| /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| /* Devmaps primary use is as a backend map for XDP BPF helper call |
| * bpf_redirect_map(). Because XDP is mostly concerned with performance we |
| * spent some effort to ensure the datapath with redirect maps does not use |
| * any locking. This is a quick note on the details. |
| * |
| * We have three possible paths to get into the devmap control plane bpf |
| * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall |
| * will invoke an update, delete, or lookup operation. To ensure updates and |
| * deletes appear atomic from the datapath side xchg() is used to modify the |
| * netdev_map array. Then because the datapath does a lookup into the netdev_map |
| * array (read-only) from an RCU critical section we use call_rcu() to wait for |
| * an rcu grace period before free'ing the old data structures. This ensures the |
| * datapath always has a valid copy. However, the datapath does a "flush" |
| * operation that pushes any pending packets in the driver outside the RCU |
| * critical section. Each bpf_dtab_netdev tracks these pending operations using |
| * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed |
| * until all bits are cleared indicating outstanding flush operations have |
| * completed. |
| * |
| * BPF syscalls may race with BPF program calls on any of the update, delete |
| * or lookup operations. As noted above the xchg() operation also keep the |
| * netdev_map consistent in this case. From the devmap side BPF programs |
| * calling into these operations are the same as multiple user space threads |
| * making system calls. |
| * |
| * Finally, any of the above may race with a netdev_unregister notifier. The |
| * unregister notifier must search for net devices in the map structure that |
| * contain a reference to the net device and remove them. This is a two step |
| * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) |
| * check to see if the ifindex is the same as the net_device being removed. |
| * When removing the dev a cmpxchg() is used to ensure the correct dev is |
| * removed, in the case of a concurrent update or delete operation it is |
| * possible that the initially referenced dev is no longer in the map. As the |
| * notifier hook walks the map we know that new dev references can not be |
| * added by the user because core infrastructure ensures dev_get_by_index() |
| * calls will fail at this point. |
| */ |
| #include <linux/bpf.h> |
| #include <net/xdp.h> |
| #include <linux/filter.h> |
| #include <trace/events/xdp.h> |
| |
| #define DEV_CREATE_FLAG_MASK \ |
| (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) |
| |
| #define DEV_MAP_BULK_SIZE 16 |
| struct xdp_bulk_queue { |
| struct xdp_frame *q[DEV_MAP_BULK_SIZE]; |
| struct net_device *dev_rx; |
| unsigned int count; |
| }; |
| |
| struct bpf_dtab_netdev { |
| struct net_device *dev; /* must be first member, due to tracepoint */ |
| struct bpf_dtab *dtab; |
| unsigned int bit; |
| struct xdp_bulk_queue __percpu *bulkq; |
| struct rcu_head rcu; |
| }; |
| |
| struct bpf_dtab { |
| struct bpf_map map; |
| struct bpf_dtab_netdev **netdev_map; |
| unsigned long __percpu *flush_needed; |
| struct list_head list; |
| }; |
| |
| static DEFINE_SPINLOCK(dev_map_lock); |
| static LIST_HEAD(dev_map_list); |
| |
| static u64 dev_map_bitmap_size(const union bpf_attr *attr) |
| { |
| return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); |
| } |
| |
| static struct bpf_map *dev_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_dtab *dtab; |
| int err = -EINVAL; |
| u64 cost; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return ERR_PTR(-EPERM); |
| |
| /* check sanity of attributes */ |
| if (attr->max_entries == 0 || attr->key_size != 4 || |
| attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) |
| return ERR_PTR(-EINVAL); |
| |
| dtab = kzalloc(sizeof(*dtab), GFP_USER); |
| if (!dtab) |
| return ERR_PTR(-ENOMEM); |
| |
| bpf_map_init_from_attr(&dtab->map, attr); |
| |
| /* make sure page count doesn't overflow */ |
| cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); |
| cost += dev_map_bitmap_size(attr) * num_possible_cpus(); |
| if (cost >= U32_MAX - PAGE_SIZE) |
| goto free_dtab; |
| |
| dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; |
| |
| /* if map size is larger than memlock limit, reject it early */ |
| err = bpf_map_precharge_memlock(dtab->map.pages); |
| if (err) |
| goto free_dtab; |
| |
| err = -ENOMEM; |
| |
| /* A per cpu bitfield with a bit per possible net device */ |
| dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), |
| __alignof__(unsigned long), |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!dtab->flush_needed) |
| goto free_dtab; |
| |
| dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * |
| sizeof(struct bpf_dtab_netdev *), |
| dtab->map.numa_node); |
| if (!dtab->netdev_map) |
| goto free_dtab; |
| |
| spin_lock(&dev_map_lock); |
| list_add_tail_rcu(&dtab->list, &dev_map_list); |
| spin_unlock(&dev_map_lock); |
| |
| return &dtab->map; |
| free_dtab: |
| free_percpu(dtab->flush_needed); |
| kfree(dtab); |
| return ERR_PTR(err); |
| } |
| |
| static void dev_map_free(struct bpf_map *map) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| int i, cpu; |
| |
| /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, |
| * so the programs (can be more than one that used this map) were |
| * disconnected from events. Wait for outstanding critical sections in |
| * these programs to complete. The rcu critical section only guarantees |
| * no further reads against netdev_map. It does __not__ ensure pending |
| * flush operations (if any) are complete. |
| */ |
| |
| spin_lock(&dev_map_lock); |
| list_del_rcu(&dtab->list); |
| spin_unlock(&dev_map_lock); |
| |
| synchronize_rcu(); |
| |
| /* To ensure all pending flush operations have completed wait for flush |
| * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. |
| * Because the above synchronize_rcu() ensures the map is disconnected |
| * from the program we can assume no new bits will be set. |
| */ |
| for_each_online_cpu(cpu) { |
| unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); |
| |
| while (!bitmap_empty(bitmap, dtab->map.max_entries)) |
| cond_resched(); |
| } |
| |
| for (i = 0; i < dtab->map.max_entries; i++) { |
| struct bpf_dtab_netdev *dev; |
| |
| dev = dtab->netdev_map[i]; |
| if (!dev) |
| continue; |
| |
| dev_put(dev->dev); |
| kfree(dev); |
| } |
| |
| free_percpu(dtab->flush_needed); |
| bpf_map_area_free(dtab->netdev_map); |
| kfree(dtab); |
| } |
| |
| static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| u32 index = key ? *(u32 *)key : U32_MAX; |
| u32 *next = next_key; |
| |
| if (index >= dtab->map.max_entries) { |
| *next = 0; |
| return 0; |
| } |
| |
| if (index == dtab->map.max_entries - 1) |
| return -ENOENT; |
| *next = index + 1; |
| return 0; |
| } |
| |
| void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); |
| |
| __set_bit(bit, bitmap); |
| } |
| |
| static int bq_xmit_all(struct bpf_dtab_netdev *obj, |
| struct xdp_bulk_queue *bq, u32 flags) |
| { |
| struct net_device *dev = obj->dev; |
| int sent = 0, drops = 0, err = 0; |
| int i; |
| |
| if (unlikely(!bq->count)) |
| return 0; |
| |
| for (i = 0; i < bq->count; i++) { |
| struct xdp_frame *xdpf = bq->q[i]; |
| |
| prefetch(xdpf); |
| } |
| |
| sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); |
| if (sent < 0) { |
| err = sent; |
| sent = 0; |
| goto error; |
| } |
| drops = bq->count - sent; |
| out: |
| bq->count = 0; |
| |
| trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit, |
| sent, drops, bq->dev_rx, dev, err); |
| bq->dev_rx = NULL; |
| return 0; |
| error: |
| /* If ndo_xdp_xmit fails with an errno, no frames have been |
| * xmit'ed and it's our responsibility to them free all. |
| */ |
| for (i = 0; i < bq->count; i++) { |
| struct xdp_frame *xdpf = bq->q[i]; |
| |
| /* RX path under NAPI protection, can return frames faster */ |
| xdp_return_frame_rx_napi(xdpf); |
| drops++; |
| } |
| goto out; |
| } |
| |
| /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled |
| * from the driver before returning from its napi->poll() routine. The poll() |
| * routine is called either from busy_poll context or net_rx_action signaled |
| * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the |
| * net device can be torn down. On devmap tear down we ensure the ctx bitmap |
| * is zeroed before completing to ensure all flush operations have completed. |
| */ |
| void __dev_map_flush(struct bpf_map *map) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); |
| u32 bit; |
| |
| for_each_set_bit(bit, bitmap, map->max_entries) { |
| struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); |
| struct xdp_bulk_queue *bq; |
| |
| /* This is possible if the dev entry is removed by user space |
| * between xdp redirect and flush op. |
| */ |
| if (unlikely(!dev)) |
| continue; |
| |
| __clear_bit(bit, bitmap); |
| |
| bq = this_cpu_ptr(dev->bulkq); |
| bq_xmit_all(dev, bq, XDP_XMIT_FLUSH); |
| } |
| } |
| |
| /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or |
| * update happens in parallel here a dev_put wont happen until after reading the |
| * ifindex. |
| */ |
| struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| struct bpf_dtab_netdev *obj; |
| |
| if (key >= map->max_entries) |
| return NULL; |
| |
| obj = READ_ONCE(dtab->netdev_map[key]); |
| return obj; |
| } |
| |
| /* Runs under RCU-read-side, plus in softirq under NAPI protection. |
| * Thus, safe percpu variable access. |
| */ |
| static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf, |
| struct net_device *dev_rx) |
| |
| { |
| struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq); |
| |
| if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) |
| bq_xmit_all(obj, bq, 0); |
| |
| /* Ingress dev_rx will be the same for all xdp_frame's in |
| * bulk_queue, because bq stored per-CPU and must be flushed |
| * from net_device drivers NAPI func end. |
| */ |
| if (!bq->dev_rx) |
| bq->dev_rx = dev_rx; |
| |
| bq->q[bq->count++] = xdpf; |
| return 0; |
| } |
| |
| int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, |
| struct net_device *dev_rx) |
| { |
| struct net_device *dev = dst->dev; |
| struct xdp_frame *xdpf; |
| int err; |
| |
| if (!dev->netdev_ops->ndo_xdp_xmit) |
| return -EOPNOTSUPP; |
| |
| err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); |
| if (unlikely(err)) |
| return err; |
| |
| xdpf = convert_to_xdp_frame(xdp); |
| if (unlikely(!xdpf)) |
| return -EOVERFLOW; |
| |
| return bq_enqueue(dst, xdpf, dev_rx); |
| } |
| |
| int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, |
| struct bpf_prog *xdp_prog) |
| { |
| int err; |
| |
| err = xdp_ok_fwd_dev(dst->dev, skb->len); |
| if (unlikely(err)) |
| return err; |
| skb->dev = dst->dev; |
| generic_xdp_tx(skb, xdp_prog); |
| |
| return 0; |
| } |
| |
| static void *dev_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); |
| struct net_device *dev = obj ? obj->dev : NULL; |
| |
| return dev ? &dev->ifindex : NULL; |
| } |
| |
| static void dev_map_flush_old(struct bpf_dtab_netdev *dev) |
| { |
| if (dev->dev->netdev_ops->ndo_xdp_xmit) { |
| struct xdp_bulk_queue *bq; |
| unsigned long *bitmap; |
| |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); |
| __clear_bit(dev->bit, bitmap); |
| |
| bq = per_cpu_ptr(dev->bulkq, cpu); |
| bq_xmit_all(dev, bq, XDP_XMIT_FLUSH); |
| } |
| } |
| } |
| |
| static void __dev_map_entry_free(struct rcu_head *rcu) |
| { |
| struct bpf_dtab_netdev *dev; |
| |
| dev = container_of(rcu, struct bpf_dtab_netdev, rcu); |
| dev_map_flush_old(dev); |
| free_percpu(dev->bulkq); |
| dev_put(dev->dev); |
| kfree(dev); |
| } |
| |
| static int dev_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| struct bpf_dtab_netdev *old_dev; |
| int k = *(u32 *)key; |
| |
| if (k >= map->max_entries) |
| return -EINVAL; |
| |
| /* Use call_rcu() here to ensure any rcu critical sections have |
| * completed, but this does not guarantee a flush has happened |
| * yet. Because driver side rcu_read_lock/unlock only protects the |
| * running XDP program. However, for pending flush operations the |
| * dev and ctx are stored in another per cpu map. And additionally, |
| * the driver tear down ensures all soft irqs are complete before |
| * removing the net device in the case of dev_put equals zero. |
| */ |
| old_dev = xchg(&dtab->netdev_map[k], NULL); |
| if (old_dev) |
| call_rcu(&old_dev->rcu, __dev_map_entry_free); |
| return 0; |
| } |
| |
| static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, |
| u64 map_flags) |
| { |
| struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); |
| struct net *net = current->nsproxy->net_ns; |
| gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; |
| struct bpf_dtab_netdev *dev, *old_dev; |
| u32 i = *(u32 *)key; |
| u32 ifindex = *(u32 *)value; |
| |
| if (unlikely(map_flags > BPF_EXIST)) |
| return -EINVAL; |
| if (unlikely(i >= dtab->map.max_entries)) |
| return -E2BIG; |
| if (unlikely(map_flags == BPF_NOEXIST)) |
| return -EEXIST; |
| |
| if (!ifindex) { |
| dev = NULL; |
| } else { |
| dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node); |
| if (!dev) |
| return -ENOMEM; |
| |
| dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq), |
| sizeof(void *), gfp); |
| if (!dev->bulkq) { |
| kfree(dev); |
| return -ENOMEM; |
| } |
| |
| dev->dev = dev_get_by_index(net, ifindex); |
| if (!dev->dev) { |
| free_percpu(dev->bulkq); |
| kfree(dev); |
| return -EINVAL; |
| } |
| |
| dev->bit = i; |
| dev->dtab = dtab; |
| } |
| |
| /* Use call_rcu() here to ensure rcu critical sections have completed |
| * Remembering the driver side flush operation will happen before the |
| * net device is removed. |
| */ |
| old_dev = xchg(&dtab->netdev_map[i], dev); |
| if (old_dev) |
| call_rcu(&old_dev->rcu, __dev_map_entry_free); |
| |
| return 0; |
| } |
| |
| const struct bpf_map_ops dev_map_ops = { |
| .map_alloc = dev_map_alloc, |
| .map_free = dev_map_free, |
| .map_get_next_key = dev_map_get_next_key, |
| .map_lookup_elem = dev_map_lookup_elem, |
| .map_update_elem = dev_map_update_elem, |
| .map_delete_elem = dev_map_delete_elem, |
| }; |
| |
| static int dev_map_notification(struct notifier_block *notifier, |
| ulong event, void *ptr) |
| { |
| struct net_device *netdev = netdev_notifier_info_to_dev(ptr); |
| struct bpf_dtab *dtab; |
| int i; |
| |
| switch (event) { |
| case NETDEV_UNREGISTER: |
| /* This rcu_read_lock/unlock pair is needed because |
| * dev_map_list is an RCU list AND to ensure a delete |
| * operation does not free a netdev_map entry while we |
| * are comparing it against the netdev being unregistered. |
| */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(dtab, &dev_map_list, list) { |
| for (i = 0; i < dtab->map.max_entries; i++) { |
| struct bpf_dtab_netdev *dev, *odev; |
| |
| dev = READ_ONCE(dtab->netdev_map[i]); |
| if (!dev || |
| dev->dev->ifindex != netdev->ifindex) |
| continue; |
| odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); |
| if (dev == odev) |
| call_rcu(&dev->rcu, |
| __dev_map_entry_free); |
| } |
| } |
| rcu_read_unlock(); |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block dev_map_notifier = { |
| .notifier_call = dev_map_notification, |
| }; |
| |
| static int __init dev_map_init(void) |
| { |
| /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ |
| BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != |
| offsetof(struct _bpf_dtab_netdev, dev)); |
| register_netdevice_notifier(&dev_map_notifier); |
| return 0; |
| } |
| |
| subsys_initcall(dev_map_init); |