| /* |
| * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c |
| * |
| */ |
| #include "priv.h" |
| #include "gk20a.h" |
| |
| #include <core/tegra.h> |
| #include <subdev/timer.h> |
| |
| #define KHZ (1000) |
| #define MHZ (KHZ * 1000) |
| |
| #define MASK(w) ((1 << w) - 1) |
| |
| #define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0) |
| #define GPCPLL_CFG_ENABLE BIT(0) |
| #define GPCPLL_CFG_IDDQ BIT(1) |
| #define GPCPLL_CFG_LOCK_DET_OFF BIT(4) |
| #define GPCPLL_CFG_LOCK BIT(17) |
| |
| #define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4) |
| #define GPCPLL_COEFF_M_SHIFT 0 |
| #define GPCPLL_COEFF_M_WIDTH 8 |
| #define GPCPLL_COEFF_N_SHIFT 8 |
| #define GPCPLL_COEFF_N_WIDTH 8 |
| #define GPCPLL_COEFF_P_SHIFT 16 |
| #define GPCPLL_COEFF_P_WIDTH 6 |
| |
| #define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc) |
| #define GPCPLL_CFG2_SETUP2_SHIFT 16 |
| #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24 |
| |
| #define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18) |
| #define GPCPLL_CFG3_PLL_STEPB_SHIFT 16 |
| |
| #define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800 |
| #define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c) |
| #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0 |
| #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8 |
| #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16 |
| #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22 |
| #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31 |
| |
| #define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100) |
| #define SEL_VCO_GPC2CLK_OUT_SHIFT 0 |
| |
| #define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250) |
| #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1 |
| #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31 |
| #define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1 |
| #define GPC2CLK_OUT_VCODIV_WIDTH 6 |
| #define GPC2CLK_OUT_VCODIV_SHIFT 8 |
| #define GPC2CLK_OUT_VCODIV1 0 |
| #define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \ |
| GPC2CLK_OUT_VCODIV_SHIFT) |
| #define GPC2CLK_OUT_BYPDIV_WIDTH 6 |
| #define GPC2CLK_OUT_BYPDIV_SHIFT 0 |
| #define GPC2CLK_OUT_BYPDIV31 0x3c |
| #define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \ |
| GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\ |
| | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\ |
| | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT)) |
| #define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \ |
| GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \ |
| | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \ |
| | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT)) |
| |
| #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0) |
| #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24 |
| #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \ |
| (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT) |
| |
| static const u8 _pl_to_div[] = { |
| /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */ |
| /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, |
| }; |
| |
| static u32 pl_to_div(u32 pl) |
| { |
| if (pl >= ARRAY_SIZE(_pl_to_div)) |
| return 1; |
| |
| return _pl_to_div[pl]; |
| } |
| |
| static u32 div_to_pl(u32 div) |
| { |
| u32 pl; |
| |
| for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) { |
| if (_pl_to_div[pl] >= div) |
| return pl; |
| } |
| |
| return ARRAY_SIZE(_pl_to_div) - 1; |
| } |
| |
| static const struct gk20a_clk_pllg_params gk20a_pllg_params = { |
| .min_vco = 1000000, .max_vco = 2064000, |
| .min_u = 12000, .max_u = 38000, |
| .min_m = 1, .max_m = 255, |
| .min_n = 8, .max_n = 255, |
| .min_pl = 1, .max_pl = 32, |
| }; |
| |
| static void |
| gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| u32 val; |
| |
| val = nvkm_rd32(device, GPCPLL_COEFF); |
| pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); |
| pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); |
| pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); |
| } |
| |
| static u32 |
| gk20a_pllg_calc_rate(struct gk20a_clk *clk) |
| { |
| u32 rate; |
| u32 divider; |
| |
| rate = clk->parent_rate * clk->pll.n; |
| divider = clk->pll.m * clk->pl_to_div(clk->pll.pl); |
| |
| return rate / divider / 2; |
| } |
| |
| static int |
| gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| u32 target_clk_f, ref_clk_f, target_freq; |
| u32 min_vco_f, max_vco_f; |
| u32 low_pl, high_pl, best_pl; |
| u32 target_vco_f; |
| u32 best_m, best_n; |
| u32 best_delta = ~0; |
| u32 pl; |
| |
| target_clk_f = rate * 2 / KHZ; |
| ref_clk_f = clk->parent_rate / KHZ; |
| |
| max_vco_f = clk->params->max_vco; |
| min_vco_f = clk->params->min_vco; |
| best_m = clk->params->max_m; |
| best_n = clk->params->min_n; |
| best_pl = clk->params->min_pl; |
| |
| target_vco_f = target_clk_f + target_clk_f / 50; |
| if (max_vco_f < target_vco_f) |
| max_vco_f = target_vco_f; |
| |
| /* min_pl <= high_pl <= max_pl */ |
| high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; |
| high_pl = min(high_pl, clk->params->max_pl); |
| high_pl = max(high_pl, clk->params->min_pl); |
| high_pl = clk->div_to_pl(high_pl); |
| |
| /* min_pl <= low_pl <= max_pl */ |
| low_pl = min_vco_f / target_vco_f; |
| low_pl = min(low_pl, clk->params->max_pl); |
| low_pl = max(low_pl, clk->params->min_pl); |
| low_pl = clk->div_to_pl(low_pl); |
| |
| nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, |
| clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl)); |
| |
| /* Select lowest possible VCO */ |
| for (pl = low_pl; pl <= high_pl; pl++) { |
| u32 m, n, n2; |
| |
| target_vco_f = target_clk_f * clk->pl_to_div(pl); |
| |
| for (m = clk->params->min_m; m <= clk->params->max_m; m++) { |
| u32 u_f, vco_f; |
| |
| u_f = ref_clk_f / m; |
| |
| if (u_f < clk->params->min_u) |
| break; |
| if (u_f > clk->params->max_u) |
| continue; |
| |
| n = (target_vco_f * m) / ref_clk_f; |
| n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; |
| |
| if (n > clk->params->max_n) |
| break; |
| |
| for (; n <= n2; n++) { |
| if (n < clk->params->min_n) |
| continue; |
| if (n > clk->params->max_n) |
| break; |
| |
| vco_f = ref_clk_f * n / m; |
| |
| if (vco_f >= min_vco_f && vco_f <= max_vco_f) { |
| u32 delta, lwv; |
| |
| lwv = (vco_f + (clk->pl_to_div(pl) / 2)) |
| / clk->pl_to_div(pl); |
| delta = abs(lwv - target_clk_f); |
| |
| if (delta < best_delta) { |
| best_delta = delta; |
| best_m = m; |
| best_n = n; |
| best_pl = pl; |
| |
| if (best_delta == 0) |
| goto found_match; |
| } |
| } |
| } |
| } |
| } |
| |
| found_match: |
| WARN_ON(best_delta == ~0); |
| |
| if (best_delta != 0) |
| nvkm_debug(subdev, |
| "no best match for target @ %dMHz on gpc_pll", |
| target_clk_f / KHZ); |
| |
| clk->pll.m = best_m; |
| clk->pll.n = best_n; |
| clk->pll.pl = best_pl; |
| |
| target_freq = gk20a_pllg_calc_rate(clk); |
| |
| nvkm_debug(subdev, |
| "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", |
| target_freq / MHZ, clk->pll.m, clk->pll.n, clk->pll.pl, |
| clk->pl_to_div(clk->pll.pl)); |
| return 0; |
| } |
| |
| static int |
| gk20a_pllg_slide(struct gk20a_clk *clk, u32 n) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| u32 val; |
| int ramp_timeout; |
| |
| /* get old coefficients */ |
| val = nvkm_rd32(device, GPCPLL_COEFF); |
| /* do nothing if NDIV is the same */ |
| if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH))) |
| return 0; |
| |
| /* setup */ |
| nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, |
| 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT); |
| nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, |
| 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT); |
| |
| /* pll slowdown mode */ |
| nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, |
| BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), |
| BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); |
| |
| /* new ndiv ready for ramp */ |
| val = nvkm_rd32(device, GPCPLL_COEFF); |
| val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT); |
| val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; |
| udelay(1); |
| nvkm_wr32(device, GPCPLL_COEFF, val); |
| |
| /* dynamic ramp to new ndiv */ |
| val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); |
| val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT; |
| udelay(1); |
| nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val); |
| |
| for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) { |
| udelay(1); |
| val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG); |
| if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) |
| break; |
| } |
| |
| /* exit slowdown mode */ |
| nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, |
| BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | |
| BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); |
| nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); |
| |
| if (ramp_timeout <= 0) { |
| nvkm_error(subdev, "gpcpll dynamic ramp timeout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| gk20a_pllg_enable(struct gk20a_clk *clk) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| |
| nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); |
| nvkm_rd32(device, GPCPLL_CFG); |
| } |
| |
| static void |
| gk20a_pllg_disable(struct gk20a_clk *clk) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| |
| nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); |
| nvkm_rd32(device, GPCPLL_CFG); |
| } |
| |
| static int |
| _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| u32 val, cfg; |
| struct gk20a_pll old_pll; |
| u32 n_lo; |
| |
| /* get old coefficients */ |
| gk20a_pllg_read_mnp(clk, &old_pll); |
| |
| /* do NDIV slide if there is no change in M and PL */ |
| cfg = nvkm_rd32(device, GPCPLL_CFG); |
| if (allow_slide && clk->pll.m == old_pll.m && |
| clk->pll.pl == old_pll.pl && (cfg & GPCPLL_CFG_ENABLE)) { |
| return gk20a_pllg_slide(clk, clk->pll.n); |
| } |
| |
| /* slide down to NDIV_LO */ |
| if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) { |
| int ret; |
| |
| n_lo = DIV_ROUND_UP(old_pll.m * clk->params->min_vco, |
| clk->parent_rate / KHZ); |
| ret = gk20a_pllg_slide(clk, n_lo); |
| |
| if (ret) |
| return ret; |
| } |
| |
| /* split FO-to-bypass jump in halfs by setting out divider 1:2 */ |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, |
| 0x2 << GPC2CLK_OUT_VCODIV_SHIFT); |
| |
| /* put PLL in bypass before programming it */ |
| val = nvkm_rd32(device, SEL_VCO); |
| val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); |
| udelay(2); |
| nvkm_wr32(device, SEL_VCO, val); |
| |
| /* get out from IDDQ */ |
| val = nvkm_rd32(device, GPCPLL_CFG); |
| if (val & GPCPLL_CFG_IDDQ) { |
| val &= ~GPCPLL_CFG_IDDQ; |
| nvkm_wr32(device, GPCPLL_CFG, val); |
| nvkm_rd32(device, GPCPLL_CFG); |
| udelay(2); |
| } |
| |
| gk20a_pllg_disable(clk); |
| |
| nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__, |
| clk->pll.m, clk->pll.n, clk->pll.pl); |
| |
| n_lo = DIV_ROUND_UP(clk->pll.m * clk->params->min_vco, |
| clk->parent_rate / KHZ); |
| val = clk->pll.m << GPCPLL_COEFF_M_SHIFT; |
| val |= (allow_slide ? n_lo : clk->pll.n) << GPCPLL_COEFF_N_SHIFT; |
| val |= clk->pll.pl << GPCPLL_COEFF_P_SHIFT; |
| nvkm_wr32(device, GPCPLL_COEFF, val); |
| |
| gk20a_pllg_enable(clk); |
| |
| val = nvkm_rd32(device, GPCPLL_CFG); |
| if (val & GPCPLL_CFG_LOCK_DET_OFF) { |
| val &= ~GPCPLL_CFG_LOCK_DET_OFF; |
| nvkm_wr32(device, GPCPLL_CFG, val); |
| } |
| |
| if (nvkm_usec(device, 300, |
| if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK) |
| break; |
| ) < 0) |
| return -ETIMEDOUT; |
| |
| /* switch to VCO mode */ |
| nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), |
| BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); |
| |
| /* restore out divider 1:1 */ |
| val = nvkm_rd32(device, GPC2CLK_OUT); |
| if ((val & GPC2CLK_OUT_VCODIV_MASK) != |
| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT)) { |
| val &= ~GPC2CLK_OUT_VCODIV_MASK; |
| val |= GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT; |
| udelay(2); |
| nvkm_wr32(device, GPC2CLK_OUT, val); |
| /* Intentional 2nd write to assure linear divider operation */ |
| nvkm_wr32(device, GPC2CLK_OUT, val); |
| nvkm_rd32(device, GPC2CLK_OUT); |
| } |
| |
| /* slide up to new NDIV */ |
| return allow_slide ? gk20a_pllg_slide(clk, clk->pll.n) : 0; |
| } |
| |
| static int |
| gk20a_pllg_program_mnp(struct gk20a_clk *clk) |
| { |
| int err; |
| |
| err = _gk20a_pllg_program_mnp(clk, true); |
| if (err) |
| err = _gk20a_pllg_program_mnp(clk, false); |
| |
| return err; |
| } |
| |
| static struct nvkm_pstate |
| gk20a_pstates[] = { |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 72000, |
| .voltage = 0, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 108000, |
| .voltage = 1, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 180000, |
| .voltage = 2, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 252000, |
| .voltage = 3, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 324000, |
| .voltage = 4, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 396000, |
| .voltage = 5, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 468000, |
| .voltage = 6, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 540000, |
| .voltage = 7, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 612000, |
| .voltage = 8, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 648000, |
| .voltage = 9, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 684000, |
| .voltage = 10, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 708000, |
| .voltage = 11, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 756000, |
| .voltage = 12, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 804000, |
| .voltage = 13, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 852000, |
| .voltage = 14, |
| }, |
| }, |
| }; |
| |
| int |
| gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| |
| switch (src) { |
| case nv_clk_src_crystal: |
| return device->crystal; |
| case nv_clk_src_gpc: |
| gk20a_pllg_read_mnp(clk, &clk->pll); |
| return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV; |
| default: |
| nvkm_error(subdev, "invalid clock source %d\n", src); |
| return -EINVAL; |
| } |
| } |
| |
| int |
| gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| |
| return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] * |
| GK20A_CLK_GPC_MDIV); |
| } |
| |
| int |
| gk20a_clk_prog(struct nvkm_clk *base) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| |
| return gk20a_pllg_program_mnp(clk); |
| } |
| |
| void |
| gk20a_clk_tidy(struct nvkm_clk *base) |
| { |
| } |
| |
| void |
| gk20a_clk_fini(struct nvkm_clk *base) |
| { |
| struct nvkm_device *device = base->subdev.device; |
| struct gk20a_clk *clk = gk20a_clk(base); |
| u32 val; |
| |
| /* slide to VCO min */ |
| val = nvkm_rd32(device, GPCPLL_CFG); |
| if (val & GPCPLL_CFG_ENABLE) { |
| struct gk20a_pll pll; |
| u32 n_lo; |
| |
| gk20a_pllg_read_mnp(clk, &pll); |
| n_lo = DIV_ROUND_UP(pll.m * clk->params->min_vco, |
| clk->parent_rate / KHZ); |
| gk20a_pllg_slide(clk, n_lo); |
| } |
| |
| /* put PLL in bypass before disabling it */ |
| nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); |
| |
| gk20a_pllg_disable(clk); |
| } |
| |
| static int |
| gk20a_clk_init(struct nvkm_clk *base) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| int ret; |
| |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, |
| GPC2CLK_OUT_INIT_VAL); |
| |
| /* Start with lowest frequency */ |
| base->func->calc(base, &base->func->pstates[0].base); |
| ret = base->func->prog(&clk->base); |
| if (ret) { |
| nvkm_error(subdev, "cannot initialize clock\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nvkm_clk_func |
| gk20a_clk = { |
| .init = gk20a_clk_init, |
| .fini = gk20a_clk_fini, |
| .read = gk20a_clk_read, |
| .calc = gk20a_clk_calc, |
| .prog = gk20a_clk_prog, |
| .tidy = gk20a_clk_tidy, |
| .pstates = gk20a_pstates, |
| .nr_pstates = ARRAY_SIZE(gk20a_pstates), |
| .domains = { |
| { nv_clk_src_crystal, 0xff }, |
| { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, |
| { nv_clk_src_max } |
| } |
| }; |
| |
| int |
| _gk20a_clk_ctor(struct nvkm_device *device, int index, |
| const struct nvkm_clk_func *func, |
| const struct gk20a_clk_pllg_params *params, |
| struct gk20a_clk *clk) |
| { |
| struct nvkm_device_tegra *tdev = device->func->tegra(device); |
| int ret; |
| int i; |
| |
| /* Finish initializing the pstates */ |
| for (i = 0; i < func->nr_pstates; i++) { |
| INIT_LIST_HEAD(&func->pstates[i].list); |
| func->pstates[i].pstate = i + 1; |
| } |
| |
| clk->params = params; |
| clk->parent_rate = clk_get_rate(tdev->clk); |
| |
| ret = nvkm_clk_ctor(func, device, index, true, &clk->base); |
| if (ret) |
| return ret; |
| |
| nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n", |
| clk->parent_rate / KHZ); |
| |
| return 0; |
| } |
| |
| int |
| gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) |
| { |
| struct gk20a_clk *clk; |
| int ret; |
| |
| clk = kzalloc(sizeof(*clk), GFP_KERNEL); |
| if (!clk) |
| return -ENOMEM; |
| *pclk = &clk->base; |
| |
| ret = _gk20a_clk_ctor(device, index, &gk20a_clk, &gk20a_pllg_params, |
| clk); |
| |
| clk->pl_to_div = pl_to_div; |
| clk->div_to_pl = div_to_pl; |
| |
| return ret; |
| } |