blob: eec292d06f1159dfe83f96760c348a0db2466520 [file] [log] [blame]
/*
* Copyright (c) 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
* Mika Kuoppala <mika.kuoppala@intel.com>
*
*/
#include <linux/ascii85.h>
#include <linux/nmi.h>
#include <linux/pagevec.h>
#include <linux/scatterlist.h>
#include <linux/utsname.h>
#include <linux/zlib.h>
#include <drm/drm_print.h>
#include "display/intel_atomic.h"
#include "display/intel_csr.h"
#include "display/intel_overlay.h"
#include "gem/i915_gem_context.h"
#include "gem/i915_gem_lmem.h"
#include "gt/intel_gt_pm.h"
#include "i915_drv.h"
#include "i915_gpu_error.h"
#include "i915_memcpy.h"
#include "i915_scatterlist.h"
#define ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
#define ATOMIC_MAYFAIL (GFP_ATOMIC | __GFP_NOWARN)
static void __sg_set_buf(struct scatterlist *sg,
void *addr, unsigned int len, loff_t it)
{
sg->page_link = (unsigned long)virt_to_page(addr);
sg->offset = offset_in_page(addr);
sg->length = len;
sg->dma_address = it;
}
static bool __i915_error_grow(struct drm_i915_error_state_buf *e, size_t len)
{
if (!len)
return false;
if (e->bytes + len + 1 <= e->size)
return true;
if (e->bytes) {
__sg_set_buf(e->cur++, e->buf, e->bytes, e->iter);
e->iter += e->bytes;
e->buf = NULL;
e->bytes = 0;
}
if (e->cur == e->end) {
struct scatterlist *sgl;
sgl = (typeof(sgl))__get_free_page(ALLOW_FAIL);
if (!sgl) {
e->err = -ENOMEM;
return false;
}
if (e->cur) {
e->cur->offset = 0;
e->cur->length = 0;
e->cur->page_link =
(unsigned long)sgl | SG_CHAIN;
} else {
e->sgl = sgl;
}
e->cur = sgl;
e->end = sgl + SG_MAX_SINGLE_ALLOC - 1;
}
e->size = ALIGN(len + 1, SZ_64K);
e->buf = kmalloc(e->size, ALLOW_FAIL);
if (!e->buf) {
e->size = PAGE_ALIGN(len + 1);
e->buf = kmalloc(e->size, GFP_KERNEL);
}
if (!e->buf) {
e->err = -ENOMEM;
return false;
}
return true;
}
__printf(2, 0)
static void i915_error_vprintf(struct drm_i915_error_state_buf *e,
const char *fmt, va_list args)
{
va_list ap;
int len;
if (e->err)
return;
va_copy(ap, args);
len = vsnprintf(NULL, 0, fmt, ap);
va_end(ap);
if (len <= 0) {
e->err = len;
return;
}
if (!__i915_error_grow(e, len))
return;
GEM_BUG_ON(e->bytes >= e->size);
len = vscnprintf(e->buf + e->bytes, e->size - e->bytes, fmt, args);
if (len < 0) {
e->err = len;
return;
}
e->bytes += len;
}
static void i915_error_puts(struct drm_i915_error_state_buf *e, const char *str)
{
unsigned len;
if (e->err || !str)
return;
len = strlen(str);
if (!__i915_error_grow(e, len))
return;
GEM_BUG_ON(e->bytes + len > e->size);
memcpy(e->buf + e->bytes, str, len);
e->bytes += len;
}
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
#define err_puts(e, s) i915_error_puts(e, s)
static void __i915_printfn_error(struct drm_printer *p, struct va_format *vaf)
{
i915_error_vprintf(p->arg, vaf->fmt, *vaf->va);
}
static inline struct drm_printer
i915_error_printer(struct drm_i915_error_state_buf *e)
{
struct drm_printer p = {
.printfn = __i915_printfn_error,
.arg = e,
};
return p;
}
/* single threaded page allocator with a reserved stash for emergencies */
static void pool_fini(struct pagevec *pv)
{
pagevec_release(pv);
}
static int pool_refill(struct pagevec *pv, gfp_t gfp)
{
while (pagevec_space(pv)) {
struct page *p;
p = alloc_page(gfp);
if (!p)
return -ENOMEM;
pagevec_add(pv, p);
}
return 0;
}
static int pool_init(struct pagevec *pv, gfp_t gfp)
{
int err;
pagevec_init(pv);
err = pool_refill(pv, gfp);
if (err)
pool_fini(pv);
return err;
}
static void *pool_alloc(struct pagevec *pv, gfp_t gfp)
{
struct page *p;
p = alloc_page(gfp);
if (!p && pagevec_count(pv))
p = pv->pages[--pv->nr];
return p ? page_address(p) : NULL;
}
static void pool_free(struct pagevec *pv, void *addr)
{
struct page *p = virt_to_page(addr);
if (pagevec_space(pv))
pagevec_add(pv, p);
else
__free_page(p);
}
#ifdef CONFIG_DRM_I915_COMPRESS_ERROR
struct i915_vma_compress {
struct pagevec pool;
struct z_stream_s zstream;
void *tmp;
};
static bool compress_init(struct i915_vma_compress *c)
{
struct z_stream_s *zstream = &c->zstream;
if (pool_init(&c->pool, ALLOW_FAIL))
return false;
zstream->workspace =
kmalloc(zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL),
ALLOW_FAIL);
if (!zstream->workspace) {
pool_fini(&c->pool);
return false;
}
c->tmp = NULL;
if (i915_has_memcpy_from_wc())
c->tmp = pool_alloc(&c->pool, ALLOW_FAIL);
return true;
}
static bool compress_start(struct i915_vma_compress *c)
{
struct z_stream_s *zstream = &c->zstream;
void *workspace = zstream->workspace;
memset(zstream, 0, sizeof(*zstream));
zstream->workspace = workspace;
return zlib_deflateInit(zstream, Z_DEFAULT_COMPRESSION) == Z_OK;
}
static void *compress_next_page(struct i915_vma_compress *c,
struct i915_vma_coredump *dst)
{
void *page;
if (dst->page_count >= dst->num_pages)
return ERR_PTR(-ENOSPC);
page = pool_alloc(&c->pool, ALLOW_FAIL);
if (!page)
return ERR_PTR(-ENOMEM);
return dst->pages[dst->page_count++] = page;
}
static int compress_page(struct i915_vma_compress *c,
void *src,
struct i915_vma_coredump *dst,
bool wc)
{
struct z_stream_s *zstream = &c->zstream;
zstream->next_in = src;
if (wc && c->tmp && i915_memcpy_from_wc(c->tmp, src, PAGE_SIZE))
zstream->next_in = c->tmp;
zstream->avail_in = PAGE_SIZE;
do {
if (zstream->avail_out == 0) {
zstream->next_out = compress_next_page(c, dst);
if (IS_ERR(zstream->next_out))
return PTR_ERR(zstream->next_out);
zstream->avail_out = PAGE_SIZE;
}
if (zlib_deflate(zstream, Z_NO_FLUSH) != Z_OK)
return -EIO;
} while (zstream->avail_in);
/* Fallback to uncompressed if we increase size? */
if (0 && zstream->total_out > zstream->total_in)
return -E2BIG;
return 0;
}
static int compress_flush(struct i915_vma_compress *c,
struct i915_vma_coredump *dst)
{
struct z_stream_s *zstream = &c->zstream;
do {
switch (zlib_deflate(zstream, Z_FINISH)) {
case Z_OK: /* more space requested */
zstream->next_out = compress_next_page(c, dst);
if (IS_ERR(zstream->next_out))
return PTR_ERR(zstream->next_out);
zstream->avail_out = PAGE_SIZE;
break;
case Z_STREAM_END:
goto end;
default: /* any error */
return -EIO;
}
} while (1);
end:
memset(zstream->next_out, 0, zstream->avail_out);
dst->unused = zstream->avail_out;
return 0;
}
static void compress_finish(struct i915_vma_compress *c)
{
zlib_deflateEnd(&c->zstream);
}
static void compress_fini(struct i915_vma_compress *c)
{
kfree(c->zstream.workspace);
if (c->tmp)
pool_free(&c->pool, c->tmp);
pool_fini(&c->pool);
}
static void err_compression_marker(struct drm_i915_error_state_buf *m)
{
err_puts(m, ":");
}
#else
struct i915_vma_compress {
struct pagevec pool;
};
static bool compress_init(struct i915_vma_compress *c)
{
return pool_init(&c->pool, ALLOW_FAIL) == 0;
}
static bool compress_start(struct i915_vma_compress *c)
{
return true;
}
static int compress_page(struct i915_vma_compress *c,
void *src,
struct i915_vma_coredump *dst,
bool wc)
{
void *ptr;
ptr = pool_alloc(&c->pool, ALLOW_FAIL);
if (!ptr)
return -ENOMEM;
if (!(wc && i915_memcpy_from_wc(ptr, src, PAGE_SIZE)))
memcpy(ptr, src, PAGE_SIZE);
dst->pages[dst->page_count++] = ptr;
return 0;
}
static int compress_flush(struct i915_vma_compress *c,
struct i915_vma_coredump *dst)
{
return 0;
}
static void compress_finish(struct i915_vma_compress *c)
{
}
static void compress_fini(struct i915_vma_compress *c)
{
pool_fini(&c->pool);
}
static void err_compression_marker(struct drm_i915_error_state_buf *m)
{
err_puts(m, "~");
}
#endif
static void error_print_instdone(struct drm_i915_error_state_buf *m,
const struct intel_engine_coredump *ee)
{
const struct sseu_dev_info *sseu = &RUNTIME_INFO(m->i915)->sseu;
int slice;
int subslice;
err_printf(m, " INSTDONE: 0x%08x\n",
ee->instdone.instdone);
if (ee->engine->class != RENDER_CLASS || INTEL_GEN(m->i915) <= 3)
return;
err_printf(m, " SC_INSTDONE: 0x%08x\n",
ee->instdone.slice_common);
if (INTEL_GEN(m->i915) <= 6)
return;
for_each_instdone_slice_subslice(m->i915, sseu, slice, subslice)
err_printf(m, " SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice,
ee->instdone.sampler[slice][subslice]);
for_each_instdone_slice_subslice(m->i915, sseu, slice, subslice)
err_printf(m, " ROW_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice,
ee->instdone.row[slice][subslice]);
if (INTEL_GEN(m->i915) < 12)
return;
err_printf(m, " SC_INSTDONE_EXTRA: 0x%08x\n",
ee->instdone.slice_common_extra[0]);
err_printf(m, " SC_INSTDONE_EXTRA2: 0x%08x\n",
ee->instdone.slice_common_extra[1]);
}
static void error_print_request(struct drm_i915_error_state_buf *m,
const char *prefix,
const struct i915_request_coredump *erq)
{
if (!erq->seqno)
return;
err_printf(m, "%s pid %d, seqno %8x:%08x%s%s, prio %d, head %08x, tail %08x\n",
prefix, erq->pid, erq->context, erq->seqno,
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&erq->flags) ? "!" : "",
test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&erq->flags) ? "+" : "",
erq->sched_attr.priority,
erq->head, erq->tail);
}
static void error_print_context(struct drm_i915_error_state_buf *m,
const char *header,
const struct i915_gem_context_coredump *ctx)
{
const u32 period = RUNTIME_INFO(m->i915)->cs_timestamp_period_ns;
err_printf(m, "%s%s[%d] prio %d, guilty %d active %d, runtime total %lluns, avg %lluns\n",
header, ctx->comm, ctx->pid, ctx->sched_attr.priority,
ctx->guilty, ctx->active,
ctx->total_runtime * period,
mul_u32_u32(ctx->avg_runtime, period));
}
static struct i915_vma_coredump *
__find_vma(struct i915_vma_coredump *vma, const char *name)
{
while (vma) {
if (strcmp(vma->name, name) == 0)
return vma;
vma = vma->next;
}
return NULL;
}
static struct i915_vma_coredump *
find_batch(const struct intel_engine_coredump *ee)
{
return __find_vma(ee->vma, "batch");
}
static void error_print_engine(struct drm_i915_error_state_buf *m,
const struct intel_engine_coredump *ee)
{
struct i915_vma_coredump *batch;
int n;
err_printf(m, "%s command stream:\n", ee->engine->name);
err_printf(m, " CCID: 0x%08x\n", ee->ccid);
err_printf(m, " START: 0x%08x\n", ee->start);
err_printf(m, " HEAD: 0x%08x [0x%08x]\n", ee->head, ee->rq_head);
err_printf(m, " TAIL: 0x%08x [0x%08x, 0x%08x]\n",
ee->tail, ee->rq_post, ee->rq_tail);
err_printf(m, " CTL: 0x%08x\n", ee->ctl);
err_printf(m, " MODE: 0x%08x\n", ee->mode);
err_printf(m, " HWS: 0x%08x\n", ee->hws);
err_printf(m, " ACTHD: 0x%08x %08x\n",
(u32)(ee->acthd>>32), (u32)ee->acthd);
err_printf(m, " IPEIR: 0x%08x\n", ee->ipeir);
err_printf(m, " IPEHR: 0x%08x\n", ee->ipehr);
err_printf(m, " ESR: 0x%08x\n", ee->esr);
error_print_instdone(m, ee);
batch = find_batch(ee);
if (batch) {
u64 start = batch->gtt_offset;
u64 end = start + batch->gtt_size;
err_printf(m, " batch: [0x%08x_%08x, 0x%08x_%08x]\n",
upper_32_bits(start), lower_32_bits(start),
upper_32_bits(end), lower_32_bits(end));
}
if (INTEL_GEN(m->i915) >= 4) {
err_printf(m, " BBADDR: 0x%08x_%08x\n",
(u32)(ee->bbaddr>>32), (u32)ee->bbaddr);
err_printf(m, " BB_STATE: 0x%08x\n", ee->bbstate);
err_printf(m, " INSTPS: 0x%08x\n", ee->instps);
}
err_printf(m, " INSTPM: 0x%08x\n", ee->instpm);
err_printf(m, " FADDR: 0x%08x %08x\n", upper_32_bits(ee->faddr),
lower_32_bits(ee->faddr));
if (INTEL_GEN(m->i915) >= 6) {
err_printf(m, " RC PSMI: 0x%08x\n", ee->rc_psmi);
err_printf(m, " FAULT_REG: 0x%08x\n", ee->fault_reg);
}
if (HAS_PPGTT(m->i915)) {
err_printf(m, " GFX_MODE: 0x%08x\n", ee->vm_info.gfx_mode);
if (INTEL_GEN(m->i915) >= 8) {
int i;
for (i = 0; i < 4; i++)
err_printf(m, " PDP%d: 0x%016llx\n",
i, ee->vm_info.pdp[i]);
} else {
err_printf(m, " PP_DIR_BASE: 0x%08x\n",
ee->vm_info.pp_dir_base);
}
}
err_printf(m, " engine reset count: %u\n", ee->reset_count);
for (n = 0; n < ee->num_ports; n++) {
err_printf(m, " ELSP[%d]:", n);
error_print_request(m, " ", &ee->execlist[n]);
}
error_print_context(m, " Active context: ", &ee->context);
}
void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...)
{
va_list args;
va_start(args, f);
i915_error_vprintf(e, f, args);
va_end(args);
}
static void print_error_vma(struct drm_i915_error_state_buf *m,
const struct intel_engine_cs *engine,
const struct i915_vma_coredump *vma)
{
char out[ASCII85_BUFSZ];
int page;
if (!vma)
return;
err_printf(m, "%s --- %s = 0x%08x %08x\n",
engine ? engine->name : "global", vma->name,
upper_32_bits(vma->gtt_offset),
lower_32_bits(vma->gtt_offset));
if (vma->gtt_page_sizes > I915_GTT_PAGE_SIZE_4K)
err_printf(m, "gtt_page_sizes = 0x%08x\n", vma->gtt_page_sizes);
err_compression_marker(m);
for (page = 0; page < vma->page_count; page++) {
int i, len;
len = PAGE_SIZE;
if (page == vma->page_count - 1)
len -= vma->unused;
len = ascii85_encode_len(len);
for (i = 0; i < len; i++)
err_puts(m, ascii85_encode(vma->pages[page][i], out));
}
err_puts(m, "\n");
}
static void err_print_capabilities(struct drm_i915_error_state_buf *m,
const struct intel_device_info *info,
const struct intel_runtime_info *runtime,
const struct intel_driver_caps *caps)
{
struct drm_printer p = i915_error_printer(m);
intel_device_info_print_static(info, &p);
intel_device_info_print_runtime(runtime, &p);
intel_device_info_print_topology(&runtime->sseu, &p);
intel_driver_caps_print(caps, &p);
}
static void err_print_params(struct drm_i915_error_state_buf *m,
const struct i915_params *params)
{
struct drm_printer p = i915_error_printer(m);
i915_params_dump(params, &p);
}
static void err_print_pciid(struct drm_i915_error_state_buf *m,
struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
err_printf(m, "PCI ID: 0x%04x\n", pdev->device);
err_printf(m, "PCI Revision: 0x%02x\n", pdev->revision);
err_printf(m, "PCI Subsystem: %04x:%04x\n",
pdev->subsystem_vendor,
pdev->subsystem_device);
}
static void err_print_uc(struct drm_i915_error_state_buf *m,
const struct intel_uc_coredump *error_uc)
{
struct drm_printer p = i915_error_printer(m);
intel_uc_fw_dump(&error_uc->guc_fw, &p);
intel_uc_fw_dump(&error_uc->huc_fw, &p);
print_error_vma(m, NULL, error_uc->guc_log);
}
static void err_free_sgl(struct scatterlist *sgl)
{
while (sgl) {
struct scatterlist *sg;
for (sg = sgl; !sg_is_chain(sg); sg++) {
kfree(sg_virt(sg));
if (sg_is_last(sg))
break;
}
sg = sg_is_last(sg) ? NULL : sg_chain_ptr(sg);
free_page((unsigned long)sgl);
sgl = sg;
}
}
static void err_print_gt(struct drm_i915_error_state_buf *m,
struct intel_gt_coredump *gt)
{
const struct intel_engine_coredump *ee;
int i;
err_printf(m, "GT awake: %s\n", yesno(gt->awake));
err_printf(m, "EIR: 0x%08x\n", gt->eir);
err_printf(m, "IER: 0x%08x\n", gt->ier);
for (i = 0; i < gt->ngtier; i++)
err_printf(m, "GTIER[%d]: 0x%08x\n", i, gt->gtier[i]);
err_printf(m, "PGTBL_ER: 0x%08x\n", gt->pgtbl_er);
err_printf(m, "FORCEWAKE: 0x%08x\n", gt->forcewake);
err_printf(m, "DERRMR: 0x%08x\n", gt->derrmr);
for (i = 0; i < gt->nfence; i++)
err_printf(m, " fence[%d] = %08llx\n", i, gt->fence[i]);
if (IS_GEN_RANGE(m->i915, 6, 11)) {
err_printf(m, "ERROR: 0x%08x\n", gt->error);
err_printf(m, "DONE_REG: 0x%08x\n", gt->done_reg);
}
if (INTEL_GEN(m->i915) >= 8)
err_printf(m, "FAULT_TLB_DATA: 0x%08x 0x%08x\n",
gt->fault_data1, gt->fault_data0);
if (IS_GEN(m->i915, 7))
err_printf(m, "ERR_INT: 0x%08x\n", gt->err_int);
if (IS_GEN_RANGE(m->i915, 8, 11))
err_printf(m, "GTT_CACHE_EN: 0x%08x\n", gt->gtt_cache);
if (IS_GEN(m->i915, 12))
err_printf(m, "AUX_ERR_DBG: 0x%08x\n", gt->aux_err);
if (INTEL_GEN(m->i915) >= 12) {
int i;
for (i = 0; i < GEN12_SFC_DONE_MAX; i++)
err_printf(m, " SFC_DONE[%d]: 0x%08x\n", i,
gt->sfc_done[i]);
err_printf(m, " GAM_DONE: 0x%08x\n", gt->gam_done);
}
for (ee = gt->engine; ee; ee = ee->next) {
const struct i915_vma_coredump *vma;
error_print_engine(m, ee);
for (vma = ee->vma; vma; vma = vma->next)
print_error_vma(m, ee->engine, vma);
}
if (gt->uc)
err_print_uc(m, gt->uc);
}
static void __err_print_to_sgl(struct drm_i915_error_state_buf *m,
struct i915_gpu_coredump *error)
{
const struct intel_engine_coredump *ee;
struct timespec64 ts;
if (*error->error_msg)
err_printf(m, "%s\n", error->error_msg);
err_printf(m, "Kernel: %s %s\n",
init_utsname()->release,
init_utsname()->machine);
err_printf(m, "Driver: %s\n", DRIVER_DATE);
ts = ktime_to_timespec64(error->time);
err_printf(m, "Time: %lld s %ld us\n",
(s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC);
ts = ktime_to_timespec64(error->boottime);
err_printf(m, "Boottime: %lld s %ld us\n",
(s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC);
ts = ktime_to_timespec64(error->uptime);
err_printf(m, "Uptime: %lld s %ld us\n",
(s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC);
err_printf(m, "Capture: %lu jiffies; %d ms ago\n",
error->capture, jiffies_to_msecs(jiffies - error->capture));
for (ee = error->gt ? error->gt->engine : NULL; ee; ee = ee->next)
err_printf(m, "Active process (on ring %s): %s [%d]\n",
ee->engine->name,
ee->context.comm,
ee->context.pid);
err_printf(m, "Reset count: %u\n", error->reset_count);
err_printf(m, "Suspend count: %u\n", error->suspend_count);
err_printf(m, "Platform: %s\n", intel_platform_name(error->device_info.platform));
err_printf(m, "Subplatform: 0x%x\n",
intel_subplatform(&error->runtime_info,
error->device_info.platform));
err_print_pciid(m, m->i915);
err_printf(m, "IOMMU enabled?: %d\n", error->iommu);
if (HAS_CSR(m->i915)) {
struct intel_csr *csr = &m->i915->csr;
err_printf(m, "DMC loaded: %s\n",
yesno(csr->dmc_payload != NULL));
err_printf(m, "DMC fw version: %d.%d\n",
CSR_VERSION_MAJOR(csr->version),
CSR_VERSION_MINOR(csr->version));
}
err_printf(m, "RPM wakelock: %s\n", yesno(error->wakelock));
err_printf(m, "PM suspended: %s\n", yesno(error->suspended));
if (error->gt)
err_print_gt(m, error->gt);
if (error->overlay)
intel_overlay_print_error_state(m, error->overlay);
if (error->display)
intel_display_print_error_state(m, error->display);
err_print_capabilities(m, &error->device_info, &error->runtime_info,
&error->driver_caps);
err_print_params(m, &error->params);
}
static int err_print_to_sgl(struct i915_gpu_coredump *error)
{
struct drm_i915_error_state_buf m;
if (IS_ERR(error))
return PTR_ERR(error);
if (READ_ONCE(error->sgl))
return 0;
memset(&m, 0, sizeof(m));
m.i915 = error->i915;
__err_print_to_sgl(&m, error);
if (m.buf) {
__sg_set_buf(m.cur++, m.buf, m.bytes, m.iter);
m.bytes = 0;
m.buf = NULL;
}
if (m.cur) {
GEM_BUG_ON(m.end < m.cur);
sg_mark_end(m.cur - 1);
}
GEM_BUG_ON(m.sgl && !m.cur);
if (m.err) {
err_free_sgl(m.sgl);
return m.err;
}
if (cmpxchg(&error->sgl, NULL, m.sgl))
err_free_sgl(m.sgl);
return 0;
}
ssize_t i915_gpu_coredump_copy_to_buffer(struct i915_gpu_coredump *error,
char *buf, loff_t off, size_t rem)
{
struct scatterlist *sg;
size_t count;
loff_t pos;
int err;
if (!error || !rem)
return 0;
err = err_print_to_sgl(error);
if (err)
return err;
sg = READ_ONCE(error->fit);
if (!sg || off < sg->dma_address)
sg = error->sgl;
if (!sg)
return 0;
pos = sg->dma_address;
count = 0;
do {
size_t len, start;
if (sg_is_chain(sg)) {
sg = sg_chain_ptr(sg);
GEM_BUG_ON(sg_is_chain(sg));
}
len = sg->length;
if (pos + len <= off) {
pos += len;
continue;
}
start = sg->offset;
if (pos < off) {
GEM_BUG_ON(off - pos > len);
len -= off - pos;
start += off - pos;
pos = off;
}
len = min(len, rem);
GEM_BUG_ON(!len || len > sg->length);
memcpy(buf, page_address(sg_page(sg)) + start, len);
count += len;
pos += len;
buf += len;
rem -= len;
if (!rem) {
WRITE_ONCE(error->fit, sg);
break;
}
} while (!sg_is_last(sg++));
return count;
}
static void i915_vma_coredump_free(struct i915_vma_coredump *vma)
{
while (vma) {
struct i915_vma_coredump *next = vma->next;
int page;
for (page = 0; page < vma->page_count; page++)
free_page((unsigned long)vma->pages[page]);
kfree(vma);
vma = next;
}
}
static void cleanup_params(struct i915_gpu_coredump *error)
{
i915_params_free(&error->params);
}
static void cleanup_uc(struct intel_uc_coredump *uc)
{
kfree(uc->guc_fw.path);
kfree(uc->huc_fw.path);
i915_vma_coredump_free(uc->guc_log);
kfree(uc);
}
static void cleanup_gt(struct intel_gt_coredump *gt)
{
while (gt->engine) {
struct intel_engine_coredump *ee = gt->engine;
gt->engine = ee->next;
i915_vma_coredump_free(ee->vma);
kfree(ee);
}
if (gt->uc)
cleanup_uc(gt->uc);
kfree(gt);
}
void __i915_gpu_coredump_free(struct kref *error_ref)
{
struct i915_gpu_coredump *error =
container_of(error_ref, typeof(*error), ref);
while (error->gt) {
struct intel_gt_coredump *gt = error->gt;
error->gt = gt->next;
cleanup_gt(gt);
}
kfree(error->overlay);
kfree(error->display);
cleanup_params(error);
err_free_sgl(error->sgl);
kfree(error);
}
static struct i915_vma_coredump *
i915_vma_coredump_create(const struct intel_gt *gt,
const struct i915_vma *vma,
const char *name,
struct i915_vma_compress *compress)
{
struct i915_ggtt *ggtt = gt->ggtt;
const u64 slot = ggtt->error_capture.start;
struct i915_vma_coredump *dst;
unsigned long num_pages;
struct sgt_iter iter;
int ret;
might_sleep();
if (!vma || !vma->pages || !compress)
return NULL;
num_pages = min_t(u64, vma->size, vma->obj->base.size) >> PAGE_SHIFT;
num_pages = DIV_ROUND_UP(10 * num_pages, 8); /* worstcase zlib growth */
dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), ALLOW_FAIL);
if (!dst)
return NULL;
if (!compress_start(compress)) {
kfree(dst);
return NULL;
}
strcpy(dst->name, name);
dst->next = NULL;
dst->gtt_offset = vma->node.start;
dst->gtt_size = vma->node.size;
dst->gtt_page_sizes = vma->page_sizes.gtt;
dst->num_pages = num_pages;
dst->page_count = 0;
dst->unused = 0;
ret = -EINVAL;
if (drm_mm_node_allocated(&ggtt->error_capture)) {
void __iomem *s;
dma_addr_t dma;
for_each_sgt_daddr(dma, iter, vma->pages) {
ggtt->vm.insert_page(&ggtt->vm, dma, slot,
I915_CACHE_NONE, 0);
mb();
s = io_mapping_map_wc(&ggtt->iomap, slot, PAGE_SIZE);
ret = compress_page(compress,
(void __force *)s, dst,
true);
io_mapping_unmap(s);
if (ret)
break;
}
} else if (i915_gem_object_is_lmem(vma->obj)) {
struct intel_memory_region *mem = vma->obj->mm.region;
dma_addr_t dma;
for_each_sgt_daddr(dma, iter, vma->pages) {
void __iomem *s;
s = io_mapping_map_wc(&mem->iomap, dma, PAGE_SIZE);
ret = compress_page(compress,
(void __force *)s, dst,
true);
io_mapping_unmap(s);
if (ret)
break;
}
} else {
struct page *page;
for_each_sgt_page(page, iter, vma->pages) {
void *s;
drm_clflush_pages(&page, 1);
s = kmap(page);
ret = compress_page(compress, s, dst, false);
kunmap(page);
drm_clflush_pages(&page, 1);
if (ret)
break;
}
}
if (ret || compress_flush(compress, dst)) {
while (dst->page_count--)
pool_free(&compress->pool, dst->pages[dst->page_count]);
kfree(dst);
dst = NULL;
}
compress_finish(compress);
return dst;
}
static void gt_record_fences(struct intel_gt_coredump *gt)
{
struct i915_ggtt *ggtt = gt->_gt->ggtt;
struct intel_uncore *uncore = gt->_gt->uncore;
int i;
if (INTEL_GEN(uncore->i915) >= 6) {
for (i = 0; i < ggtt->num_fences; i++)
gt->fence[i] =
intel_uncore_read64(uncore,
FENCE_REG_GEN6_LO(i));
} else if (INTEL_GEN(uncore->i915) >= 4) {
for (i = 0; i < ggtt->num_fences; i++)
gt->fence[i] =
intel_uncore_read64(uncore,
FENCE_REG_965_LO(i));
} else {
for (i = 0; i < ggtt->num_fences; i++)
gt->fence[i] =
intel_uncore_read(uncore, FENCE_REG(i));
}
gt->nfence = i;
}
static void engine_record_registers(struct intel_engine_coredump *ee)
{
const struct intel_engine_cs *engine = ee->engine;
struct drm_i915_private *i915 = engine->i915;
if (INTEL_GEN(i915) >= 6) {
ee->rc_psmi = ENGINE_READ(engine, RING_PSMI_CTL);
if (INTEL_GEN(i915) >= 12)
ee->fault_reg = intel_uncore_read(engine->uncore,
GEN12_RING_FAULT_REG);
else if (INTEL_GEN(i915) >= 8)
ee->fault_reg = intel_uncore_read(engine->uncore,
GEN8_RING_FAULT_REG);
else
ee->fault_reg = GEN6_RING_FAULT_REG_READ(engine);
}
if (INTEL_GEN(i915) >= 4) {
ee->esr = ENGINE_READ(engine, RING_ESR);
ee->faddr = ENGINE_READ(engine, RING_DMA_FADD);
ee->ipeir = ENGINE_READ(engine, RING_IPEIR);
ee->ipehr = ENGINE_READ(engine, RING_IPEHR);
ee->instps = ENGINE_READ(engine, RING_INSTPS);
ee->bbaddr = ENGINE_READ(engine, RING_BBADDR);
ee->ccid = ENGINE_READ(engine, CCID);
if (INTEL_GEN(i915) >= 8) {
ee->faddr |= (u64)ENGINE_READ(engine, RING_DMA_FADD_UDW) << 32;
ee->bbaddr |= (u64)ENGINE_READ(engine, RING_BBADDR_UDW) << 32;
}
ee->bbstate = ENGINE_READ(engine, RING_BBSTATE);
} else {
ee->faddr = ENGINE_READ(engine, DMA_FADD_I8XX);
ee->ipeir = ENGINE_READ(engine, IPEIR);
ee->ipehr = ENGINE_READ(engine, IPEHR);
}
intel_engine_get_instdone(engine, &ee->instdone);
ee->instpm = ENGINE_READ(engine, RING_INSTPM);
ee->acthd = intel_engine_get_active_head(engine);
ee->start = ENGINE_READ(engine, RING_START);
ee->head = ENGINE_READ(engine, RING_HEAD);
ee->tail = ENGINE_READ(engine, RING_TAIL);
ee->ctl = ENGINE_READ(engine, RING_CTL);
if (INTEL_GEN(i915) > 2)
ee->mode = ENGINE_READ(engine, RING_MI_MODE);
if (!HWS_NEEDS_PHYSICAL(i915)) {
i915_reg_t mmio;
if (IS_GEN(i915, 7)) {
switch (engine->id) {
default:
MISSING_CASE(engine->id);
/* fall through */
case RCS0:
mmio = RENDER_HWS_PGA_GEN7;
break;
case BCS0:
mmio = BLT_HWS_PGA_GEN7;
break;
case VCS0:
mmio = BSD_HWS_PGA_GEN7;
break;
case VECS0:
mmio = VEBOX_HWS_PGA_GEN7;
break;
}
} else if (IS_GEN(engine->i915, 6)) {
mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
} else {
/* XXX: gen8 returns to sanity */
mmio = RING_HWS_PGA(engine->mmio_base);
}
ee->hws = intel_uncore_read(engine->uncore, mmio);
}
ee->reset_count = i915_reset_engine_count(&i915->gpu_error, engine);
if (HAS_PPGTT(i915)) {
int i;
ee->vm_info.gfx_mode = ENGINE_READ(engine, RING_MODE_GEN7);
if (IS_GEN(i915, 6)) {
ee->vm_info.pp_dir_base =
ENGINE_READ(engine, RING_PP_DIR_BASE_READ);
} else if (IS_GEN(i915, 7)) {
ee->vm_info.pp_dir_base =
ENGINE_READ(engine, RING_PP_DIR_BASE);
} else if (INTEL_GEN(i915) >= 8) {
u32 base = engine->mmio_base;
for (i = 0; i < 4; i++) {
ee->vm_info.pdp[i] =
intel_uncore_read(engine->uncore,
GEN8_RING_PDP_UDW(base, i));
ee->vm_info.pdp[i] <<= 32;
ee->vm_info.pdp[i] |=
intel_uncore_read(engine->uncore,
GEN8_RING_PDP_LDW(base, i));
}
}
}
}
static void record_request(const struct i915_request *request,
struct i915_request_coredump *erq)
{
erq->flags = request->fence.flags;
erq->context = request->fence.context;
erq->seqno = request->fence.seqno;
erq->sched_attr = request->sched.attr;
erq->head = request->head;
erq->tail = request->tail;
erq->pid = 0;
rcu_read_lock();
if (!intel_context_is_closed(request->context)) {
const struct i915_gem_context *ctx;
ctx = rcu_dereference(request->context->gem_context);
if (ctx)
erq->pid = pid_nr(ctx->pid);
}
rcu_read_unlock();
}
static void engine_record_execlists(struct intel_engine_coredump *ee)
{
const struct intel_engine_execlists * const el = &ee->engine->execlists;
struct i915_request * const *port = el->active;
unsigned int n = 0;
while (*port)
record_request(*port++, &ee->execlist[n++]);
ee->num_ports = n;
}
static bool record_context(struct i915_gem_context_coredump *e,
const struct i915_request *rq)
{
struct i915_gem_context *ctx;
struct task_struct *task;
bool simulated;
rcu_read_lock();
ctx = rcu_dereference(rq->context->gem_context);
if (ctx && !kref_get_unless_zero(&ctx->ref))
ctx = NULL;
rcu_read_unlock();
if (!ctx)
return true;
rcu_read_lock();
task = pid_task(ctx->pid, PIDTYPE_PID);
if (task) {
strcpy(e->comm, task->comm);
e->pid = task->pid;
}
rcu_read_unlock();
e->sched_attr = ctx->sched;
e->guilty = atomic_read(&ctx->guilty_count);
e->active = atomic_read(&ctx->active_count);
e->total_runtime = rq->context->runtime.total;
e->avg_runtime = ewma_runtime_read(&rq->context->runtime.avg);
simulated = i915_gem_context_no_error_capture(ctx);
i915_gem_context_put(ctx);
return simulated;
}
struct intel_engine_capture_vma {
struct intel_engine_capture_vma *next;
struct i915_vma *vma;
char name[16];
};
static struct intel_engine_capture_vma *
capture_vma(struct intel_engine_capture_vma *next,
struct i915_vma *vma,
const char *name,
gfp_t gfp)
{
struct intel_engine_capture_vma *c;
if (!vma)
return next;
c = kmalloc(sizeof(*c), gfp);
if (!c)
return next;
if (!i915_active_acquire_if_busy(&vma->active)) {
kfree(c);
return next;
}
strcpy(c->name, name);
c->vma = i915_vma_get(vma);
c->next = next;
return c;
}
static struct intel_engine_capture_vma *
capture_user(struct intel_engine_capture_vma *capture,
const struct i915_request *rq,
gfp_t gfp)
{
struct i915_capture_list *c;
for (c = rq->capture_list; c; c = c->next)
capture = capture_vma(capture, c->vma, "user", gfp);
return capture;
}
static void add_vma(struct intel_engine_coredump *ee,
struct i915_vma_coredump *vma)
{
if (vma) {
vma->next = ee->vma;
ee->vma = vma;
}
}
struct intel_engine_coredump *
intel_engine_coredump_alloc(struct intel_engine_cs *engine, gfp_t gfp)
{
struct intel_engine_coredump *ee;
ee = kzalloc(sizeof(*ee), gfp);
if (!ee)
return NULL;
ee->engine = engine;
engine_record_registers(ee);
engine_record_execlists(ee);
return ee;
}
struct intel_engine_capture_vma *
intel_engine_coredump_add_request(struct intel_engine_coredump *ee,
struct i915_request *rq,
gfp_t gfp)
{
struct intel_engine_capture_vma *vma = NULL;
ee->simulated |= record_context(&ee->context, rq);
if (ee->simulated)
return NULL;
/*
* We need to copy these to an anonymous buffer
* as the simplest method to avoid being overwritten
* by userspace.
*/
vma = capture_vma(vma, rq->batch, "batch", gfp);
vma = capture_user(vma, rq, gfp);
vma = capture_vma(vma, rq->ring->vma, "ring", gfp);
vma = capture_vma(vma, rq->context->state, "HW context", gfp);
ee->rq_head = rq->head;
ee->rq_post = rq->postfix;
ee->rq_tail = rq->tail;
return vma;
}
void
intel_engine_coredump_add_vma(struct intel_engine_coredump *ee,
struct intel_engine_capture_vma *capture,
struct i915_vma_compress *compress)
{
const struct intel_engine_cs *engine = ee->engine;
while (capture) {
struct intel_engine_capture_vma *this = capture;
struct i915_vma *vma = this->vma;
add_vma(ee,
i915_vma_coredump_create(engine->gt,
vma, this->name,
compress));
i915_active_release(&vma->active);
i915_vma_put(vma);
capture = this->next;
kfree(this);
}
add_vma(ee,
i915_vma_coredump_create(engine->gt,
engine->status_page.vma,
"HW Status",
compress));
add_vma(ee,
i915_vma_coredump_create(engine->gt,
engine->wa_ctx.vma,
"WA context",
compress));
}
static struct intel_engine_coredump *
capture_engine(struct intel_engine_cs *engine,
struct i915_vma_compress *compress)
{
struct intel_engine_capture_vma *capture = NULL;
struct intel_engine_coredump *ee;
struct i915_request *rq;
unsigned long flags;
ee = intel_engine_coredump_alloc(engine, GFP_KERNEL);
if (!ee)
return NULL;
spin_lock_irqsave(&engine->active.lock, flags);
rq = intel_engine_find_active_request(engine);
if (rq)
capture = intel_engine_coredump_add_request(ee, rq,
ATOMIC_MAYFAIL);
spin_unlock_irqrestore(&engine->active.lock, flags);
if (!capture) {
kfree(ee);
return NULL;
}
intel_engine_coredump_add_vma(ee, capture, compress);
return ee;
}
static void
gt_record_engines(struct intel_gt_coredump *gt,
struct i915_vma_compress *compress)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt->_gt, id) {
struct intel_engine_coredump *ee;
/* Refill our page pool before entering atomic section */
pool_refill(&compress->pool, ALLOW_FAIL);
ee = capture_engine(engine, compress);
if (!ee)
continue;
gt->simulated |= ee->simulated;
if (ee->simulated) {
kfree(ee);
continue;
}
ee->next = gt->engine;
gt->engine = ee;
}
}
static struct intel_uc_coredump *
gt_record_uc(struct intel_gt_coredump *gt,
struct i915_vma_compress *compress)
{
const struct intel_uc *uc = &gt->_gt->uc;
struct intel_uc_coredump *error_uc;
error_uc = kzalloc(sizeof(*error_uc), ALLOW_FAIL);
if (!error_uc)
return NULL;
memcpy(&error_uc->guc_fw, &uc->guc.fw, sizeof(uc->guc.fw));
memcpy(&error_uc->huc_fw, &uc->huc.fw, sizeof(uc->huc.fw));
/* Non-default firmware paths will be specified by the modparam.
* As modparams are generally accesible from the userspace make
* explicit copies of the firmware paths.
*/
error_uc->guc_fw.path = kstrdup(uc->guc.fw.path, ALLOW_FAIL);
error_uc->huc_fw.path = kstrdup(uc->huc.fw.path, ALLOW_FAIL);
error_uc->guc_log =
i915_vma_coredump_create(gt->_gt,
uc->guc.log.vma, "GuC log buffer",
compress);
return error_uc;
}
static void gt_capture_prepare(struct intel_gt_coredump *gt)
{
struct i915_ggtt *ggtt = gt->_gt->ggtt;
mutex_lock(&ggtt->error_mutex);
}
static void gt_capture_finish(struct intel_gt_coredump *gt)
{
struct i915_ggtt *ggtt = gt->_gt->ggtt;
if (drm_mm_node_allocated(&ggtt->error_capture))
ggtt->vm.clear_range(&ggtt->vm,
ggtt->error_capture.start,
PAGE_SIZE);
mutex_unlock(&ggtt->error_mutex);
}
/* Capture all registers which don't fit into another category. */
static void gt_record_regs(struct intel_gt_coredump *gt)
{
struct intel_uncore *uncore = gt->_gt->uncore;
struct drm_i915_private *i915 = uncore->i915;
int i;
/*
* General organization
* 1. Registers specific to a single generation
* 2. Registers which belong to multiple generations
* 3. Feature specific registers.
* 4. Everything else
* Please try to follow the order.
*/
/* 1: Registers specific to a single generation */
if (IS_VALLEYVIEW(i915)) {
gt->gtier[0] = intel_uncore_read(uncore, GTIER);
gt->ier = intel_uncore_read(uncore, VLV_IER);
gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE_VLV);
}
if (IS_GEN(i915, 7))
gt->err_int = intel_uncore_read(uncore, GEN7_ERR_INT);
if (INTEL_GEN(i915) >= 12) {
gt->fault_data0 = intel_uncore_read(uncore,
GEN12_FAULT_TLB_DATA0);
gt->fault_data1 = intel_uncore_read(uncore,
GEN12_FAULT_TLB_DATA1);
} else if (INTEL_GEN(i915) >= 8) {
gt->fault_data0 = intel_uncore_read(uncore,
GEN8_FAULT_TLB_DATA0);
gt->fault_data1 = intel_uncore_read(uncore,
GEN8_FAULT_TLB_DATA1);
}
if (IS_GEN(i915, 6)) {
gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE);
gt->gab_ctl = intel_uncore_read(uncore, GAB_CTL);
gt->gfx_mode = intel_uncore_read(uncore, GFX_MODE);
}
/* 2: Registers which belong to multiple generations */
if (INTEL_GEN(i915) >= 7)
gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE_MT);
if (INTEL_GEN(i915) >= 6) {
gt->derrmr = intel_uncore_read(uncore, DERRMR);
if (INTEL_GEN(i915) < 12) {
gt->error = intel_uncore_read(uncore, ERROR_GEN6);
gt->done_reg = intel_uncore_read(uncore, DONE_REG);
}
}
/* 3: Feature specific registers */
if (IS_GEN_RANGE(i915, 6, 7)) {
gt->gam_ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
gt->gac_eco = intel_uncore_read(uncore, GAC_ECO_BITS);
}
if (IS_GEN_RANGE(i915, 8, 11))
gt->gtt_cache = intel_uncore_read(uncore, HSW_GTT_CACHE_EN);
if (IS_GEN(i915, 12))
gt->aux_err = intel_uncore_read(uncore, GEN12_AUX_ERR_DBG);
if (INTEL_GEN(i915) >= 12) {
for (i = 0; i < GEN12_SFC_DONE_MAX; i++) {
gt->sfc_done[i] =
intel_uncore_read(uncore, GEN12_SFC_DONE(i));
}
gt->gam_done = intel_uncore_read(uncore, GEN12_GAM_DONE);
}
/* 4: Everything else */
if (INTEL_GEN(i915) >= 11) {
gt->ier = intel_uncore_read(uncore, GEN8_DE_MISC_IER);
gt->gtier[0] =
intel_uncore_read(uncore,
GEN11_RENDER_COPY_INTR_ENABLE);
gt->gtier[1] =
intel_uncore_read(uncore, GEN11_VCS_VECS_INTR_ENABLE);
gt->gtier[2] =
intel_uncore_read(uncore, GEN11_GUC_SG_INTR_ENABLE);
gt->gtier[3] =
intel_uncore_read(uncore,
GEN11_GPM_WGBOXPERF_INTR_ENABLE);
gt->gtier[4] =
intel_uncore_read(uncore,
GEN11_CRYPTO_RSVD_INTR_ENABLE);
gt->gtier[5] =
intel_uncore_read(uncore,
GEN11_GUNIT_CSME_INTR_ENABLE);
gt->ngtier = 6;
} else if (INTEL_GEN(i915) >= 8) {
gt->ier = intel_uncore_read(uncore, GEN8_DE_MISC_IER);
for (i = 0; i < 4; i++)
gt->gtier[i] =
intel_uncore_read(uncore, GEN8_GT_IER(i));
gt->ngtier = 4;
} else if (HAS_PCH_SPLIT(i915)) {
gt->ier = intel_uncore_read(uncore, DEIER);
gt->gtier[0] = intel_uncore_read(uncore, GTIER);
gt->ngtier = 1;
} else if (IS_GEN(i915, 2)) {
gt->ier = intel_uncore_read16(uncore, GEN2_IER);
} else if (!IS_VALLEYVIEW(i915)) {
gt->ier = intel_uncore_read(uncore, GEN2_IER);
}
gt->eir = intel_uncore_read(uncore, EIR);
gt->pgtbl_er = intel_uncore_read(uncore, PGTBL_ER);
}
/*
* Generate a semi-unique error code. The code is not meant to have meaning, The
* code's only purpose is to try to prevent false duplicated bug reports by
* grossly estimating a GPU error state.
*
* TODO Ideally, hashing the batchbuffer would be a very nice way to determine
* the hang if we could strip the GTT offset information from it.
*
* It's only a small step better than a random number in its current form.
*/
static u32 generate_ecode(const struct intel_engine_coredump *ee)
{
/*
* IPEHR would be an ideal way to detect errors, as it's the gross
* measure of "the command that hung." However, has some very common
* synchronization commands which almost always appear in the case
* strictly a client bug. Use instdone to differentiate those some.
*/
return ee ? ee->ipehr ^ ee->instdone.instdone : 0;
}
static const char *error_msg(struct i915_gpu_coredump *error)
{
struct intel_engine_coredump *first = NULL;
struct intel_gt_coredump *gt;
intel_engine_mask_t engines;
int len;
engines = 0;
for (gt = error->gt; gt; gt = gt->next) {
struct intel_engine_coredump *cs;
if (gt->engine && !first)
first = gt->engine;
for (cs = gt->engine; cs; cs = cs->next)
engines |= cs->engine->mask;
}
len = scnprintf(error->error_msg, sizeof(error->error_msg),
"GPU HANG: ecode %d:%x:%08x",
INTEL_GEN(error->i915), engines,
generate_ecode(first));
if (first && first->context.pid) {
/* Just show the first executing process, more is confusing */
len += scnprintf(error->error_msg + len,
sizeof(error->error_msg) - len,
", in %s [%d]",
first->context.comm, first->context.pid);
}
return error->error_msg;
}
static void capture_gen(struct i915_gpu_coredump *error)
{
struct drm_i915_private *i915 = error->i915;
error->wakelock = atomic_read(&i915->runtime_pm.wakeref_count);
error->suspended = i915->runtime_pm.suspended;
error->iommu = -1;
#ifdef CONFIG_INTEL_IOMMU
error->iommu = intel_iommu_gfx_mapped;
#endif
error->reset_count = i915_reset_count(&i915->gpu_error);
error->suspend_count = i915->suspend_count;
i915_params_copy(&error->params, &i915_modparams);
memcpy(&error->device_info,
INTEL_INFO(i915),
sizeof(error->device_info));
memcpy(&error->runtime_info,
RUNTIME_INFO(i915),
sizeof(error->runtime_info));
error->driver_caps = i915->caps;
}
struct i915_gpu_coredump *
i915_gpu_coredump_alloc(struct drm_i915_private *i915, gfp_t gfp)
{
struct i915_gpu_coredump *error;
if (!i915_modparams.error_capture)
return NULL;
error = kzalloc(sizeof(*error), gfp);
if (!error)
return NULL;
kref_init(&error->ref);
error->i915 = i915;
error->time = ktime_get_real();
error->boottime = ktime_get_boottime();
error->uptime = ktime_sub(ktime_get(), i915->gt.last_init_time);
error->capture = jiffies;
capture_gen(error);
return error;
}
#define DAY_AS_SECONDS(x) (24 * 60 * 60 * (x))
struct intel_gt_coredump *
intel_gt_coredump_alloc(struct intel_gt *gt, gfp_t gfp)
{
struct intel_gt_coredump *gc;
gc = kzalloc(sizeof(*gc), gfp);
if (!gc)
return NULL;
gc->_gt = gt;
gc->awake = intel_gt_pm_is_awake(gt);
gt_record_regs(gc);
gt_record_fences(gc);
return gc;
}
struct i915_vma_compress *
i915_vma_capture_prepare(struct intel_gt_coredump *gt)
{
struct i915_vma_compress *compress;
compress = kmalloc(sizeof(*compress), ALLOW_FAIL);
if (!compress)
return NULL;
if (!compress_init(compress)) {
kfree(compress);
return NULL;
}
gt_capture_prepare(gt);
return compress;
}
void i915_vma_capture_finish(struct intel_gt_coredump *gt,
struct i915_vma_compress *compress)
{
if (!compress)
return;
gt_capture_finish(gt);
compress_fini(compress);
kfree(compress);
}
struct i915_gpu_coredump *i915_gpu_coredump(struct drm_i915_private *i915)
{
struct i915_gpu_coredump *error;
/* Check if GPU capture has been disabled */
error = READ_ONCE(i915->gpu_error.first_error);
if (IS_ERR(error))
return error;
error = i915_gpu_coredump_alloc(i915, ALLOW_FAIL);
if (!error)
return ERR_PTR(-ENOMEM);
error->gt = intel_gt_coredump_alloc(&i915->gt, ALLOW_FAIL);
if (error->gt) {
struct i915_vma_compress *compress;
compress = i915_vma_capture_prepare(error->gt);
if (!compress) {
kfree(error->gt);
kfree(error);
return ERR_PTR(-ENOMEM);
}
gt_record_engines(error->gt, compress);
if (INTEL_INFO(i915)->has_gt_uc)
error->gt->uc = gt_record_uc(error->gt, compress);
i915_vma_capture_finish(error->gt, compress);
error->simulated |= error->gt->simulated;
}
error->overlay = intel_overlay_capture_error_state(i915);
error->display = intel_display_capture_error_state(i915);
return error;
}
void i915_error_state_store(struct i915_gpu_coredump *error)
{
struct drm_i915_private *i915;
static bool warned;
if (IS_ERR_OR_NULL(error))
return;
i915 = error->i915;
drm_info(&i915->drm, "%s\n", error_msg(error));
if (error->simulated ||
cmpxchg(&i915->gpu_error.first_error, NULL, error))
return;
i915_gpu_coredump_get(error);
if (!xchg(&warned, true) &&
ktime_get_real_seconds() - DRIVER_TIMESTAMP < DAY_AS_SECONDS(180)) {
pr_info("GPU hangs can indicate a bug anywhere in the entire gfx stack, including userspace.\n");
pr_info("Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/intel/issues/new.\n");
pr_info("Please see https://gitlab.freedesktop.org/drm/intel/-/wikis/How-to-file-i915-bugs for details.\n");
pr_info("drm/i915 developers can then reassign to the right component if it's not a kernel issue.\n");
pr_info("The GPU crash dump is required to analyze GPU hangs, so please always attach it.\n");
pr_info("GPU crash dump saved to /sys/class/drm/card%d/error\n",
i915->drm.primary->index);
}
}
/**
* i915_capture_error_state - capture an error record for later analysis
* @i915: i915 device
*
* Should be called when an error is detected (either a hang or an error
* interrupt) to capture error state from the time of the error. Fills
* out a structure which becomes available in debugfs for user level tools
* to pick up.
*/
void i915_capture_error_state(struct drm_i915_private *i915)
{
struct i915_gpu_coredump *error;
error = i915_gpu_coredump(i915);
if (IS_ERR(error)) {
cmpxchg(&i915->gpu_error.first_error, NULL, error);
return;
}
i915_error_state_store(error);
i915_gpu_coredump_put(error);
}
struct i915_gpu_coredump *
i915_first_error_state(struct drm_i915_private *i915)
{
struct i915_gpu_coredump *error;
spin_lock_irq(&i915->gpu_error.lock);
error = i915->gpu_error.first_error;
if (!IS_ERR_OR_NULL(error))
i915_gpu_coredump_get(error);
spin_unlock_irq(&i915->gpu_error.lock);
return error;
}
void i915_reset_error_state(struct drm_i915_private *i915)
{
struct i915_gpu_coredump *error;
spin_lock_irq(&i915->gpu_error.lock);
error = i915->gpu_error.first_error;
if (error != ERR_PTR(-ENODEV)) /* if disabled, always disabled */
i915->gpu_error.first_error = NULL;
spin_unlock_irq(&i915->gpu_error.lock);
if (!IS_ERR_OR_NULL(error))
i915_gpu_coredump_put(error);
}
void i915_disable_error_state(struct drm_i915_private *i915, int err)
{
spin_lock_irq(&i915->gpu_error.lock);
if (!i915->gpu_error.first_error)
i915->gpu_error.first_error = ERR_PTR(err);
spin_unlock_irq(&i915->gpu_error.lock);
}