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), |
| chip->ecc.size); |
| |
| if (start > i || i >= end) |
| continue; |
| |
| if (i == mtk_nand->bad_mark.sec) |
| mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); |
| |
| memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); |
| |
| /* program the CRC back to the OOB */ |
| ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; |
| u32 i; |
| |
| memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); |
| for (i = 0; i < chip->ecc.steps; i++) { |
| if (buf) |
| memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), |
| chip->ecc.size); |
| |
| if (i == mtk_nand->bad_mark.sec) |
| mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); |
| |
| memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); |
| } |
| } |
| |
| static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, |
| u32 sectors) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; |
| u32 vall, valm; |
| u8 *oobptr; |
| int i, j; |
| |
| for (i = 0; i < sectors; i++) { |
| oobptr = oob_ptr(chip, start + i); |
| vall = nfi_readl(nfc, NFI_FDML(i)); |
| valm = nfi_readl(nfc, NFI_FDMM(i)); |
| |
| for (j = 0; j < fdm->reg_size; j++) |
| oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); |
| } |
| } |
| |
| static inline void mtk_nfc_write_fdm(struct nand_chip *chip) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; |
| u32 vall, valm; |
| u8 *oobptr; |
| int i, j; |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| oobptr = oob_ptr(chip, i); |
| vall = 0; |
| valm = 0; |
| for (j = 0; j < 8; j++) { |
| if (j < 4) |
| vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) |
| << (j * 8); |
| else |
| valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) |
| << ((j - 4) * 8); |
| } |
| nfi_writel(nfc, vall, NFI_FDML(i)); |
| nfi_writel(nfc, valm, NFI_FDMM(i)); |
| } |
| } |
| |
| static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const u8 *buf, int page, int len) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct device *dev = nfc->dev; |
| dma_addr_t addr; |
| u32 reg; |
| int ret; |
| |
| addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); |
| ret = dma_mapping_error(nfc->dev, addr); |
| if (ret) { |
| dev_err(nfc->dev, "dma mapping error\n"); |
| return -EINVAL; |
| } |
| |
| reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; |
| nfi_writew(nfc, reg, NFI_CNFG); |
| |
| nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); |
| nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); |
| nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); |
| |
| init_completion(&nfc->done); |
| |
| reg = nfi_readl(nfc, NFI_CON) | CON_BWR; |
| nfi_writel(nfc, reg, NFI_CON); |
| nfi_writew(nfc, STAR_EN, NFI_STRDATA); |
| |
| ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); |
| if (!ret) { |
| dev_err(dev, "program ahb done timeout\n"); |
| nfi_writew(nfc, 0, NFI_INTR_EN); |
| ret = -ETIMEDOUT; |
| goto timeout; |
| } |
| |
| ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, |
| ADDRCNTR_SEC(reg) >= chip->ecc.steps, |
| 10, MTK_TIMEOUT); |
| if (ret) |
| dev_err(dev, "hwecc write timeout\n"); |
| |
| timeout: |
| |
| dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); |
| nfi_writel(nfc, 0, NFI_CON); |
| |
| return ret; |
| } |
| |
| static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const u8 *buf, int page, int raw) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| size_t len; |
| const u8 *bufpoi; |
| u32 reg; |
| int ret; |
| |
| mtk_nfc_select_target(chip, chip->cur_cs); |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| if (!raw) { |
| /* OOB => FDM: from register, ECC: from HW */ |
| reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; |
| nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); |
| |
| nfc->ecc_cfg.op = ECC_ENCODE; |
| nfc->ecc_cfg.mode = ECC_NFI_MODE; |
| ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); |
| if (ret) { |
| /* clear NFI config */ |
| reg = nfi_readw(nfc, NFI_CNFG); |
| reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); |
| nfi_writew(nfc, reg, NFI_CNFG); |
| |
| return ret; |
| } |
| |
| memcpy(nfc->buffer, buf, mtd->writesize); |
| mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); |
| bufpoi = nfc->buffer; |
| |
| /* write OOB into the FDM registers (OOB area in MTK NAND) */ |
| mtk_nfc_write_fdm(chip); |
| } else { |
| bufpoi = buf; |
| } |
| |
| len = mtd->writesize + (raw ? mtd->oobsize : 0); |
| ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); |
| |
| if (!raw) |
| mtk_ecc_disable(nfc->ecc); |
| |
| if (ret) |
| return ret; |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, |
| int oob_on, int page) |
| { |
| return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0); |
| } |
| |
| static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, |
| int oob_on, int pg) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| |
| mtk_nfc_format_page(mtd, buf); |
| return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); |
| } |
| |
| static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset, |
| u32 data_len, const u8 *buf, |
| int oob_on, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| int ret; |
| |
| ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); |
| if (ret < 0) |
| return ret; |
| |
| /* use the data in the private buffer (now with FDM and CRC) */ |
| return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); |
| } |
| |
| static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page) |
| { |
| return mtk_nfc_write_page_raw(chip, NULL, 1, page); |
| } |
| |
| static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start, |
| u32 sectors) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_ecc_stats stats; |
| u32 reg_size = mtk_nand->fdm.reg_size; |
| int rc, i; |
| |
| rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; |
| if (rc) { |
| memset(buf, 0xff, sectors * chip->ecc.size); |
| for (i = 0; i < sectors; i++) |
| memset(oob_ptr(chip, start + i), 0xff, reg_size); |
| return 0; |
| } |
| |
| mtk_ecc_get_stats(nfc->ecc, &stats, sectors); |
| mtd->ecc_stats.corrected += stats.corrected; |
| mtd->ecc_stats.failed += stats.failed; |
| |
| return stats.bitflips; |
| } |
| |
| static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, |
| u32 data_offs, u32 readlen, |
| u8 *bufpoi, int page, int raw) |
| { |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| u32 spare = mtk_nand->spare_per_sector; |
| u32 column, sectors, start, end, reg; |
| dma_addr_t addr; |
| int bitflips = 0; |
| size_t len; |
| u8 *buf; |
| int rc; |
| |
| mtk_nfc_select_target(chip, chip->cur_cs); |
| start = data_offs / chip->ecc.size; |
| end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); |
| |
| sectors = end - start; |
| column = start * (chip->ecc.size + spare); |
| |
| len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); |
| buf = bufpoi + start * chip->ecc.size; |
| |
| nand_read_page_op(chip, page, column, NULL, 0); |
| |
| addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); |
| rc = dma_mapping_error(nfc->dev, addr); |
| if (rc) { |
| dev_err(nfc->dev, "dma mapping error\n"); |
| |
| return -EINVAL; |
| } |
| |
| reg = nfi_readw(nfc, NFI_CNFG); |
| reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; |
| if (!raw) { |
| reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; |
| nfi_writew(nfc, reg, NFI_CNFG); |
| |
| nfc->ecc_cfg.mode = ECC_NFI_MODE; |
| nfc->ecc_cfg.sectors = sectors; |
| nfc->ecc_cfg.op = ECC_DECODE; |
| rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); |
| if (rc) { |
| dev_err(nfc->dev, "ecc enable\n"); |
| /* clear NFI_CNFG */ |
| reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | |
| CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); |
| nfi_writew(nfc, reg, NFI_CNFG); |
| dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); |
| |
| return rc; |
| } |
| } else { |
| nfi_writew(nfc, reg, NFI_CNFG); |
| } |
| |
| nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); |
| nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); |
| nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); |
| |
| init_completion(&nfc->done); |
| reg = nfi_readl(nfc, NFI_CON) | CON_BRD; |
| nfi_writel(nfc, reg, NFI_CON); |
| nfi_writew(nfc, STAR_EN, NFI_STRDATA); |
| |
| rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); |
| if (!rc) |
| dev_warn(nfc->dev, "read ahb/dma done timeout\n"); |
| |
| rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, |
| ADDRCNTR_SEC(reg) >= sectors, 10, |
| MTK_TIMEOUT); |
| if (rc < 0) { |
| dev_err(nfc->dev, "subpage done timeout\n"); |
| bitflips = -EIO; |
| } else if (!raw) { |
| rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); |
| bitflips = rc < 0 ? -ETIMEDOUT : |
| mtk_nfc_update_ecc_stats(mtd, buf, start, sectors); |
| mtk_nfc_read_fdm(chip, start, sectors); |
| } |
| |
| dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); |
| |
| if (raw) |
| goto done; |
| |
| mtk_ecc_disable(nfc->ecc); |
| |
| if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) |
| mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); |
| done: |
| nfi_writel(nfc, 0, NFI_CON); |
| |
| return bitflips; |
| } |
| |
| static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off, |
| u32 len, u8 *p, int pg) |
| { |
| return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg, |
| 0); |
| } |
| |
| static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on, |
| int pg) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); |
| } |
| |
| static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; |
| int i, ret; |
| |
| memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); |
| ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, |
| page, 1); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); |
| |
| if (i == mtk_nand->bad_mark.sec) |
| mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); |
| |
| if (buf) |
| memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), |
| chip->ecc.size); |
| } |
| |
| return ret; |
| } |
| |
| static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page) |
| { |
| return mtk_nfc_read_page_raw(chip, NULL, 1, page); |
| } |
| |
| static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) |
| { |
| /* |
| * CNRNB: nand ready/busy register |
| * ------------------------------- |
| * 7:4: timeout register for polling the NAND busy/ready signal |
| * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. |
| */ |
| nfi_writew(nfc, 0xf1, NFI_CNRNB); |
| nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); |
| |
| mtk_nfc_hw_reset(nfc); |
| |
| nfi_readl(nfc, NFI_INTR_STA); |
| nfi_writel(nfc, 0, NFI_INTR_EN); |
| } |
| |
| static irqreturn_t mtk_nfc_irq(int irq, void *id) |
| { |
| struct mtk_nfc *nfc = id; |
| u16 sta, ien; |
| |
| sta = nfi_readw(nfc, NFI_INTR_STA); |
| ien = nfi_readw(nfc, NFI_INTR_EN); |
| |
| if (!(sta & ien)) |
| return IRQ_NONE; |
| |
| nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); |
| complete(&nfc->done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oob_region) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; |
| u32 eccsteps; |
| |
| eccsteps = mtd->writesize / chip->ecc.size; |
| |
| if (section >= eccsteps) |
| return -ERANGE; |
| |
| oob_region->length = fdm->reg_size - fdm->ecc_size; |
| oob_region->offset = section * fdm->reg_size + fdm->ecc_size; |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oob_region) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| u32 eccsteps; |
| |
| if (section) |
| return -ERANGE; |
| |
| eccsteps = mtd->writesize / chip->ecc.size; |
| oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; |
| oob_region->length = mtd->oobsize - oob_region->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { |
| .free = mtk_nfc_ooblayout_free, |
| .ecc = mtk_nfc_ooblayout_ecc, |
| }; |
| |
| static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); |
| struct mtk_nfc *nfc = nand_get_controller_data(nand); |
| u32 ecc_bytes; |
| |
| ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * |
| mtk_ecc_get_parity_bits(nfc->ecc), 8); |
| |
| fdm->reg_size = chip->spare_per_sector - ecc_bytes; |
| if (fdm->reg_size > NFI_FDM_MAX_SIZE) |
| fdm->reg_size = NFI_FDM_MAX_SIZE; |
| |
| /* bad block mark storage */ |
| fdm->ecc_size = 1; |
| } |
| |
| static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, |
| struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| |
| if (mtd->writesize == 512) { |
| bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; |
| } else { |
| bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; |
| bm_ctl->sec = mtd->writesize / mtk_data_len(nand); |
| bm_ctl->pos = mtd->writesize % mtk_data_len(nand); |
| } |
| } |
| |
| static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mtk_nfc *nfc = nand_get_controller_data(nand); |
| const u8 *spare = nfc->caps->spare_size; |
| u32 eccsteps, i, closest_spare = 0; |
| |
| eccsteps = mtd->writesize / nand->ecc.size; |
| *sps = mtd->oobsize / eccsteps; |
| |
| if (nand->ecc.size == 1024) |
| *sps >>= 1; |
| |
| if (*sps < MTK_NFC_MIN_SPARE) |
| return -EINVAL; |
| |
| for (i = 0; i < nfc->caps->num_spare_size; i++) { |
| if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { |
| closest_spare = i; |
| if (*sps == spare[i]) |
| break; |
| } |
| } |
| |
| *sps = spare[closest_spare]; |
| |
| if (nand->ecc.size == 1024) |
| *sps <<= 1; |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(&nand->base); |
| struct mtk_nfc *nfc = nand_get_controller_data(nand); |
| u32 spare; |
| int free, ret; |
| |
| /* support only ecc hw mode */ |
| if (nand->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| dev_err(dev, "ecc.engine_type not supported\n"); |
| return -EINVAL; |
| } |
| |
| /* if optional dt settings not present */ |
| if (!nand->ecc.size || !nand->ecc.strength) { |
| /* use datasheet requirements */ |
| nand->ecc.strength = requirements->strength; |
| nand->ecc.size = requirements->step_size; |
| |
| /* |
| * align eccstrength and eccsize |
| * this controller only supports 512 and 1024 sizes |
| */ |
| if (nand->ecc.size < 1024) { |
| if (mtd->writesize > 512 && |
| nfc->caps->max_sector_size > 512) { |
| nand->ecc.size = 1024; |
| nand->ecc.strength <<= 1; |
| } else { |
| nand->ecc.size = 512; |
| } |
| } else { |
| nand->ecc.size = 1024; |
| } |
| |
| ret = mtk_nfc_set_spare_per_sector(&spare, mtd); |
| if (ret) |
| return ret; |
| |
| /* calculate oob bytes except ecc parity data */ |
| free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc) |
| + 7) >> 3; |
| free = spare - free; |
| |
| /* |
| * enhance ecc strength if oob left is bigger than max FDM size |
| * or reduce ecc strength if oob size is not enough for ecc |
| * parity data. |
| */ |
| if (free > NFI_FDM_MAX_SIZE) { |
| spare -= NFI_FDM_MAX_SIZE; |
| nand->ecc.strength = (spare << 3) / |
| mtk_ecc_get_parity_bits(nfc->ecc); |
| } else if (free < 0) { |
| spare -= NFI_FDM_MIN_SIZE; |
| nand->ecc.strength = (spare << 3) / |
| mtk_ecc_get_parity_bits(nfc->ecc); |
| } |
| } |
| |
| mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength); |
| |
| dev_info(dev, "eccsize %d eccstrength %d\n", |
| nand->ecc.size, nand->ecc.strength); |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct device *dev = mtd->dev.parent; |
| struct mtk_nfc *nfc = nand_get_controller_data(chip); |
| struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); |
| int len; |
| int ret; |
| |
| if (chip->options & NAND_BUSWIDTH_16) { |
| dev_err(dev, "16bits buswidth not supported"); |
| return -EINVAL; |
| } |
| |
| /* store bbt magic in page, cause OOB is not protected */ |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| ret = mtk_nfc_ecc_init(dev, mtd); |
| if (ret) |
| return ret; |
| |
| ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd); |
| if (ret) |
| return ret; |
| |
| mtk_nfc_set_fdm(&mtk_nand->fdm, mtd); |
| mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd); |
| |
| len = mtd->writesize + mtd->oobsize; |
| nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); |
| if (!nfc->buffer) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops mtk_nfc_controller_ops = { |
| .attach_chip = mtk_nfc_attach_chip, |
| .setup_interface = mtk_nfc_setup_interface, |
| .exec_op = mtk_nfc_exec_op, |
| }; |
| |
| static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, |
| struct device_node *np) |
| { |
| struct mtk_nfc_nand_chip *chip; |
| struct nand_chip *nand; |
| struct mtd_info *mtd; |
| int nsels; |
| u32 tmp; |
| int ret; |
| int i; |
| |
| if (!of_get_property(np, "reg", &nsels)) |
| return -ENODEV; |
| |
| nsels /= sizeof(u32); |
| if (!nsels || nsels > MTK_NAND_MAX_NSELS) { |
| dev_err(dev, "invalid reg property size %d\n", nsels); |
| return -EINVAL; |
| } |
| |
| chip = devm_kzalloc(dev, struct_size(chip, sels, nsels), |
| GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| |
| chip->nsels = nsels; |
| for (i = 0; i < nsels; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, &tmp); |
| if (ret) { |
| dev_err(dev, "reg property failure : %d\n", ret); |
| return ret; |
| } |
| |
| if (tmp >= MTK_NAND_MAX_NSELS) { |
| dev_err(dev, "invalid CS: %u\n", tmp); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %u already assigned\n", tmp); |
| return -EINVAL; |
| } |
| |
| chip->sels[i] = tmp; |
| } |
| |
| nand = &chip->nand; |
| nand->controller = &nfc->controller; |
| |
| nand_set_flash_node(nand, np); |
| nand_set_controller_data(nand, nfc); |
| |
| nand->options |= NAND_USES_DMA | NAND_SUBPAGE_READ; |
| |
| /* set default mode in case dt entry is missing */ |
| nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| |
| nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; |
| nand->ecc.write_page_raw = mtk_nfc_write_page_raw; |
| nand->ecc.write_page = mtk_nfc_write_page_hwecc; |
| nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; |
| nand->ecc.write_oob = mtk_nfc_write_oob_std; |
| |
| nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; |
| nand->ecc.read_page_raw = mtk_nfc_read_page_raw; |
| nand->ecc.read_page = mtk_nfc_read_page_hwecc; |
| nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; |
| nand->ecc.read_oob = mtk_nfc_read_oob_std; |
| |
| mtd = nand_to_mtd(nand); |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = dev; |
| mtd->name = MTK_NAME; |
| mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); |
| |
| mtk_nfc_hw_init(nfc); |
| |
| ret = nand_scan(nand, nsels); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(dev, "mtd parse partition error\n"); |
| nand_cleanup(nand); |
| return ret; |
| } |
| |
| list_add_tail(&chip->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) |
| { |
| struct device_node *np = dev->of_node; |
| struct device_node *nand_np; |
| int ret; |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); |
| if (ret) { |
| of_node_put(nand_np); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = { |
| .spare_size = spare_size_mt2701, |
| .num_spare_size = 16, |
| .pageformat_spare_shift = 4, |
| .nfi_clk_div = 1, |
| .max_sector = 16, |
| .max_sector_size = 1024, |
| }; |
| |
| static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = { |
| .spare_size = spare_size_mt2712, |
| .num_spare_size = 19, |
| .pageformat_spare_shift = 16, |
| .nfi_clk_div = 2, |
| .max_sector = 16, |
| .max_sector_size = 1024, |
| }; |
| |
| static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = { |
| .spare_size = spare_size_mt7622, |
| .num_spare_size = 4, |
| .pageformat_spare_shift = 4, |
| .nfi_clk_div = 1, |
| .max_sector = 8, |
| .max_sector_size = 512, |
| }; |
| |
| static const struct of_device_id mtk_nfc_id_table[] = { |
| { |
| .compatible = "mediatek,mt2701-nfc", |
| .data = &mtk_nfc_caps_mt2701, |
| }, { |
| .compatible = "mediatek,mt2712-nfc", |
| .data = &mtk_nfc_caps_mt2712, |
| }, { |
| .compatible = "mediatek,mt7622-nfc", |
| .data = &mtk_nfc_caps_mt7622, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); |
| |
| static int mtk_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct mtk_nfc *nfc; |
| int ret, irq; |
| |
| nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nand_controller_init(&nfc->controller); |
| INIT_LIST_HEAD(&nfc->chips); |
| nfc->controller.ops = &mtk_nfc_controller_ops; |
| |
| /* probe defer if not ready */ |
| nfc->ecc = of_mtk_ecc_get(np); |
| if (IS_ERR(nfc->ecc)) |
| return PTR_ERR(nfc->ecc); |
| else if (!nfc->ecc) |
| return -ENODEV; |
| |
| nfc->caps = of_device_get_match_data(dev); |
| nfc->dev = dev; |
| |
| nfc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(nfc->regs)) { |
| ret = PTR_ERR(nfc->regs); |
| goto release_ecc; |
| } |
| |
| nfc->clk.nfi_clk = devm_clk_get_enabled(dev, "nfi_clk"); |
| if (IS_ERR(nfc->clk.nfi_clk)) { |
| dev_err(dev, "no clk\n"); |
| ret = PTR_ERR(nfc->clk.nfi_clk); |
| goto release_ecc; |
| } |
| |
| nfc->clk.pad_clk = devm_clk_get_enabled(dev, "pad_clk"); |
| if (IS_ERR(nfc->clk.pad_clk)) { |
| dev_err(dev, "no pad clk\n"); |
| ret = PTR_ERR(nfc->clk.pad_clk); |
| goto release_ecc; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| ret = -EINVAL; |
| goto release_ecc; |
| } |
| |
| ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); |
| if (ret) { |
| dev_err(dev, "failed to request nfi irq\n"); |
| goto release_ecc; |
| } |
| |
| ret = dma_set_mask(dev, DMA_BIT_MASK(32)); |
| if (ret) { |
| dev_err(dev, "failed to set dma mask\n"); |
| goto release_ecc; |
| } |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| ret = mtk_nfc_nand_chips_init(dev, nfc); |
| if (ret) { |
| dev_err(dev, "failed to init nand chips\n"); |
| goto release_ecc; |
| } |
| |
| return 0; |
| |
| release_ecc: |
| mtk_ecc_release(nfc->ecc); |
| |
| return ret; |
| } |
| |
| static void mtk_nfc_remove(struct platform_device *pdev) |
| { |
| struct mtk_nfc *nfc = platform_get_drvdata(pdev); |
| struct mtk_nfc_nand_chip *mtk_chip; |
| struct nand_chip *chip; |
| int ret; |
| |
| while (!list_empty(&nfc->chips)) { |
| mtk_chip = list_first_entry(&nfc->chips, |
| struct mtk_nfc_nand_chip, node); |
| chip = &mtk_chip->nand; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&mtk_chip->node); |
| } |
| |
| mtk_ecc_release(nfc->ecc); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int mtk_nfc_suspend(struct device *dev) |
| { |
| struct mtk_nfc *nfc = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(nfc->clk.nfi_clk); |
| clk_disable_unprepare(nfc->clk.pad_clk); |
| |
| return 0; |
| } |
| |
| static int mtk_nfc_resume(struct device *dev) |
| { |
| struct mtk_nfc *nfc = dev_get_drvdata(dev); |
| struct mtk_nfc_nand_chip *chip; |
| struct nand_chip *nand; |
| int ret; |
| u32 i; |
| |
| udelay(200); |
| |
| ret = clk_prepare_enable(nfc->clk.nfi_clk); |
| if (ret) { |
| dev_err(dev, "failed to enable nfi clk\n"); |
| return ret; |
| } |
| |
| ret = clk_prepare_enable(nfc->clk.pad_clk); |
| if (ret) { |
| dev_err(dev, "failed to enable pad clk\n"); |
| clk_disable_unprepare(nfc->clk.nfi_clk); |
| return ret; |
| } |
| |
| /* reset NAND chip if VCC was powered off */ |
| list_for_each_entry(chip, &nfc->chips, node) { |
| nand = &chip->nand; |
| for (i = 0; i < chip->nsels; i++) |
| nand_reset(nand, i); |
| } |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); |
| #endif |
| |
| static struct platform_driver mtk_nfc_driver = { |
| .probe = mtk_nfc_probe, |
| .remove_new = mtk_nfc_remove, |
| .driver = { |
| .name = MTK_NAME, |
| .of_match_table = mtk_nfc_id_table, |
| #ifdef CONFIG_PM_SLEEP |
| .pm = &mtk_nfc_pm_ops, |
| #endif |
| }, |
| }; |
| |
| module_platform_driver(mtk_nfc_driver); |
| |
| MODULE_LICENSE("Dual MIT/GPL"); |
| MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); |
| MODULE_DESCRIPTION("MTK Nand Flash Controller Driver"); |