|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* ----------------------------------------------------------------------- * | 
|  | * | 
|  | *   Copyright 2014 Intel Corporation; author: H. Peter Anvin | 
|  | * | 
|  | * ----------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | * The IRET instruction, when returning to a 16-bit segment, only | 
|  | * restores the bottom 16 bits of the user space stack pointer.  This | 
|  | * causes some 16-bit software to break, but it also leaks kernel state | 
|  | * to user space. | 
|  | * | 
|  | * This works around this by creating percpu "ministacks", each of which | 
|  | * is mapped 2^16 times 64K apart.  When we detect that the return SS is | 
|  | * on the LDT, we copy the IRET frame to the ministack and use the | 
|  | * relevant alias to return to userspace.  The ministacks are mapped | 
|  | * readonly, so if the IRET fault we promote #GP to #DF which is an IST | 
|  | * vector and thus has its own stack; we then do the fixup in the #DF | 
|  | * handler. | 
|  | * | 
|  | * This file sets up the ministacks and the related page tables.  The | 
|  | * actual ministack invocation is in entry_64.S. | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/espfix.h> | 
|  |  | 
|  | /* | 
|  | * Note: we only need 6*8 = 48 bytes for the espfix stack, but round | 
|  | * it up to a cache line to avoid unnecessary sharing. | 
|  | */ | 
|  | #define ESPFIX_STACK_SIZE	(8*8UL) | 
|  | #define ESPFIX_STACKS_PER_PAGE	(PAGE_SIZE/ESPFIX_STACK_SIZE) | 
|  |  | 
|  | /* There is address space for how many espfix pages? */ | 
|  | #define ESPFIX_PAGE_SPACE	(1UL << (P4D_SHIFT-PAGE_SHIFT-16)) | 
|  |  | 
|  | #define ESPFIX_MAX_CPUS		(ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE) | 
|  | #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS | 
|  | # error "Need more virtual address space for the ESPFIX hack" | 
|  | #endif | 
|  |  | 
|  | #define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO) | 
|  |  | 
|  | /* This contains the *bottom* address of the espfix stack */ | 
|  | DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack); | 
|  | DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr); | 
|  |  | 
|  | /* Initialization mutex - should this be a spinlock? */ | 
|  | static DEFINE_MUTEX(espfix_init_mutex); | 
|  |  | 
|  | /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */ | 
|  | #define ESPFIX_MAX_PAGES  DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE) | 
|  | static void *espfix_pages[ESPFIX_MAX_PAGES]; | 
|  |  | 
|  | static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD] | 
|  | __aligned(PAGE_SIZE); | 
|  |  | 
|  | static unsigned int page_random, slot_random; | 
|  |  | 
|  | /* | 
|  | * This returns the bottom address of the espfix stack for a specific CPU. | 
|  | * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case | 
|  | * we have to account for some amount of padding at the end of each page. | 
|  | */ | 
|  | static inline unsigned long espfix_base_addr(unsigned int cpu) | 
|  | { | 
|  | unsigned long page, slot; | 
|  | unsigned long addr; | 
|  |  | 
|  | page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random; | 
|  | slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE; | 
|  | addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE); | 
|  | addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16); | 
|  | addr += ESPFIX_BASE_ADDR; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | #define PTE_STRIDE        (65536/PAGE_SIZE) | 
|  | #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE) | 
|  | #define ESPFIX_PMD_CLONES PTRS_PER_PMD | 
|  | #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES)) | 
|  |  | 
|  | #define PGTABLE_PROT	  ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX) | 
|  |  | 
|  | static void init_espfix_random(void) | 
|  | { | 
|  | unsigned long rand = get_random_long(); | 
|  |  | 
|  | slot_random = rand % ESPFIX_STACKS_PER_PAGE; | 
|  | page_random = (rand / ESPFIX_STACKS_PER_PAGE) | 
|  | & (ESPFIX_PAGE_SPACE - 1); | 
|  | } | 
|  |  | 
|  | void __init init_espfix_bsp(void) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  |  | 
|  | /* FRED systems always restore the full value of %rsp */ | 
|  | if (cpu_feature_enabled(X86_FEATURE_FRED)) | 
|  | return; | 
|  |  | 
|  | /* Install the espfix pud into the kernel page directory */ | 
|  | pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)]; | 
|  | p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR); | 
|  | p4d_populate(&init_mm, p4d, espfix_pud_page); | 
|  |  | 
|  | /* Randomize the locations */ | 
|  | init_espfix_random(); | 
|  |  | 
|  | /* The rest is the same as for any other processor */ | 
|  | init_espfix_ap(0); | 
|  | } | 
|  |  | 
|  | void init_espfix_ap(int cpu) | 
|  | { | 
|  | unsigned int page; | 
|  | unsigned long addr; | 
|  | pud_t pud, *pud_p; | 
|  | pmd_t pmd, *pmd_p; | 
|  | pte_t pte, *pte_p; | 
|  | int n, node; | 
|  | void *stack_page; | 
|  | pteval_t ptemask; | 
|  |  | 
|  | /* FRED systems always restore the full value of %rsp */ | 
|  | if (cpu_feature_enabled(X86_FEATURE_FRED)) | 
|  | return; | 
|  |  | 
|  | /* We only have to do this once... */ | 
|  | if (likely(per_cpu(espfix_stack, cpu))) | 
|  | return;		/* Already initialized */ | 
|  |  | 
|  | addr = espfix_base_addr(cpu); | 
|  | page = cpu/ESPFIX_STACKS_PER_PAGE; | 
|  |  | 
|  | /* Did another CPU already set this up? */ | 
|  | stack_page = READ_ONCE(espfix_pages[page]); | 
|  | if (likely(stack_page)) | 
|  | goto done; | 
|  |  | 
|  | mutex_lock(&espfix_init_mutex); | 
|  |  | 
|  | /* Did we race on the lock? */ | 
|  | stack_page = READ_ONCE(espfix_pages[page]); | 
|  | if (stack_page) | 
|  | goto unlock_done; | 
|  |  | 
|  | node = cpu_to_node(cpu); | 
|  | ptemask = __supported_pte_mask; | 
|  |  | 
|  | pud_p = &espfix_pud_page[pud_index(addr)]; | 
|  | pud = *pud_p; | 
|  | if (!pud_present(pud)) { | 
|  | struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); | 
|  |  | 
|  | pmd_p = (pmd_t *)page_address(page); | 
|  | pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask)); | 
|  | paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT); | 
|  | for (n = 0; n < ESPFIX_PUD_CLONES; n++) | 
|  | set_pud(&pud_p[n], pud); | 
|  | } | 
|  |  | 
|  | pmd_p = pmd_offset(&pud, addr); | 
|  | pmd = *pmd_p; | 
|  | if (!pmd_present(pmd)) { | 
|  | struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); | 
|  |  | 
|  | pte_p = (pte_t *)page_address(page); | 
|  | pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask)); | 
|  | paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT); | 
|  | for (n = 0; n < ESPFIX_PMD_CLONES; n++) | 
|  | set_pmd(&pmd_p[n], pmd); | 
|  | } | 
|  |  | 
|  | pte_p = pte_offset_kernel(&pmd, addr); | 
|  | stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0)); | 
|  | /* | 
|  | * __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since | 
|  | * this is mapped to userspace. | 
|  | */ | 
|  | pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask)); | 
|  | for (n = 0; n < ESPFIX_PTE_CLONES; n++) | 
|  | set_pte(&pte_p[n*PTE_STRIDE], pte); | 
|  |  | 
|  | /* Job is done for this CPU and any CPU which shares this page */ | 
|  | WRITE_ONCE(espfix_pages[page], stack_page); | 
|  |  | 
|  | unlock_done: | 
|  | mutex_unlock(&espfix_init_mutex); | 
|  | done: | 
|  | per_cpu(espfix_stack, cpu) = addr; | 
|  | per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page | 
|  | + (addr & ~PAGE_MASK); | 
|  | } |