blob: 54502e392dfc9906231cd6447bacdd72cb0569d5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "disk_groups.h"
#include "ec.h"
#include "error.h"
#include "io.h"
#include "journal.h"
#include "journal_io.h"
#include "journal_sb.h"
#include "journal_seq_blacklist.h"
#include "replicas.h"
#include "quota.h"
#include "super-io.h"
#include "super.h"
#include "trace.h"
#include "vstructs.h"
#include "counters.h"
#include <linux/backing-dev.h>
#include <linux/sort.h>
static const struct blk_holder_ops bch2_sb_handle_bdev_ops = {
};
const char * const bch2_sb_fields[] = {
#define x(name, nr) #name,
BCH_SB_FIELDS()
#undef x
NULL
};
static int bch2_sb_field_validate(struct bch_sb *, struct bch_sb_field *,
struct printbuf *);
struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb,
enum bch_sb_field_type type)
{
struct bch_sb_field *f;
/* XXX: need locking around superblock to access optional fields */
vstruct_for_each(sb, f)
if (le32_to_cpu(f->type) == type)
return f;
return NULL;
}
static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb,
struct bch_sb_field *f,
unsigned u64s)
{
unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0;
unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s;
BUG_ON(__vstruct_bytes(struct bch_sb, sb_u64s) > sb->buffer_size);
if (!f && !u64s) {
/* nothing to do: */
} else if (!f) {
f = vstruct_last(sb->sb);
memset(f, 0, sizeof(u64) * u64s);
f->u64s = cpu_to_le32(u64s);
f->type = 0;
} else {
void *src, *dst;
src = vstruct_end(f);
if (u64s) {
f->u64s = cpu_to_le32(u64s);
dst = vstruct_end(f);
} else {
dst = f;
}
memmove(dst, src, vstruct_end(sb->sb) - src);
if (dst > src)
memset(src, 0, dst - src);
}
sb->sb->u64s = cpu_to_le32(sb_u64s);
return u64s ? f : NULL;
}
void bch2_sb_field_delete(struct bch_sb_handle *sb,
enum bch_sb_field_type type)
{
struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type);
if (f)
__bch2_sb_field_resize(sb, f, 0);
}
/* Superblock realloc/free: */
void bch2_free_super(struct bch_sb_handle *sb)
{
if (sb->bio)
kfree(sb->bio);
if (!IS_ERR_OR_NULL(sb->bdev))
blkdev_put(sb->bdev, sb->holder);
kfree(sb->holder);
kfree(sb->sb);
memset(sb, 0, sizeof(*sb));
}
int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s)
{
size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s);
size_t new_buffer_size;
struct bch_sb *new_sb;
struct bio *bio;
if (sb->bdev)
new_bytes = max_t(size_t, new_bytes, bdev_logical_block_size(sb->bdev));
new_buffer_size = roundup_pow_of_two(new_bytes);
if (sb->sb && sb->buffer_size >= new_buffer_size)
return 0;
if (sb->have_layout) {
u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits;
if (new_bytes > max_bytes) {
pr_err("%pg: superblock too big: want %zu but have %llu",
sb->bdev, new_bytes, max_bytes);
return -ENOSPC;
}
}
if (sb->buffer_size >= new_buffer_size && sb->sb)
return 0;
if (dynamic_fault("bcachefs:add:super_realloc"))
return -ENOMEM;
if (sb->have_bio) {
unsigned nr_bvecs = DIV_ROUND_UP(new_buffer_size, PAGE_SIZE);
bio = bio_kmalloc(nr_bvecs, GFP_KERNEL);
if (!bio)
return -ENOMEM;
bio_init(bio, NULL, bio->bi_inline_vecs, nr_bvecs, 0);
if (sb->bio)
kfree(sb->bio);
sb->bio = bio;
}
new_sb = krealloc(sb->sb, new_buffer_size, GFP_NOFS|__GFP_ZERO);
if (!new_sb)
return -ENOMEM;
sb->sb = new_sb;
sb->buffer_size = new_buffer_size;
return 0;
}
struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb,
enum bch_sb_field_type type,
unsigned u64s)
{
struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type);
ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0;
ssize_t d = -old_u64s + u64s;
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d))
return NULL;
if (sb->fs_sb) {
struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb);
struct bch_dev *ca;
unsigned i;
lockdep_assert_held(&c->sb_lock);
/* XXX: we're not checking that offline device have enough space */
for_each_online_member(ca, c, i) {
struct bch_sb_handle *sb = &ca->disk_sb;
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) {
percpu_ref_put(&ca->ref);
return NULL;
}
}
}
f = bch2_sb_field_get(sb->sb, type);
f = __bch2_sb_field_resize(sb, f, u64s);
if (f)
f->type = cpu_to_le32(type);
return f;
}
/* Superblock validate: */
static inline void __bch2_sb_layout_size_assert(void)
{
BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512);
}
static int validate_sb_layout(struct bch_sb_layout *layout, struct printbuf *out)
{
u64 offset, prev_offset, max_sectors;
unsigned i;
if (!uuid_equal(&layout->magic, &BCACHE_MAGIC) &&
!uuid_equal(&layout->magic, &BCHFS_MAGIC)) {
pr_buf(out, "Not a bcachefs superblock layout");
return -EINVAL;
}
if (layout->layout_type != 0) {
pr_buf(out, "Invalid superblock layout type %u",
layout->layout_type);
return -EINVAL;
}
if (!layout->nr_superblocks) {
pr_buf(out, "Invalid superblock layout: no superblocks");
return -EINVAL;
}
if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) {
pr_buf(out, "Invalid superblock layout: too many superblocks");
return -EINVAL;
}
max_sectors = 1 << layout->sb_max_size_bits;
prev_offset = le64_to_cpu(layout->sb_offset[0]);
for (i = 1; i < layout->nr_superblocks; i++) {
offset = le64_to_cpu(layout->sb_offset[i]);
if (offset < prev_offset + max_sectors) {
pr_buf(out, "Invalid superblock layout: superblocks overlap\n"
" (sb %u ends at %llu next starts at %llu",
i - 1, prev_offset + max_sectors, offset);
return -EINVAL;
}
prev_offset = offset;
}
return 0;
}
static int bch2_sb_validate(struct bch_sb_handle *disk_sb, struct printbuf *out,
int rw)
{
struct bch_sb *sb = disk_sb->sb;
struct bch_sb_field *f;
struct bch_sb_field_members *mi;
enum bch_opt_id opt_id;
u32 version, version_min;
u16 block_size;
int ret;
version = le16_to_cpu(sb->version);
version_min = version >= bcachefs_metadata_version_bkey_renumber
? le16_to_cpu(sb->version_min)
: version;
if (version >= bcachefs_metadata_version_max) {
pr_buf(out, "Unsupported superblock version %u (min %u, max %u)",
version, bcachefs_metadata_version_min, bcachefs_metadata_version_max);
return -EINVAL;
}
if (version_min < bcachefs_metadata_version_min) {
pr_buf(out, "Unsupported superblock version %u (min %u, max %u)",
version_min, bcachefs_metadata_version_min, bcachefs_metadata_version_max);
return -EINVAL;
}
if (version_min > version) {
pr_buf(out, "Bad minimum version %u, greater than version field %u",
version_min, version);
return -EINVAL;
}
if (sb->features[1] ||
(le64_to_cpu(sb->features[0]) & (~0ULL << BCH_FEATURE_NR))) {
pr_buf(out, "Filesystem has incompatible features");
return -EINVAL;
}
block_size = le16_to_cpu(sb->block_size);
if (block_size > PAGE_SECTORS) {
pr_buf(out, "Block size too big (got %u, max %u)",
block_size, PAGE_SECTORS);
return -EINVAL;
}
if (bch2_is_zero(sb->user_uuid.b, sizeof(sb->user_uuid))) {
pr_buf(out, "Bad user UUID (got zeroes)");
return -EINVAL;
}
if (bch2_is_zero(sb->uuid.b, sizeof(sb->uuid))) {
pr_buf(out, "Bad intenal UUID (got zeroes)");
return -EINVAL;
}
if (!sb->nr_devices ||
sb->nr_devices > BCH_SB_MEMBERS_MAX) {
pr_buf(out, "Bad number of member devices %u (max %u)",
sb->nr_devices, BCH_SB_MEMBERS_MAX);
return -EINVAL;
}
if (sb->dev_idx >= sb->nr_devices) {
pr_buf(out, "Bad dev_idx (got %u, nr_devices %u)",
sb->dev_idx, sb->nr_devices);
return -EINVAL;
}
if (!sb->time_precision ||
le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) {
pr_buf(out, "Invalid time precision: %u (min 1, max %lu)",
le32_to_cpu(sb->time_precision), NSEC_PER_SEC);
return -EINVAL;
}
if (rw == READ) {
/*
* Been seeing a bug where these are getting inexplicably
* zeroed, so we'r now validating them, but we have to be
* careful not to preven people's filesystems from mounting:
*/
if (!BCH_SB_JOURNAL_FLUSH_DELAY(sb))
SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
if (!BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 1000);
}
for (opt_id = 0; opt_id < bch2_opts_nr; opt_id++) {
const struct bch_option *opt = bch2_opt_table + opt_id;
if (opt->get_sb != BCH2_NO_SB_OPT) {
u64 v = bch2_opt_from_sb(sb, opt_id);
pr_buf(out, "Invalid option ");
ret = bch2_opt_validate(opt, v, out);
if (ret)
return ret;
printbuf_reset(out);
}
}
/* validate layout */
ret = validate_sb_layout(&sb->layout, out);
if (ret)
return ret;
vstruct_for_each(sb, f) {
if (!f->u64s) {
pr_buf(out, "Invalid superblock: optional with size 0 (type %u)",
le32_to_cpu(f->type));
return -EINVAL;
}
if (vstruct_next(f) > vstruct_last(sb)) {
pr_buf(out, "Invalid superblock: optional field extends past end of superblock (type %u)",
le32_to_cpu(f->type));
return -EINVAL;
}
}
/* members must be validated first: */
mi = bch2_sb_get_members(sb);
if (!mi) {
pr_buf(out, "Invalid superblock: member info area missing");
return -EINVAL;
}
ret = bch2_sb_field_validate(sb, &mi->field, out);
if (ret)
return ret;
vstruct_for_each(sb, f) {
if (le32_to_cpu(f->type) == BCH_SB_FIELD_members)
continue;
ret = bch2_sb_field_validate(sb, f, out);
if (ret)
return ret;
}
return 0;
}
/* device open: */
static void bch2_sb_update(struct bch_fs *c)
{
struct bch_sb *src = c->disk_sb.sb;
struct bch_sb_field_members *mi = bch2_sb_get_members(src);
struct bch_dev *ca;
unsigned i;
lockdep_assert_held(&c->sb_lock);
c->sb.uuid = src->uuid;
c->sb.user_uuid = src->user_uuid;
c->sb.version = le16_to_cpu(src->version);
c->sb.version_min = le16_to_cpu(src->version_min);
c->sb.nr_devices = src->nr_devices;
c->sb.clean = BCH_SB_CLEAN(src);
c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src);
c->sb.nsec_per_time_unit = le32_to_cpu(src->time_precision);
c->sb.time_units_per_sec = NSEC_PER_SEC / c->sb.nsec_per_time_unit;
/* XXX this is wrong, we need a 96 or 128 bit integer type */
c->sb.time_base_lo = div_u64(le64_to_cpu(src->time_base_lo),
c->sb.nsec_per_time_unit);
c->sb.time_base_hi = le32_to_cpu(src->time_base_hi);
c->sb.features = le64_to_cpu(src->features[0]);
c->sb.compat = le64_to_cpu(src->compat[0]);
for_each_member_device(ca, c, i)
ca->mi = bch2_mi_to_cpu(mi->members + i);
}
static void __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src)
{
struct bch_sb_field *src_f, *dst_f;
struct bch_sb *dst = dst_handle->sb;
unsigned i;
dst->version = src->version;
dst->version_min = src->version_min;
dst->seq = src->seq;
dst->uuid = src->uuid;
dst->user_uuid = src->user_uuid;
memcpy(dst->label, src->label, sizeof(dst->label));
dst->block_size = src->block_size;
dst->nr_devices = src->nr_devices;
dst->time_base_lo = src->time_base_lo;
dst->time_base_hi = src->time_base_hi;
dst->time_precision = src->time_precision;
memcpy(dst->flags, src->flags, sizeof(dst->flags));
memcpy(dst->features, src->features, sizeof(dst->features));
memcpy(dst->compat, src->compat, sizeof(dst->compat));
for (i = 0; i < BCH_SB_FIELD_NR; i++) {
if ((1U << i) & BCH_SINGLE_DEVICE_SB_FIELDS)
continue;
src_f = bch2_sb_field_get(src, i);
dst_f = bch2_sb_field_get(dst, i);
dst_f = __bch2_sb_field_resize(dst_handle, dst_f,
src_f ? le32_to_cpu(src_f->u64s) : 0);
if (src_f)
memcpy(dst_f, src_f, vstruct_bytes(src_f));
}
}
int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src)
{
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(src);
unsigned journal_u64s = journal_buckets
? le32_to_cpu(journal_buckets->field.u64s)
: 0;
int ret;
lockdep_assert_held(&c->sb_lock);
ret = bch2_sb_realloc(&c->disk_sb,
le32_to_cpu(src->u64s) - journal_u64s);
if (ret)
return ret;
__copy_super(&c->disk_sb, src);
ret = bch2_sb_replicas_to_cpu_replicas(c);
if (ret)
return ret;
ret = bch2_sb_disk_groups_to_cpu(c);
if (ret)
return ret;
bch2_sb_update(c);
return 0;
}
int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_sb *src = c->disk_sb.sb, *dst = ca->disk_sb.sb;
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(dst);
unsigned journal_u64s = journal_buckets
? le32_to_cpu(journal_buckets->field.u64s)
: 0;
unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s;
int ret;
ret = bch2_sb_realloc(&ca->disk_sb, u64s);
if (ret)
return ret;
__copy_super(&ca->disk_sb, src);
return 0;
}
/* read superblock: */
static int read_one_super(struct bch_sb_handle *sb, u64 offset, struct printbuf *err)
{
struct bch_csum csum;
u32 version, version_min;
size_t bytes;
int ret;
reread:
bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META);
sb->bio->bi_iter.bi_sector = offset;
bch2_bio_map(sb->bio, sb->sb, sb->buffer_size);
ret = submit_bio_wait(sb->bio);
if (ret) {
pr_buf(err, "IO error: %i", ret);
return ret;
}
if (!uuid_equal(&sb->sb->magic, &BCACHE_MAGIC) &&
!uuid_equal(&sb->sb->magic, &BCHFS_MAGIC)) {
pr_buf(err, "Not a bcachefs superblock");
return -EINVAL;
}
version = le16_to_cpu(sb->sb->version);
version_min = version >= bcachefs_metadata_version_bkey_renumber
? le16_to_cpu(sb->sb->version_min)
: version;
if (version >= bcachefs_metadata_version_max) {
pr_buf(err, "Unsupported superblock version %u (min %u, max %u)",
version, bcachefs_metadata_version_min, bcachefs_metadata_version_max);
return -EINVAL;
}
if (version_min < bcachefs_metadata_version_min) {
pr_buf(err, "Unsupported superblock version %u (min %u, max %u)",
version_min, bcachefs_metadata_version_min, bcachefs_metadata_version_max);
return -EINVAL;
}
bytes = vstruct_bytes(sb->sb);
if (bytes > 512 << sb->sb->layout.sb_max_size_bits) {
pr_buf(err, "Invalid superblock: too big (got %zu bytes, layout max %lu)",
bytes, 512UL << sb->sb->layout.sb_max_size_bits);
return -EINVAL;
}
if (bytes > sb->buffer_size) {
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s)))
return -ENOMEM;
goto reread;
}
if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR) {
pr_buf(err, "unknown checksum type %llu", BCH_SB_CSUM_TYPE(sb->sb));
return -EINVAL;
}
/* XXX: verify MACs */
csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb),
null_nonce(), sb->sb);
if (bch2_crc_cmp(csum, sb->sb->csum)) {
pr_buf(err, "bad checksum");
return -EINVAL;
}
sb->seq = le64_to_cpu(sb->sb->seq);
return 0;
}
int bch2_read_super(const char *path, struct bch_opts *opts,
struct bch_sb_handle *sb)
{
u64 offset = opt_get(*opts, sb);
struct bch_sb_layout layout;
struct printbuf err = PRINTBUF;
__le64 *i;
int ret;
pr_verbose_init(*opts, "");
memset(sb, 0, sizeof(*sb));
sb->mode = BLK_OPEN_READ;
sb->have_bio = true;
sb->holder = kmalloc(1, GFP_KERNEL);
if (!sb->holder)
return -ENOMEM;
if (!opt_get(*opts, noexcl))
sb->mode |= BLK_OPEN_EXCL;
if (!opt_get(*opts, nochanges))
sb->mode |= BLK_OPEN_WRITE;
sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops);
if (IS_ERR(sb->bdev) &&
PTR_ERR(sb->bdev) == -EACCES &&
opt_get(*opts, read_only)) {
sb->mode &= ~BLK_OPEN_WRITE;
sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops);
if (!IS_ERR(sb->bdev))
opt_set(*opts, nochanges, true);
}
if (IS_ERR(sb->bdev)) {
ret = PTR_ERR(sb->bdev);
goto out;
}
ret = bch2_sb_realloc(sb, 0);
if (ret) {
pr_buf(&err, "error allocating memory for superblock");
goto err;
}
if (bch2_fs_init_fault("read_super")) {
pr_buf(&err, "dynamic fault");
ret = -EFAULT;
goto err;
}
ret = read_one_super(sb, offset, &err);
if (!ret)
goto got_super;
if (opt_defined(*opts, sb))
goto err;
printk(KERN_ERR "bcachefs (%s): error reading default superblock: %s",
path, err.buf);
printbuf_reset(&err);
/*
* Error reading primary superblock - read location of backup
* superblocks:
*/
bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META);
sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR;
/*
* use sb buffer to read layout, since sb buffer is page aligned but
* layout won't be:
*/
bch2_bio_map(sb->bio, sb->sb, sizeof(struct bch_sb_layout));
ret = submit_bio_wait(sb->bio);
if (ret) {
pr_buf(&err, "IO error: %i", ret);
goto err;
}
memcpy(&layout, sb->sb, sizeof(layout));
ret = validate_sb_layout(&layout, &err);
if (ret)
goto err;
for (i = layout.sb_offset;
i < layout.sb_offset + layout.nr_superblocks; i++) {
offset = le64_to_cpu(*i);
if (offset == opt_get(*opts, sb))
continue;
ret = read_one_super(sb, offset, &err);
if (!ret)
goto got_super;
}
goto err;
got_super:
if (le16_to_cpu(sb->sb->block_size) << 9 <
bdev_logical_block_size(sb->bdev)) {
pr_buf(&err, "block size (%u) smaller than device block size (%u)",
le16_to_cpu(sb->sb->block_size) << 9,
bdev_logical_block_size(sb->bdev));
ret = -EINVAL;
goto err;
}
ret = 0;
sb->have_layout = true;
ret = bch2_sb_validate(sb, &err, READ);
if (ret) {
printk(KERN_ERR "bcachefs (%s): error validating superblock: %s",
path, err.buf);
goto err_no_print;
}
out:
pr_verbose_init(*opts, "ret %i", ret);
printbuf_exit(&err);
return ret;
err:
printk(KERN_ERR "bcachefs (%s): error reading superblock: %s",
path, err.buf);
err_no_print:
bch2_free_super(sb);
goto out;
}
/* write superblock: */
static void write_super_endio(struct bio *bio)
{
struct bch_dev *ca = bio->bi_private;
/* XXX: return errors directly */
if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write error: %s",
bch2_blk_status_to_str(bio->bi_status)))
ca->sb_write_error = 1;
closure_put(&ca->fs->sb_write);
percpu_ref_put(&ca->io_ref);
}
static void read_back_super(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_sb *sb = ca->disk_sb.sb;
struct bio *bio = ca->disk_sb.bio;
bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ|REQ_SYNC|REQ_META);
bio->bi_iter.bi_sector = le64_to_cpu(sb->layout.sb_offset[0]);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
bch2_bio_map(bio, ca->sb_read_scratch, PAGE_SIZE);
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_sb],
bio_sectors(bio));
percpu_ref_get(&ca->io_ref);
closure_bio_submit(bio, &c->sb_write);
}
static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx)
{
struct bch_sb *sb = ca->disk_sb.sb;
struct bio *bio = ca->disk_sb.bio;
sb->offset = sb->layout.sb_offset[idx];
SET_BCH_SB_CSUM_TYPE(sb, bch2_csum_opt_to_type(c->opts.metadata_checksum, false));
sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb),
null_nonce(), sb);
bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META);
bio->bi_iter.bi_sector = le64_to_cpu(sb->offset);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
bch2_bio_map(bio, sb,
roundup((size_t) vstruct_bytes(sb),
bdev_logical_block_size(ca->disk_sb.bdev)));
this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_sb],
bio_sectors(bio));
percpu_ref_get(&ca->io_ref);
closure_bio_submit(bio, &c->sb_write);
}
int bch2_write_super(struct bch_fs *c)
{
struct closure *cl = &c->sb_write;
struct bch_dev *ca;
struct printbuf err = PRINTBUF;
unsigned i, sb = 0, nr_wrote;
struct bch_devs_mask sb_written;
bool wrote, can_mount_without_written, can_mount_with_written;
unsigned degraded_flags = BCH_FORCE_IF_DEGRADED;
int ret = 0;
trace_write_super(c, _RET_IP_);
if (c->opts.very_degraded)
degraded_flags |= BCH_FORCE_IF_LOST;
lockdep_assert_held(&c->sb_lock);
closure_init_stack(cl);
memset(&sb_written, 0, sizeof(sb_written));
le64_add_cpu(&c->disk_sb.sb->seq, 1);
if (test_bit(BCH_FS_ERROR, &c->flags))
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 1);
if (test_bit(BCH_FS_TOPOLOGY_ERROR, &c->flags))
SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 1);
SET_BCH_SB_BIG_ENDIAN(c->disk_sb.sb, CPU_BIG_ENDIAN);
bch2_sb_counters_from_cpu(c);
for_each_online_member(ca, c, i)
bch2_sb_from_fs(c, ca);
for_each_online_member(ca, c, i) {
printbuf_reset(&err);
ret = bch2_sb_validate(&ca->disk_sb, &err, WRITE);
if (ret) {
bch2_fs_inconsistent(c, "sb invalid before write: %s", err.buf);
percpu_ref_put(&ca->io_ref);
goto out;
}
}
if (c->opts.nochanges)
goto out;
/*
* Defer writing the superblock until filesystem initialization is
* complete - don't write out a partly initialized superblock:
*/
if (!BCH_SB_INITIALIZED(c->disk_sb.sb))
goto out;
for_each_online_member(ca, c, i) {
__set_bit(ca->dev_idx, sb_written.d);
ca->sb_write_error = 0;
}
for_each_online_member(ca, c, i)
read_back_super(c, ca);
closure_sync(cl);
for_each_online_member(ca, c, i) {
if (ca->sb_write_error)
continue;
if (le64_to_cpu(ca->sb_read_scratch->seq) < ca->disk_sb.seq) {
bch2_fs_fatal_error(c,
"Superblock write was silently dropped! (seq %llu expected %llu)",
le64_to_cpu(ca->sb_read_scratch->seq),
ca->disk_sb.seq);
percpu_ref_put(&ca->io_ref);
ret = -EROFS;
goto out;
}
if (le64_to_cpu(ca->sb_read_scratch->seq) > ca->disk_sb.seq) {
bch2_fs_fatal_error(c,
"Superblock modified by another process (seq %llu expected %llu)",
le64_to_cpu(ca->sb_read_scratch->seq),
ca->disk_sb.seq);
percpu_ref_put(&ca->io_ref);
ret = -EROFS;
goto out;
}
}
do {
wrote = false;
for_each_online_member(ca, c, i)
if (!ca->sb_write_error &&
sb < ca->disk_sb.sb->layout.nr_superblocks) {
write_one_super(c, ca, sb);
wrote = true;
}
closure_sync(cl);
sb++;
} while (wrote);
for_each_online_member(ca, c, i) {
if (ca->sb_write_error)
__clear_bit(ca->dev_idx, sb_written.d);
else
ca->disk_sb.seq = le64_to_cpu(ca->disk_sb.sb->seq);
}
nr_wrote = dev_mask_nr(&sb_written);
can_mount_with_written =
bch2_have_enough_devs(c, sb_written, degraded_flags, false);
for (i = 0; i < ARRAY_SIZE(sb_written.d); i++)
sb_written.d[i] = ~sb_written.d[i];
can_mount_without_written =
bch2_have_enough_devs(c, sb_written, degraded_flags, false);
/*
* If we would be able to mount _without_ the devices we successfully
* wrote superblocks to, we weren't able to write to enough devices:
*
* Exception: if we can mount without the successes because we haven't
* written anything (new filesystem), we continue if we'd be able to
* mount with the devices we did successfully write to:
*/
if (bch2_fs_fatal_err_on(!nr_wrote ||
!can_mount_with_written ||
(can_mount_without_written &&
!can_mount_with_written), c,
"Unable to write superblock to sufficient devices (from %ps)",
(void *) _RET_IP_))
ret = -1;
out:
/* Make new options visible after they're persistent: */
bch2_sb_update(c);
printbuf_exit(&err);
return ret;
}
void __bch2_check_set_feature(struct bch_fs *c, unsigned feat)
{
mutex_lock(&c->sb_lock);
if (!(c->sb.features & (1ULL << feat))) {
c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << feat);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
}
/* BCH_SB_FIELD_members: */
static int bch2_sb_members_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
unsigned i;
if ((void *) (mi->members + sb->nr_devices) >
vstruct_end(&mi->field)) {
pr_buf(err, "too many devices for section size");
return -EINVAL;
}
for (i = 0; i < sb->nr_devices; i++) {
struct bch_member *m = mi->members + i;
if (!bch2_member_exists(m))
continue;
if (le64_to_cpu(m->nbuckets) > LONG_MAX) {
pr_buf(err, "device %u: too many buckets (got %llu, max %lu)",
i, le64_to_cpu(m->nbuckets), LONG_MAX);
return -EINVAL;
}
if (le64_to_cpu(m->nbuckets) -
le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS) {
pr_buf(err, "device %u: not enough buckets (got %llu, max %u)",
i, le64_to_cpu(m->nbuckets), BCH_MIN_NR_NBUCKETS);
return -EINVAL;
}
if (le16_to_cpu(m->bucket_size) <
le16_to_cpu(sb->block_size)) {
pr_buf(err, "device %u: bucket size %u smaller than block size %u",
i, le16_to_cpu(m->bucket_size), le16_to_cpu(sb->block_size));
return -EINVAL;
}
if (le16_to_cpu(m->bucket_size) <
BCH_SB_BTREE_NODE_SIZE(sb)) {
pr_buf(err, "device %u: bucket size %u smaller than btree node size %llu",
i, le16_to_cpu(m->bucket_size), BCH_SB_BTREE_NODE_SIZE(sb));
return -EINVAL;
}
}
return 0;
}
static void bch2_sb_members_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
struct bch_sb_field_disk_groups *gi = bch2_sb_get_disk_groups(sb);
unsigned i;
for (i = 0; i < sb->nr_devices; i++) {
struct bch_member *m = mi->members + i;
unsigned data_have = bch2_sb_dev_has_data(sb, i);
u64 bucket_size = le16_to_cpu(m->bucket_size);
u64 device_size = le64_to_cpu(m->nbuckets) * bucket_size;
if (!bch2_member_exists(m))
continue;
pr_buf(out, "Device:");
pr_tab(out);
pr_buf(out, "%u", i);
pr_newline(out);
pr_indent_push(out, 2);
pr_buf(out, "UUID:");
pr_tab(out);
pr_uuid(out, m->uuid.b);
pr_newline(out);
pr_buf(out, "Size:");
pr_tab(out);
pr_units(out, device_size, device_size << 9);
pr_newline(out);
pr_buf(out, "Bucket size:");
pr_tab(out);
pr_units(out, bucket_size, bucket_size << 9);
pr_newline(out);
pr_buf(out, "First bucket:");
pr_tab(out);
pr_buf(out, "%u", le16_to_cpu(m->first_bucket));
pr_newline(out);
pr_buf(out, "Buckets:");
pr_tab(out);
pr_buf(out, "%llu", le64_to_cpu(m->nbuckets));
pr_newline(out);
pr_buf(out, "Last mount:");
pr_tab(out);
if (m->last_mount)
pr_time(out, le64_to_cpu(m->last_mount));
else
pr_buf(out, "(never)");
pr_newline(out);
pr_buf(out, "State:");
pr_tab(out);
pr_buf(out, "%s",
BCH_MEMBER_STATE(m) < BCH_MEMBER_STATE_NR
? bch2_member_states[BCH_MEMBER_STATE(m)]
: "unknown");
pr_newline(out);
pr_buf(out, "Label:");
pr_tab(out);
if (BCH_MEMBER_GROUP(m)) {
unsigned idx = BCH_MEMBER_GROUP(m) - 1;
if (idx < disk_groups_nr(gi))
pr_buf(out, "%s (%u)",
gi->entries[idx].label, idx);
else
pr_buf(out, "(bad disk labels section)");
} else {
pr_buf(out, "(none)");
}
pr_newline(out);
pr_buf(out, "Data allowed:");
pr_tab(out);
if (BCH_MEMBER_DATA_ALLOWED(m))
bch2_flags_to_text(out, bch2_data_types,
BCH_MEMBER_DATA_ALLOWED(m));
else
pr_buf(out, "(none)");
pr_newline(out);
pr_buf(out, "Has data:");
pr_tab(out);
if (data_have)
bch2_flags_to_text(out, bch2_data_types, data_have);
else
pr_buf(out, "(none)");
pr_newline(out);
pr_buf(out, "Discard:");
pr_tab(out);
pr_buf(out, "%llu", BCH_MEMBER_DISCARD(m));
pr_newline(out);
pr_buf(out, "Freespace initialized:");
pr_tab(out);
pr_buf(out, "%llu", BCH_MEMBER_FREESPACE_INITIALIZED(m));
pr_newline(out);
pr_indent_pop(out, 2);
}
}
static const struct bch_sb_field_ops bch_sb_field_ops_members = {
.validate = bch2_sb_members_validate,
.to_text = bch2_sb_members_to_text,
};
/* BCH_SB_FIELD_crypt: */
static int bch2_sb_crypt_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) {
pr_buf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&crypt->field), sizeof(*crypt));
return -EINVAL;
}
if (BCH_CRYPT_KDF_TYPE(crypt)) {
pr_buf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt));
return -EINVAL;
}
return 0;
}
static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
pr_buf(out, "KFD: %llu", BCH_CRYPT_KDF_TYPE(crypt));
pr_newline(out);
pr_buf(out, "scrypt n: %llu", BCH_KDF_SCRYPT_N(crypt));
pr_newline(out);
pr_buf(out, "scrypt r: %llu", BCH_KDF_SCRYPT_R(crypt));
pr_newline(out);
pr_buf(out, "scrypt p: %llu", BCH_KDF_SCRYPT_P(crypt));
pr_newline(out);
}
static const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
.validate = bch2_sb_crypt_validate,
.to_text = bch2_sb_crypt_to_text,
};
/* BCH_SB_FIELD_clean: */
int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean, int write)
{
struct jset_entry *entry;
int ret;
for (entry = clean->start;
entry < (struct jset_entry *) vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
ret = bch2_journal_entry_validate(c, "superblock", entry,
le16_to_cpu(c->disk_sb.sb->version),
BCH_SB_BIG_ENDIAN(c->disk_sb.sb),
write);
if (ret)
return ret;
}
return 0;
}
int bch2_fs_mark_dirty(struct bch_fs *c)
{
int ret;
/*
* Unconditionally write superblock, to verify it hasn't changed before
* we go rw:
*/
mutex_lock(&c->sb_lock);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS);
c->disk_sb.sb->compat[0] &= cpu_to_le64((1ULL << BCH_COMPAT_NR) - 1);
ret = bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size)
{
struct jset_entry *entry = *end;
unsigned u64s = DIV_ROUND_UP(size, sizeof(u64));
memset(entry, 0, u64s * sizeof(u64));
/*
* The u64s field counts from the start of data, ignoring the shared
* fields.
*/
entry->u64s = cpu_to_le16(u64s - 1);
*end = vstruct_next(*end);
return entry;
}
void bch2_journal_super_entries_add_common(struct bch_fs *c,
struct jset_entry **end,
u64 journal_seq)
{
struct bch_dev *ca;
unsigned i, dev;
percpu_down_read(&c->mark_lock);
if (!journal_seq) {
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
} else {
bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
}
{
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_inodes;
u->v = cpu_to_le64(c->usage_base->nr_inodes);
}
{
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_key_version;
u->v = cpu_to_le64(atomic64_read(&c->key_version));
}
for (i = 0; i < BCH_REPLICAS_MAX; i++) {
struct jset_entry_usage *u =
container_of(jset_entry_init(end, sizeof(*u)),
struct jset_entry_usage, entry);
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = BCH_FS_USAGE_reserved;
u->entry.level = i;
u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
struct jset_entry_data_usage *u =
container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs),
struct jset_entry_data_usage, entry);
u->entry.type = BCH_JSET_ENTRY_data_usage;
u->v = cpu_to_le64(c->usage_base->replicas[i]);
unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
"embedded variable length struct");
}
for_each_member_device(ca, c, dev) {
unsigned b = sizeof(struct jset_entry_dev_usage) +
sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR;
struct jset_entry_dev_usage *u =
container_of(jset_entry_init(end, b),
struct jset_entry_dev_usage, entry);
u->entry.type = BCH_JSET_ENTRY_dev_usage;
u->dev = cpu_to_le32(dev);
u->buckets_ec = cpu_to_le64(ca->usage_base->buckets_ec);
for (i = 0; i < BCH_DATA_NR; i++) {
u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets);
u->d[i].sectors = cpu_to_le64(ca->usage_base->d[i].sectors);
u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented);
}
}
percpu_up_read(&c->mark_lock);
for (i = 0; i < 2; i++) {
struct jset_entry_clock *clock =
container_of(jset_entry_init(end, sizeof(*clock)),
struct jset_entry_clock, entry);
clock->entry.type = BCH_JSET_ENTRY_clock;
clock->rw = i;
clock->time = cpu_to_le64(atomic64_read(&c->io_clock[i].now));
}
}
void bch2_fs_mark_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *sb_clean;
struct jset_entry *entry;
unsigned u64s;
int ret;
mutex_lock(&c->sb_lock);
if (BCH_SB_CLEAN(c->disk_sb.sb))
goto out;
SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata);
c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates));
c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled));
u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s);
if (!sb_clean) {
bch_err(c, "error resizing superblock while setting filesystem clean");
goto out;
}
sb_clean->flags = 0;
sb_clean->journal_seq = cpu_to_le64(atomic64_read(&c->journal.seq));
/* Trying to catch outstanding bug: */
BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
entry = sb_clean->start;
bch2_journal_super_entries_add_common(c, &entry, 0);
entry = bch2_btree_roots_to_journal_entries(c, entry, entry);
BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
memset(entry, 0,
vstruct_end(&sb_clean->field) - (void *) entry);
/*
* this should be in the write path, and we should be validating every
* superblock section:
*/
ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE);
if (ret) {
bch_err(c, "error writing marking filesystem clean: validate error");
goto out;
}
bch2_write_super(c);
out:
mutex_unlock(&c->sb_lock);
}
static int bch2_sb_clean_validate(struct bch_sb *sb,
struct bch_sb_field *f,
struct printbuf *err)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
if (vstruct_bytes(&clean->field) < sizeof(*clean)) {
pr_buf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&clean->field), sizeof(*clean));
return -EINVAL;
}
return 0;
}
static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
struct jset_entry *entry;
pr_buf(out, "flags: %x", le32_to_cpu(clean->flags));
pr_newline(out);
pr_buf(out, "journal_seq: %llu", le64_to_cpu(clean->journal_seq));
pr_newline(out);
for (entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
if (entry->type == BCH_JSET_ENTRY_btree_keys &&
!entry->u64s)
continue;
bch2_journal_entry_to_text(out, NULL, entry);
pr_newline(out);
}
}
static const struct bch_sb_field_ops bch_sb_field_ops_clean = {
.validate = bch2_sb_clean_validate,
.to_text = bch2_sb_clean_to_text,
};
static const struct bch_sb_field_ops *bch2_sb_field_ops[] = {
#define x(f, nr) \
[BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f,
BCH_SB_FIELDS()
#undef x
};
static int bch2_sb_field_validate(struct bch_sb *sb, struct bch_sb_field *f,
struct printbuf *err)
{
unsigned type = le32_to_cpu(f->type);
struct printbuf field_err = PRINTBUF;
int ret;
if (type >= BCH_SB_FIELD_NR)
return 0;
ret = bch2_sb_field_ops[type]->validate(sb, f, &field_err);
if (ret) {
pr_buf(err, "Invalid superblock section %s: %s",
bch2_sb_fields[type],
field_err.buf);
pr_newline(err);
bch2_sb_field_to_text(err, sb, f);
}
printbuf_exit(&field_err);
return ret;
}
void bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
unsigned type = le32_to_cpu(f->type);
const struct bch_sb_field_ops *ops = type < BCH_SB_FIELD_NR
? bch2_sb_field_ops[type] : NULL;
if (!out->tabstops[0])
out->tabstops[0] = 32;
if (ops)
pr_buf(out, "%s", bch2_sb_fields[type]);
else
pr_buf(out, "(unknown field %u)", type);
pr_buf(out, " (size %zu):", vstruct_bytes(f));
pr_newline(out);
if (ops && ops->to_text) {
pr_indent_push(out, 2);
bch2_sb_field_ops[type]->to_text(out, sb, f);
pr_indent_pop(out, 2);
}
}
void bch2_sb_layout_to_text(struct printbuf *out, struct bch_sb_layout *l)
{
unsigned i;
pr_buf(out, "Type: %u", l->layout_type);
pr_newline(out);
pr_buf(out, "Superblock max size: ");
pr_units(out,
1 << l->sb_max_size_bits,
512 << l->sb_max_size_bits);
pr_newline(out);
pr_buf(out, "Nr superblocks: %u", l->nr_superblocks);
pr_newline(out);
pr_buf(out, "Offsets: ");
for (i = 0; i < l->nr_superblocks; i++) {
if (i)
pr_buf(out, ", ");
pr_buf(out, "%llu", le64_to_cpu(l->sb_offset[i]));
}
pr_newline(out);
}
void bch2_sb_to_text(struct printbuf *out, struct bch_sb *sb,
bool print_layout, unsigned fields)
{
struct bch_sb_field_members *mi;
struct bch_sb_field *f;
u64 fields_have = 0;
unsigned nr_devices = 0;
if (!out->tabstops[0])
out->tabstops[0] = 32;
mi = bch2_sb_get_members(sb);
if (mi) {
struct bch_member *m;
for (m = mi->members;
m < mi->members + sb->nr_devices;
m++)
nr_devices += bch2_member_exists(m);
}
pr_buf(out, "External UUID:");
pr_tab(out);
pr_uuid(out, sb->user_uuid.b);
pr_newline(out);
pr_buf(out, "Internal UUID:");
pr_tab(out);
pr_uuid(out, sb->uuid.b);
pr_newline(out);
pr_buf(out, "Device index:");
pr_tab(out);
pr_buf(out, "%u", sb->dev_idx);
pr_newline(out);
pr_buf(out, "Label:");
pr_tab(out);
pr_buf(out, "%.*s", (int) sizeof(sb->label), sb->label);
pr_newline(out);
pr_buf(out, "Version:");
pr_tab(out);
pr_buf(out, "%s", bch2_metadata_versions[le16_to_cpu(sb->version)]);
pr_newline(out);
pr_buf(out, "Oldest version on disk:");
pr_tab(out);
pr_buf(out, "%s", bch2_metadata_versions[le16_to_cpu(sb->version_min)]);
pr_newline(out);
pr_buf(out, "Created:");
pr_tab(out);
if (sb->time_base_lo)
pr_time(out, div_u64(le64_to_cpu(sb->time_base_lo), NSEC_PER_SEC));
else
pr_buf(out, "(not set)");
pr_newline(out);
pr_buf(out, "Sequence number:");
pr_tab(out);
pr_buf(out, "%llu", le64_to_cpu(sb->seq));
pr_newline(out);
pr_buf(out, "Superblock size:");
pr_tab(out);
pr_buf(out, "%zu", vstruct_bytes(sb));
pr_newline(out);
pr_buf(out, "Clean:");
pr_tab(out);
pr_buf(out, "%llu", BCH_SB_CLEAN(sb));
pr_newline(out);
pr_buf(out, "Devices:");
pr_tab(out);
pr_buf(out, "%u", nr_devices);
pr_newline(out);
pr_buf(out, "Sections:");
vstruct_for_each(sb, f)
fields_have |= 1 << le32_to_cpu(f->type);
pr_tab(out);
bch2_flags_to_text(out, bch2_sb_fields, fields_have);
pr_newline(out);
pr_buf(out, "Features:");
pr_tab(out);
bch2_flags_to_text(out, bch2_sb_features,
le64_to_cpu(sb->features[0]));
pr_newline(out);
pr_buf(out, "Compat features:");
pr_tab(out);
bch2_flags_to_text(out, bch2_sb_compat,
le64_to_cpu(sb->compat[0]));
pr_newline(out);
pr_newline(out);
pr_buf(out, "Options:");
pr_newline(out);
pr_indent_push(out, 2);
{
enum bch_opt_id id;
for (id = 0; id < bch2_opts_nr; id++) {
const struct bch_option *opt = bch2_opt_table + id;
if (opt->get_sb != BCH2_NO_SB_OPT) {
u64 v = bch2_opt_from_sb(sb, id);
pr_buf(out, "%s:", opt->attr.name);
pr_tab(out);
bch2_opt_to_text(out, NULL, sb, opt, v,
OPT_HUMAN_READABLE|OPT_SHOW_FULL_LIST);
pr_newline(out);
}
}
}
pr_indent_pop(out, 2);
if (print_layout) {
pr_newline(out);
pr_buf(out, "layout:");
pr_newline(out);
pr_indent_push(out, 2);
bch2_sb_layout_to_text(out, &sb->layout);
pr_indent_pop(out, 2);
}
vstruct_for_each(sb, f)
if (fields & (1 << le32_to_cpu(f->type))) {
pr_newline(out);
bch2_sb_field_to_text(out, sb, f);
}
}