| /* QLogic qed NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and /or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/io.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include "qed.h" |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_init_ops.h" |
| #include "qed_int.h" |
| #include "qed_mcp.h" |
| #include "qed_reg_addr.h" |
| #include "qed_sp.h" |
| #include "qed_sriov.h" |
| #include "qed_vf.h" |
| |
| struct qed_pi_info { |
| qed_int_comp_cb_t comp_cb; |
| void *cookie; |
| }; |
| |
| struct qed_sb_sp_info { |
| struct qed_sb_info sb_info; |
| |
| /* per protocol index data */ |
| struct qed_pi_info pi_info_arr[PIS_PER_SB_E4]; |
| }; |
| |
| enum qed_attention_type { |
| QED_ATTN_TYPE_ATTN, |
| QED_ATTN_TYPE_PARITY, |
| }; |
| |
| #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \ |
| ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn) |
| |
| struct aeu_invert_reg_bit { |
| char bit_name[30]; |
| |
| #define ATTENTION_PARITY (1 << 0) |
| |
| #define ATTENTION_LENGTH_MASK (0x00000ff0) |
| #define ATTENTION_LENGTH_SHIFT (4) |
| #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \ |
| ATTENTION_LENGTH_SHIFT) |
| #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT) |
| #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY) |
| #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \ |
| ATTENTION_PARITY) |
| |
| /* Multiple bits start with this offset */ |
| #define ATTENTION_OFFSET_MASK (0x000ff000) |
| #define ATTENTION_OFFSET_SHIFT (12) |
| |
| #define ATTENTION_BB_MASK (0x00700000) |
| #define ATTENTION_BB_SHIFT (20) |
| #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT) |
| #define ATTENTION_BB_DIFFERENT BIT(23) |
| |
| #define ATTENTION_CLEAR_ENABLE BIT(28) |
| unsigned int flags; |
| |
| /* Callback to call if attention will be triggered */ |
| int (*cb)(struct qed_hwfn *p_hwfn); |
| |
| enum block_id block_index; |
| }; |
| |
| struct aeu_invert_reg { |
| struct aeu_invert_reg_bit bits[32]; |
| }; |
| |
| #define MAX_ATTN_GRPS (8) |
| #define NUM_ATTN_REGS (9) |
| |
| /* Specific HW attention callbacks */ |
| static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn) |
| { |
| u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE); |
| |
| /* This might occur on certain instances; Log it once then mask it */ |
| DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n", |
| tmp); |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, |
| 0xffffffff); |
| |
| return 0; |
| } |
| |
| #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1) |
| #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1) |
| #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0) |
| #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf) |
| #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1) |
| #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1) |
| #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5) |
| #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff) |
| #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6) |
| #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf) |
| #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14) |
| #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff) |
| #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18) |
| static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn) |
| { |
| u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| PSWHST_REG_INCORRECT_ACCESS_VALID); |
| |
| if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) { |
| u32 addr, data, length; |
| |
| addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| PSWHST_REG_INCORRECT_ACCESS_ADDRESS); |
| data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| PSWHST_REG_INCORRECT_ACCESS_DATA); |
| length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| PSWHST_REG_INCORRECT_ACCESS_LENGTH); |
| |
| DP_INFO(p_hwfn->cdev, |
| "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n", |
| addr, length, |
| (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID), |
| (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID), |
| (u8) GET_FIELD(data, |
| ATTENTION_INCORRECT_ACCESS_VF_VALID), |
| (u8) GET_FIELD(data, |
| ATTENTION_INCORRECT_ACCESS_CLIENT), |
| (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR), |
| (u8) GET_FIELD(data, |
| ATTENTION_INCORRECT_ACCESS_BYTE_EN), |
| data); |
| } |
| |
| return 0; |
| } |
| |
| #define QED_GRC_ATTENTION_VALID_BIT (1 << 0) |
| #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff) |
| #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0) |
| #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23) |
| #define QED_GRC_ATTENTION_MASTER_MASK (0xf) |
| #define QED_GRC_ATTENTION_MASTER_SHIFT (24) |
| #define QED_GRC_ATTENTION_PF_MASK (0xf) |
| #define QED_GRC_ATTENTION_PF_SHIFT (0) |
| #define QED_GRC_ATTENTION_VF_MASK (0xff) |
| #define QED_GRC_ATTENTION_VF_SHIFT (4) |
| #define QED_GRC_ATTENTION_PRIV_MASK (0x3) |
| #define QED_GRC_ATTENTION_PRIV_SHIFT (14) |
| #define QED_GRC_ATTENTION_PRIV_VF (0) |
| static const char *attn_master_to_str(u8 master) |
| { |
| switch (master) { |
| case 1: return "PXP"; |
| case 2: return "MCP"; |
| case 3: return "MSDM"; |
| case 4: return "PSDM"; |
| case 5: return "YSDM"; |
| case 6: return "USDM"; |
| case 7: return "TSDM"; |
| case 8: return "XSDM"; |
| case 9: return "DBU"; |
| case 10: return "DMAE"; |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn) |
| { |
| u32 tmp, tmp2; |
| |
| /* We've already cleared the timeout interrupt register, so we learn |
| * of interrupts via the validity register |
| */ |
| tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| GRC_REG_TIMEOUT_ATTN_ACCESS_VALID); |
| if (!(tmp & QED_GRC_ATTENTION_VALID_BIT)) |
| goto out; |
| |
| /* Read the GRC timeout information */ |
| tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0); |
| tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1); |
| |
| DP_INFO(p_hwfn->cdev, |
| "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n", |
| tmp2, tmp, |
| (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from", |
| GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2, |
| attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)), |
| GET_FIELD(tmp2, QED_GRC_ATTENTION_PF), |
| (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) == |
| QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)", |
| GET_FIELD(tmp2, QED_GRC_ATTENTION_VF)); |
| |
| out: |
| /* Regardles of anything else, clean the validity bit */ |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, |
| GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0); |
| return 0; |
| } |
| |
| #define PGLUE_ATTENTION_VALID (1 << 29) |
| #define PGLUE_ATTENTION_RD_VALID (1 << 26) |
| #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf) |
| #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20) |
| #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1) |
| #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19) |
| #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff) |
| #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24) |
| #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1) |
| #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21) |
| #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1) |
| #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22) |
| #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1) |
| #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23) |
| #define PGLUE_ATTENTION_ICPL_VALID (1 << 23) |
| #define PGLUE_ATTENTION_ZLR_VALID (1 << 25) |
| #define PGLUE_ATTENTION_ILT_VALID (1 << 23) |
| |
| int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| bool hw_init) |
| { |
| char msg[256]; |
| u32 tmp; |
| |
| tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2); |
| if (tmp & PGLUE_ATTENTION_VALID) { |
| u32 addr_lo, addr_hi, details; |
| |
| addr_lo = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_TX_ERR_WR_ADD_31_0); |
| addr_hi = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_TX_ERR_WR_ADD_63_32); |
| details = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_TX_ERR_WR_DETAILS); |
| |
| snprintf(msg, sizeof(msg), |
| "Illegal write by chip to [%08x:%08x] blocked.\n" |
| "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" |
| "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]", |
| addr_hi, addr_lo, details, |
| (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), |
| (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), |
| !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID), |
| tmp, |
| !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR), |
| !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME), |
| !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN)); |
| |
| if (hw_init) |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); |
| else |
| DP_NOTICE(p_hwfn, "%s\n", msg); |
| } |
| |
| tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2); |
| if (tmp & PGLUE_ATTENTION_RD_VALID) { |
| u32 addr_lo, addr_hi, details; |
| |
| addr_lo = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_TX_ERR_RD_ADD_31_0); |
| addr_hi = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_TX_ERR_RD_ADD_63_32); |
| details = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_TX_ERR_RD_DETAILS); |
| |
| DP_NOTICE(p_hwfn, |
| "Illegal read by chip from [%08x:%08x] blocked.\n" |
| "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" |
| "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n", |
| addr_hi, addr_lo, details, |
| (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), |
| (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), |
| GET_FIELD(details, |
| PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0, |
| tmp, |
| GET_FIELD(tmp, |
| PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0, |
| GET_FIELD(tmp, |
| PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0, |
| GET_FIELD(tmp, |
| PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0); |
| } |
| |
| tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL); |
| if (tmp & PGLUE_ATTENTION_ICPL_VALID) { |
| snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp); |
| |
| if (hw_init) |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); |
| else |
| DP_NOTICE(p_hwfn, "%s\n", msg); |
| } |
| |
| tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS); |
| if (tmp & PGLUE_ATTENTION_ZLR_VALID) { |
| u32 addr_hi, addr_lo; |
| |
| addr_lo = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0); |
| addr_hi = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32); |
| |
| DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n", |
| tmp, addr_hi, addr_lo); |
| } |
| |
| tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2); |
| if (tmp & PGLUE_ATTENTION_ILT_VALID) { |
| u32 addr_hi, addr_lo, details; |
| |
| addr_lo = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_VF_ILT_ERR_ADD_31_0); |
| addr_hi = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_VF_ILT_ERR_ADD_63_32); |
| details = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_VF_ILT_ERR_DETAILS); |
| |
| DP_NOTICE(p_hwfn, |
| "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n", |
| details, tmp, addr_hi, addr_lo); |
| } |
| |
| /* Clear the indications */ |
| qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2)); |
| |
| return 0; |
| } |
| |
| static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn) |
| { |
| return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false); |
| } |
| |
| static int qed_fw_assertion(struct qed_hwfn *p_hwfn) |
| { |
| qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT, |
| "FW assertion!\n"); |
| |
| return -EINVAL; |
| } |
| |
| static int qed_general_attention_35(struct qed_hwfn *p_hwfn) |
| { |
| DP_INFO(p_hwfn, "General attention 35!\n"); |
| |
| return 0; |
| } |
| |
| #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff) |
| #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff) |
| #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0) |
| #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f) |
| #define QED_DORQ_ATTENTION_SIZE_SHIFT (16) |
| |
| #define QED_DB_REC_COUNT 1000 |
| #define QED_DB_REC_INTERVAL 100 |
| |
| static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| u32 count = QED_DB_REC_COUNT; |
| u32 usage = 1; |
| |
| /* Flush any pending (e)dpms as they may never arrive */ |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1); |
| |
| /* wait for usage to zero or count to run out. This is necessary since |
| * EDPM doorbell transactions can take multiple 64b cycles, and as such |
| * can "split" over the pci. Possibly, the doorbell drop can happen with |
| * half an EDPM in the queue and other half dropped. Another EDPM |
| * doorbell to the same address (from doorbell recovery mechanism or |
| * from the doorbelling entity) could have first half dropped and second |
| * half interpreted as continuation of the first. To prevent such |
| * malformed doorbells from reaching the device, flush the queue before |
| * releasing the overflow sticky indication. |
| */ |
| while (count-- && usage) { |
| usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT); |
| udelay(QED_DB_REC_INTERVAL); |
| } |
| |
| /* should have been depleted by now */ |
| if (usage) { |
| DP_NOTICE(p_hwfn->cdev, |
| "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n", |
| QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 attn_ovfl, cur_ovfl; |
| int rc; |
| |
| attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT, |
| &p_hwfn->db_recovery_info.overflow); |
| cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); |
| if (!cur_ovfl && !attn_ovfl) |
| return 0; |
| |
| DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n", |
| attn_ovfl, cur_ovfl); |
| |
| if (cur_ovfl && !p_hwfn->db_bar_no_edpm) { |
| rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| } |
| |
| /* Release overflow sticky indication (stop silently dropping everything) */ |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); |
| |
| /* Repeat all last doorbells (doorbell drop recovery) */ |
| qed_db_recovery_execute(p_hwfn); |
| |
| return 0; |
| } |
| |
| static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; |
| u32 overflow; |
| int rc; |
| |
| overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); |
| if (!overflow) |
| goto out; |
| |
| /* Run PF doorbell recovery in next periodic handler */ |
| set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); |
| |
| if (!p_hwfn->db_bar_no_edpm) { |
| rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); |
| if (rc) |
| goto out; |
| } |
| |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); |
| out: |
| /* Schedule the handler even if overflow was not detected */ |
| qed_periodic_db_rec_start(p_hwfn); |
| } |
| |
| static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn) |
| { |
| u32 int_sts, first_drop_reason, details, address, all_drops_reason; |
| struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; |
| |
| /* int_sts may be zero since all PFs were interrupted for doorbell |
| * overflow but another one already handled it. Can abort here. If |
| * This PF also requires overflow recovery we will be interrupted again. |
| * The masked almost full indication may also be set. Ignoring. |
| */ |
| int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS); |
| if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) |
| return 0; |
| |
| DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts); |
| |
| /* check if db_drop or overflow happened */ |
| if (int_sts & (DORQ_REG_INT_STS_DB_DROP | |
| DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) { |
| /* Obtain data about db drop/overflow */ |
| first_drop_reason = qed_rd(p_hwfn, p_ptt, |
| DORQ_REG_DB_DROP_REASON) & |
| QED_DORQ_ATTENTION_REASON_MASK; |
| details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS); |
| address = qed_rd(p_hwfn, p_ptt, |
| DORQ_REG_DB_DROP_DETAILS_ADDRESS); |
| all_drops_reason = qed_rd(p_hwfn, p_ptt, |
| DORQ_REG_DB_DROP_DETAILS_REASON); |
| |
| /* Log info */ |
| DP_NOTICE(p_hwfn->cdev, |
| "Doorbell drop occurred\n" |
| "Address\t\t0x%08x\t(second BAR address)\n" |
| "FID\t\t0x%04x\t\t(Opaque FID)\n" |
| "Size\t\t0x%04x\t\t(in bytes)\n" |
| "1st drop reason\t0x%08x\t(details on first drop since last handling)\n" |
| "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n", |
| address, |
| GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE), |
| GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4, |
| first_drop_reason, all_drops_reason); |
| |
| /* Clear the doorbell drop details and prepare for next drop */ |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0); |
| |
| /* Mark interrupt as handled (note: even if drop was due to a different |
| * reason than overflow we mark as handled) |
| */ |
| qed_wr(p_hwfn, |
| p_ptt, |
| DORQ_REG_INT_STS_WR, |
| DORQ_REG_INT_STS_DB_DROP | |
| DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR); |
| |
| /* If there are no indications other than drop indications, success */ |
| if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP | |
| DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR | |
| DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0) |
| return 0; |
| } |
| |
| /* Some other indication was present - non recoverable */ |
| DP_INFO(p_hwfn, "DORQ fatal attention\n"); |
| |
| return -EINVAL; |
| } |
| |
| static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn) |
| { |
| p_hwfn->db_recovery_info.dorq_attn = true; |
| qed_dorq_attn_overflow(p_hwfn); |
| |
| return qed_dorq_attn_int_sts(p_hwfn); |
| } |
| |
| static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn) |
| { |
| if (p_hwfn->db_recovery_info.dorq_attn) |
| goto out; |
| |
| /* Call DORQ callback if the attention was missed */ |
| qed_dorq_attn_cb(p_hwfn); |
| out: |
| p_hwfn->db_recovery_info.dorq_attn = false; |
| } |
| |
| /* Instead of major changes to the data-structure, we have a some 'special' |
| * identifiers for sources that changed meaning between adapters. |
| */ |
| enum aeu_invert_reg_special_type { |
| AEU_INVERT_REG_SPECIAL_CNIG_0, |
| AEU_INVERT_REG_SPECIAL_CNIG_1, |
| AEU_INVERT_REG_SPECIAL_CNIG_2, |
| AEU_INVERT_REG_SPECIAL_CNIG_3, |
| AEU_INVERT_REG_SPECIAL_MAX, |
| }; |
| |
| static struct aeu_invert_reg_bit |
| aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = { |
| {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, |
| {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, |
| {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, |
| {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, |
| }; |
| |
| /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */ |
| static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = { |
| { |
| { /* After Invert 1 */ |
| {"GPIO0 function%d", |
| (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, |
| } |
| }, |
| |
| { |
| { /* After Invert 2 */ |
| {"PGLUE config_space", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"PGLUE misc_flr", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"PGLUE B RBC", ATTENTION_PAR_INT, |
| qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B}, |
| {"PGLUE misc_mctp", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, |
| {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, |
| {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, |
| {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | |
| (1 << ATTENTION_OFFSET_SHIFT), |
| NULL, MAX_BLOCK_ID}, |
| {"PCIE glue/PXP VPD %d", |
| (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS}, |
| } |
| }, |
| |
| { |
| { /* After Invert 3 */ |
| {"General Attention %d", |
| (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, |
| } |
| }, |
| |
| { |
| { /* After Invert 4 */ |
| {"General Attention 32", ATTENTION_SINGLE | |
| ATTENTION_CLEAR_ENABLE, qed_fw_assertion, |
| MAX_BLOCK_ID}, |
| {"General Attention %d", |
| (2 << ATTENTION_LENGTH_SHIFT) | |
| (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, |
| {"General Attention 35", ATTENTION_SINGLE | |
| ATTENTION_CLEAR_ENABLE, qed_general_attention_35, |
| MAX_BLOCK_ID}, |
| {"NWS Parity", |
| ATTENTION_PAR | ATTENTION_BB_DIFFERENT | |
| ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0), |
| NULL, BLOCK_NWS}, |
| {"NWS Interrupt", |
| ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | |
| ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), |
| NULL, BLOCK_NWS}, |
| {"NWM Parity", |
| ATTENTION_PAR | ATTENTION_BB_DIFFERENT | |
| ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), |
| NULL, BLOCK_NWM}, |
| {"NWM Interrupt", |
| ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | |
| ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), |
| NULL, BLOCK_NWM}, |
| {"MCP CPU", ATTENTION_SINGLE, |
| qed_mcp_attn_cb, MAX_BLOCK_ID}, |
| {"MCP Watchdog timer", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, |
| {"AVS stop status ready", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, |
| {"MSTAT per-path", ATTENTION_PAR_INT, |
| NULL, MAX_BLOCK_ID}, |
| {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), |
| NULL, MAX_BLOCK_ID}, |
| {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG}, |
| {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB}, |
| {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB}, |
| {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB}, |
| {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS}, |
| } |
| }, |
| |
| { |
| { /* After Invert 5 */ |
| {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC}, |
| {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1}, |
| {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2}, |
| {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB}, |
| {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF}, |
| {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM}, |
| {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM}, |
| {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM}, |
| {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM}, |
| {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM}, |
| {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM}, |
| {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM}, |
| {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM}, |
| {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM}, |
| {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM}, |
| {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM}, |
| } |
| }, |
| |
| { |
| { /* After Invert 6 */ |
| {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM}, |
| {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM}, |
| {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM}, |
| {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM}, |
| {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM}, |
| {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM}, |
| {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM}, |
| {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM}, |
| {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM}, |
| {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD}, |
| {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD}, |
| {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD}, |
| {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD}, |
| {"DORQ", ATTENTION_PAR_INT, |
| qed_dorq_attn_cb, BLOCK_DORQ}, |
| {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG}, |
| {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC}, |
| } |
| }, |
| |
| { |
| { /* After Invert 7 */ |
| {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC}, |
| {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU}, |
| {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE}, |
| {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU}, |
| {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, |
| {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU}, |
| {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU}, |
| {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM}, |
| {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC}, |
| {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF}, |
| {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF}, |
| {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS}, |
| {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC}, |
| {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS}, |
| {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE}, |
| {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, |
| {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ}, |
| } |
| }, |
| |
| { |
| { /* After Invert 8 */ |
| {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, |
| NULL, BLOCK_PSWRQ2}, |
| {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR}, |
| {"PSWWR (pci_clk)", ATTENTION_PAR_INT, |
| NULL, BLOCK_PSWWR2}, |
| {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD}, |
| {"PSWRD (pci_clk)", ATTENTION_PAR_INT, |
| NULL, BLOCK_PSWRD2}, |
| {"PSWHST", ATTENTION_PAR_INT, |
| qed_pswhst_attn_cb, BLOCK_PSWHST}, |
| {"PSWHST (pci_clk)", ATTENTION_PAR_INT, |
| NULL, BLOCK_PSWHST2}, |
| {"GRC", ATTENTION_PAR_INT, |
| qed_grc_attn_cb, BLOCK_GRC}, |
| {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU}, |
| {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI}, |
| {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, |
| {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, |
| {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, |
| {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, |
| {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, |
| {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, |
| {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS}, |
| {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, |
| NULL, BLOCK_PGLCS}, |
| {"PERST_B assertion", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"PERST_B deassertion", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), |
| NULL, MAX_BLOCK_ID}, |
| } |
| }, |
| |
| { |
| { /* After Invert 9 */ |
| {"MCP Latched memory", ATTENTION_PAR, |
| NULL, MAX_BLOCK_ID}, |
| {"MCP Latched scratchpad cache", ATTENTION_SINGLE, |
| NULL, MAX_BLOCK_ID}, |
| {"MCP Latched ump_tx", ATTENTION_PAR, |
| NULL, MAX_BLOCK_ID}, |
| {"MCP Latched scratchpad", ATTENTION_PAR, |
| NULL, MAX_BLOCK_ID}, |
| {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), |
| NULL, MAX_BLOCK_ID}, |
| } |
| }, |
| }; |
| |
| static struct aeu_invert_reg_bit * |
| qed_int_aeu_translate(struct qed_hwfn *p_hwfn, |
| struct aeu_invert_reg_bit *p_bit) |
| { |
| if (!QED_IS_BB(p_hwfn->cdev)) |
| return p_bit; |
| |
| if (!(p_bit->flags & ATTENTION_BB_DIFFERENT)) |
| return p_bit; |
| |
| return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >> |
| ATTENTION_BB_SHIFT]; |
| } |
| |
| static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn, |
| struct aeu_invert_reg_bit *p_bit) |
| { |
| return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags & |
| ATTENTION_PARITY); |
| } |
| |
| #define ATTN_STATE_BITS (0xfff) |
| #define ATTN_BITS_MASKABLE (0x3ff) |
| struct qed_sb_attn_info { |
| /* Virtual & Physical address of the SB */ |
| struct atten_status_block *sb_attn; |
| dma_addr_t sb_phys; |
| |
| /* Last seen running index */ |
| u16 index; |
| |
| /* A mask of the AEU bits resulting in a parity error */ |
| u32 parity_mask[NUM_ATTN_REGS]; |
| |
| /* A pointer to the attention description structure */ |
| struct aeu_invert_reg *p_aeu_desc; |
| |
| /* Previously asserted attentions, which are still unasserted */ |
| u16 known_attn; |
| |
| /* Cleanup address for the link's general hw attention */ |
| u32 mfw_attn_addr; |
| }; |
| |
| static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn, |
| struct qed_sb_attn_info *p_sb_desc) |
| { |
| u16 rc = 0, index; |
| |
| index = le16_to_cpu(p_sb_desc->sb_attn->sb_index); |
| if (p_sb_desc->index != index) { |
| p_sb_desc->index = index; |
| rc = QED_SB_ATT_IDX; |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * @brief qed_int_assertion - handles asserted attention bits |
| * |
| * @param p_hwfn |
| * @param asserted_bits newly asserted bits |
| * @return int |
| */ |
| static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits) |
| { |
| struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; |
| u32 igu_mask; |
| |
| /* Mask the source of the attention in the IGU */ |
| igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n", |
| igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE)); |
| igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE); |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "inner known ATTN state: 0x%04x --> 0x%04x\n", |
| sb_attn_sw->known_attn, |
| sb_attn_sw->known_attn | asserted_bits); |
| sb_attn_sw->known_attn |= asserted_bits; |
| |
| /* Handle MCP events */ |
| if (asserted_bits & 0x100) { |
| qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt); |
| /* Clean the MCP attention */ |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, |
| sb_attn_sw->mfw_attn_addr, 0); |
| } |
| |
| DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + |
| GTT_BAR0_MAP_REG_IGU_CMD + |
| ((IGU_CMD_ATTN_BIT_SET_UPPER - |
| IGU_CMD_INT_ACK_BASE) << 3), |
| (u32)asserted_bits); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n", |
| asserted_bits); |
| |
| return 0; |
| } |
| |
| static void qed_int_attn_print(struct qed_hwfn *p_hwfn, |
| enum block_id id, |
| enum dbg_attn_type type, bool b_clear) |
| { |
| struct dbg_attn_block_result attn_results; |
| enum dbg_status status; |
| |
| memset(&attn_results, 0, sizeof(attn_results)); |
| |
| status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type, |
| b_clear, &attn_results); |
| if (status != DBG_STATUS_OK) |
| DP_NOTICE(p_hwfn, |
| "Failed to parse attention information [status: %s]\n", |
| qed_dbg_get_status_str(status)); |
| else |
| qed_dbg_parse_attn(p_hwfn, &attn_results); |
| } |
| |
| /** |
| * @brief qed_int_deassertion_aeu_bit - handles the effects of a single |
| * cause of the attention |
| * |
| * @param p_hwfn |
| * @param p_aeu - descriptor of an AEU bit which caused the attention |
| * @param aeu_en_reg - register offset of the AEU enable reg. which configured |
| * this bit to this group. |
| * @param bit_index - index of this bit in the aeu_en_reg |
| * |
| * @return int |
| */ |
| static int |
| qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn, |
| struct aeu_invert_reg_bit *p_aeu, |
| u32 aeu_en_reg, |
| const char *p_bit_name, u32 bitmask) |
| { |
| bool b_fatal = false; |
| int rc = -EINVAL; |
| u32 val; |
| |
| DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n", |
| p_bit_name, bitmask); |
| |
| /* Call callback before clearing the interrupt status */ |
| if (p_aeu->cb) { |
| DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n", |
| p_bit_name); |
| rc = p_aeu->cb(p_hwfn); |
| } |
| |
| if (rc) |
| b_fatal = true; |
| |
| /* Print HW block interrupt registers */ |
| if (p_aeu->block_index != MAX_BLOCK_ID) |
| qed_int_attn_print(p_hwfn, p_aeu->block_index, |
| ATTN_TYPE_INTERRUPT, !b_fatal); |
| |
| /* Reach assertion if attention is fatal */ |
| if (b_fatal) |
| qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN, |
| "`%s': Fatal attention\n", |
| p_bit_name); |
| else /* If the attention is benign, no need to prevent it */ |
| goto out; |
| |
| /* Prevent this Attention from being asserted in the future */ |
| val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask)); |
| DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n", |
| p_bit_name); |
| |
| out: |
| return rc; |
| } |
| |
| /** |
| * @brief qed_int_deassertion_parity - handle a single parity AEU source |
| * |
| * @param p_hwfn |
| * @param p_aeu - descriptor of an AEU bit which caused the parity |
| * @param aeu_en_reg - address of the AEU enable register |
| * @param bit_index |
| */ |
| static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn, |
| struct aeu_invert_reg_bit *p_aeu, |
| u32 aeu_en_reg, u8 bit_index) |
| { |
| u32 block_id = p_aeu->block_index, mask, val; |
| |
| DP_NOTICE(p_hwfn->cdev, |
| "%s parity attention is set [address 0x%08x, bit %d]\n", |
| p_aeu->bit_name, aeu_en_reg, bit_index); |
| |
| if (block_id != MAX_BLOCK_ID) { |
| qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false); |
| |
| /* In BB, there's a single parity bit for several blocks */ |
| if (block_id == BLOCK_BTB) { |
| qed_int_attn_print(p_hwfn, BLOCK_OPTE, |
| ATTN_TYPE_PARITY, false); |
| qed_int_attn_print(p_hwfn, BLOCK_MCP, |
| ATTN_TYPE_PARITY, false); |
| } |
| } |
| |
| /* Prevent this parity error from being re-asserted */ |
| mask = ~BIT(bit_index); |
| val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask); |
| DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n", |
| p_aeu->bit_name); |
| } |
| |
| /** |
| * @brief - handles deassertion of previously asserted attentions. |
| * |
| * @param p_hwfn |
| * @param deasserted_bits - newly deasserted bits |
| * @return int |
| * |
| */ |
| static int qed_int_deassertion(struct qed_hwfn *p_hwfn, |
| u16 deasserted_bits) |
| { |
| struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; |
| u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en; |
| u8 i, j, k, bit_idx; |
| int rc = 0; |
| |
| /* Read the attention registers in the AEU */ |
| for (i = 0; i < NUM_ATTN_REGS; i++) { |
| aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, |
| MISC_REG_AEU_AFTER_INVERT_1_IGU + |
| i * 0x4); |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "Deasserted bits [%d]: %08x\n", |
| i, aeu_inv_arr[i]); |
| } |
| |
| /* Find parity attentions first */ |
| for (i = 0; i < NUM_ATTN_REGS; i++) { |
| struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i]; |
| u32 parities; |
| |
| aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32); |
| en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); |
| |
| /* Skip register in which no parity bit is currently set */ |
| parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en; |
| if (!parities) |
| continue; |
| |
| for (j = 0, bit_idx = 0; bit_idx < 32; j++) { |
| struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j]; |
| |
| if (qed_int_is_parity_flag(p_hwfn, p_bit) && |
| !!(parities & BIT(bit_idx))) |
| qed_int_deassertion_parity(p_hwfn, p_bit, |
| aeu_en, bit_idx); |
| |
| bit_idx += ATTENTION_LENGTH(p_bit->flags); |
| } |
| } |
| |
| /* Find non-parity cause for attention and act */ |
| for (k = 0; k < MAX_ATTN_GRPS; k++) { |
| struct aeu_invert_reg_bit *p_aeu; |
| |
| /* Handle only groups whose attention is currently deasserted */ |
| if (!(deasserted_bits & (1 << k))) |
| continue; |
| |
| for (i = 0; i < NUM_ATTN_REGS; i++) { |
| u32 bits; |
| |
| aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + |
| i * sizeof(u32) + |
| k * sizeof(u32) * NUM_ATTN_REGS; |
| |
| en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); |
| bits = aeu_inv_arr[i] & en; |
| |
| /* Skip if no bit from this group is currently set */ |
| if (!bits) |
| continue; |
| |
| /* Find all set bits from current register which belong |
| * to current group, making them responsible for the |
| * previous assertion. |
| */ |
| for (j = 0, bit_idx = 0; bit_idx < 32; j++) { |
| long unsigned int bitmask; |
| u8 bit, bit_len; |
| |
| p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j]; |
| p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu); |
| |
| bit = bit_idx; |
| bit_len = ATTENTION_LENGTH(p_aeu->flags); |
| if (qed_int_is_parity_flag(p_hwfn, p_aeu)) { |
| /* Skip Parity */ |
| bit++; |
| bit_len--; |
| } |
| |
| bitmask = bits & (((1 << bit_len) - 1) << bit); |
| bitmask >>= bit; |
| |
| if (bitmask) { |
| u32 flags = p_aeu->flags; |
| char bit_name[30]; |
| u8 num; |
| |
| num = (u8)find_first_bit(&bitmask, |
| bit_len); |
| |
| /* Some bits represent more than a |
| * a single interrupt. Correctly print |
| * their name. |
| */ |
| if (ATTENTION_LENGTH(flags) > 2 || |
| ((flags & ATTENTION_PAR_INT) && |
| ATTENTION_LENGTH(flags) > 1)) |
| snprintf(bit_name, 30, |
| p_aeu->bit_name, num); |
| else |
| strlcpy(bit_name, |
| p_aeu->bit_name, 30); |
| |
| /* We now need to pass bitmask in its |
| * correct position. |
| */ |
| bitmask <<= bit; |
| |
| /* Handle source of the attention */ |
| qed_int_deassertion_aeu_bit(p_hwfn, |
| p_aeu, |
| aeu_en, |
| bit_name, |
| bitmask); |
| } |
| |
| bit_idx += ATTENTION_LENGTH(p_aeu->flags); |
| } |
| } |
| } |
| |
| /* Handle missed DORQ attention */ |
| qed_dorq_attn_handler(p_hwfn); |
| |
| /* Clear IGU indication for the deasserted bits */ |
| DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + |
| GTT_BAR0_MAP_REG_IGU_CMD + |
| ((IGU_CMD_ATTN_BIT_CLR_UPPER - |
| IGU_CMD_INT_ACK_BASE) << 3), |
| ~((u32)deasserted_bits)); |
| |
| /* Unmask deasserted attentions in IGU */ |
| aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); |
| aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE); |
| qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask); |
| |
| /* Clear deassertion from inner state */ |
| sb_attn_sw->known_attn &= ~deasserted_bits; |
| |
| return rc; |
| } |
| |
| static int qed_int_attentions(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn; |
| struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn; |
| u32 attn_bits = 0, attn_acks = 0; |
| u16 asserted_bits, deasserted_bits; |
| __le16 index; |
| int rc = 0; |
| |
| /* Read current attention bits/acks - safeguard against attentions |
| * by guaranting work on a synchronized timeframe |
| */ |
| do { |
| index = p_sb_attn->sb_index; |
| /* finish reading index before the loop condition */ |
| dma_rmb(); |
| attn_bits = le32_to_cpu(p_sb_attn->atten_bits); |
| attn_acks = le32_to_cpu(p_sb_attn->atten_ack); |
| } while (index != p_sb_attn->sb_index); |
| p_sb_attn->sb_index = index; |
| |
| /* Attention / Deassertion are meaningful (and in correct state) |
| * only when they differ and consistent with known state - deassertion |
| * when previous attention & current ack, and assertion when current |
| * attention with no previous attention |
| */ |
| asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) & |
| ~p_sb_attn_sw->known_attn; |
| deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) & |
| p_sb_attn_sw->known_attn; |
| |
| if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) { |
| DP_INFO(p_hwfn, |
| "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n", |
| index, attn_bits, attn_acks, asserted_bits, |
| deasserted_bits, p_sb_attn_sw->known_attn); |
| } else if (asserted_bits == 0x100) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "MFW indication via attention\n"); |
| } else { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "MFW indication [deassertion]\n"); |
| } |
| |
| if (asserted_bits) { |
| rc = qed_int_assertion(p_hwfn, asserted_bits); |
| if (rc) |
| return rc; |
| } |
| |
| if (deasserted_bits) |
| rc = qed_int_deassertion(p_hwfn, deasserted_bits); |
| |
| return rc; |
| } |
| |
| static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn, |
| void __iomem *igu_addr, u32 ack_cons) |
| { |
| struct igu_prod_cons_update igu_ack = { 0 }; |
| |
| igu_ack.sb_id_and_flags = |
| ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) | |
| (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) | |
| (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) | |
| (IGU_SEG_ACCESS_ATTN << |
| IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT)); |
| |
| DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags); |
| |
| /* Both segments (interrupts & acks) are written to same place address; |
| * Need to guarantee all commands will be received (in-order) by HW. |
| */ |
| barrier(); |
| } |
| |
| void qed_int_sp_dpc(unsigned long hwfn_cookie) |
| { |
| struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie; |
| struct qed_pi_info *pi_info = NULL; |
| struct qed_sb_attn_info *sb_attn; |
| struct qed_sb_info *sb_info; |
| int arr_size; |
| u16 rc = 0; |
| |
| if (!p_hwfn->p_sp_sb) { |
| DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n"); |
| return; |
| } |
| |
| sb_info = &p_hwfn->p_sp_sb->sb_info; |
| arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr); |
| if (!sb_info) { |
| DP_ERR(p_hwfn->cdev, |
| "Status block is NULL - cannot ack interrupts\n"); |
| return; |
| } |
| |
| if (!p_hwfn->p_sb_attn) { |
| DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn"); |
| return; |
| } |
| sb_attn = p_hwfn->p_sb_attn; |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n", |
| p_hwfn, p_hwfn->my_id); |
| |
| /* Disable ack for def status block. Required both for msix + |
| * inta in non-mask mode, in inta does no harm. |
| */ |
| qed_sb_ack(sb_info, IGU_INT_DISABLE, 0); |
| |
| /* Gather Interrupts/Attentions information */ |
| if (!sb_info->sb_virt) { |
| DP_ERR(p_hwfn->cdev, |
| "Interrupt Status block is NULL - cannot check for new interrupts!\n"); |
| } else { |
| u32 tmp_index = sb_info->sb_ack; |
| |
| rc = qed_sb_update_sb_idx(sb_info); |
| DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, |
| "Interrupt indices: 0x%08x --> 0x%08x\n", |
| tmp_index, sb_info->sb_ack); |
| } |
| |
| if (!sb_attn || !sb_attn->sb_attn) { |
| DP_ERR(p_hwfn->cdev, |
| "Attentions Status block is NULL - cannot check for new attentions!\n"); |
| } else { |
| u16 tmp_index = sb_attn->index; |
| |
| rc |= qed_attn_update_idx(p_hwfn, sb_attn); |
| DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, |
| "Attention indices: 0x%08x --> 0x%08x\n", |
| tmp_index, sb_attn->index); |
| } |
| |
| /* Check if we expect interrupts at this time. if not just ack them */ |
| if (!(rc & QED_SB_EVENT_MASK)) { |
| qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); |
| return; |
| } |
| |
| /* Check the validity of the DPC ptt. If not ack interrupts and fail */ |
| if (!p_hwfn->p_dpc_ptt) { |
| DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n"); |
| qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); |
| return; |
| } |
| |
| if (rc & QED_SB_ATT_IDX) |
| qed_int_attentions(p_hwfn); |
| |
| if (rc & QED_SB_IDX) { |
| int pi; |
| |
| /* Look for a free index */ |
| for (pi = 0; pi < arr_size; pi++) { |
| pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi]; |
| if (pi_info->comp_cb) |
| pi_info->comp_cb(p_hwfn, pi_info->cookie); |
| } |
| } |
| |
| if (sb_attn && (rc & QED_SB_ATT_IDX)) |
| /* This should be done before the interrupts are enabled, |
| * since otherwise a new attention will be generated. |
| */ |
| qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index); |
| |
| qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); |
| } |
| |
| static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn; |
| |
| if (!p_sb) |
| return; |
| |
| if (p_sb->sb_attn) |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| SB_ATTN_ALIGNED_SIZE(p_hwfn), |
| p_sb->sb_attn, p_sb->sb_phys); |
| kfree(p_sb); |
| p_hwfn->p_sb_attn = NULL; |
| } |
| |
| static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; |
| |
| memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn)); |
| |
| sb_info->index = 0; |
| sb_info->known_attn = 0; |
| |
| /* Configure Attention Status Block in IGU */ |
| qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L, |
| lower_32_bits(p_hwfn->p_sb_attn->sb_phys)); |
| qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H, |
| upper_32_bits(p_hwfn->p_sb_attn->sb_phys)); |
| } |
| |
| static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| void *sb_virt_addr, dma_addr_t sb_phy_addr) |
| { |
| struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; |
| int i, j, k; |
| |
| sb_info->sb_attn = sb_virt_addr; |
| sb_info->sb_phys = sb_phy_addr; |
| |
| /* Set the pointer to the AEU descriptors */ |
| sb_info->p_aeu_desc = aeu_descs; |
| |
| /* Calculate Parity Masks */ |
| memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS); |
| for (i = 0; i < NUM_ATTN_REGS; i++) { |
| /* j is array index, k is bit index */ |
| for (j = 0, k = 0; k < 32; j++) { |
| struct aeu_invert_reg_bit *p_aeu; |
| |
| p_aeu = &aeu_descs[i].bits[j]; |
| if (qed_int_is_parity_flag(p_hwfn, p_aeu)) |
| sb_info->parity_mask[i] |= 1 << k; |
| |
| k += ATTENTION_LENGTH(p_aeu->flags); |
| } |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "Attn Mask [Reg %d]: 0x%08x\n", |
| i, sb_info->parity_mask[i]); |
| } |
| |
| /* Set the address of cleanup for the mcp attention */ |
| sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) + |
| MISC_REG_AEU_GENERAL_ATTN_0; |
| |
| qed_int_sb_attn_setup(p_hwfn, p_ptt); |
| } |
| |
| static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| struct qed_sb_attn_info *p_sb; |
| dma_addr_t p_phys = 0; |
| void *p_virt; |
| |
| /* SB struct */ |
| p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); |
| if (!p_sb) |
| return -ENOMEM; |
| |
| /* SB ring */ |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| SB_ATTN_ALIGNED_SIZE(p_hwfn), |
| &p_phys, GFP_KERNEL); |
| |
| if (!p_virt) { |
| kfree(p_sb); |
| return -ENOMEM; |
| } |
| |
| /* Attention setup */ |
| p_hwfn->p_sb_attn = p_sb; |
| qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys); |
| |
| return 0; |
| } |
| |
| /* coalescing timeout = timeset << (timer_res + 1) */ |
| #define QED_CAU_DEF_RX_USECS 24 |
| #define QED_CAU_DEF_TX_USECS 48 |
| |
| void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn, |
| struct cau_sb_entry *p_sb_entry, |
| u8 pf_id, u16 vf_number, u8 vf_valid) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| u32 cau_state; |
| u8 timer_res; |
| |
| memset(p_sb_entry, 0, sizeof(*p_sb_entry)); |
| |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id); |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number); |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid); |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F); |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F); |
| |
| cau_state = CAU_HC_DISABLE_STATE; |
| |
| if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { |
| cau_state = CAU_HC_ENABLE_STATE; |
| if (!cdev->rx_coalesce_usecs) |
| cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS; |
| if (!cdev->tx_coalesce_usecs) |
| cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS; |
| } |
| |
| /* Coalesce = (timeset << timer-res), timeset is 7bit wide */ |
| if (cdev->rx_coalesce_usecs <= 0x7F) |
| timer_res = 0; |
| else if (cdev->rx_coalesce_usecs <= 0xFF) |
| timer_res = 1; |
| else |
| timer_res = 2; |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res); |
| |
| if (cdev->tx_coalesce_usecs <= 0x7F) |
| timer_res = 0; |
| else if (cdev->tx_coalesce_usecs <= 0xFF) |
| timer_res = 1; |
| else |
| timer_res = 2; |
| SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res); |
| |
| SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state); |
| SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state); |
| } |
| |
| static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 igu_sb_id, |
| u32 pi_index, |
| enum qed_coalescing_fsm coalescing_fsm, |
| u8 timeset) |
| { |
| struct cau_pi_entry pi_entry; |
| u32 sb_offset, pi_offset; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return; |
| |
| sb_offset = igu_sb_id * PIS_PER_SB_E4; |
| memset(&pi_entry, 0, sizeof(struct cau_pi_entry)); |
| |
| SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset); |
| if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE) |
| SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0); |
| else |
| SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1); |
| |
| pi_offset = sb_offset + pi_index; |
| if (p_hwfn->hw_init_done) { |
| qed_wr(p_hwfn, p_ptt, |
| CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), |
| *((u32 *)&(pi_entry))); |
| } else { |
| STORE_RT_REG(p_hwfn, |
| CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset, |
| *((u32 *)&(pi_entry))); |
| } |
| } |
| |
| void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| dma_addr_t sb_phys, |
| u16 igu_sb_id, u16 vf_number, u8 vf_valid) |
| { |
| struct cau_sb_entry sb_entry; |
| |
| qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, |
| vf_number, vf_valid); |
| |
| if (p_hwfn->hw_init_done) { |
| /* Wide-bus, initialize via DMAE */ |
| u64 phys_addr = (u64)sb_phys; |
| |
| qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr, |
| CAU_REG_SB_ADDR_MEMORY + |
| igu_sb_id * sizeof(u64), 2, NULL); |
| qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, |
| CAU_REG_SB_VAR_MEMORY + |
| igu_sb_id * sizeof(u64), 2, NULL); |
| } else { |
| /* Initialize Status Block Address */ |
| STORE_RT_REG_AGG(p_hwfn, |
| CAU_REG_SB_ADDR_MEMORY_RT_OFFSET + |
| igu_sb_id * 2, |
| sb_phys); |
| |
| STORE_RT_REG_AGG(p_hwfn, |
| CAU_REG_SB_VAR_MEMORY_RT_OFFSET + |
| igu_sb_id * 2, |
| sb_entry); |
| } |
| |
| /* Configure pi coalescing if set */ |
| if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { |
| u8 num_tc = p_hwfn->hw_info.num_hw_tc; |
| u8 timeset, timer_res; |
| u8 i; |
| |
| /* timeset = (coalesce >> timer-res), timeset is 7bit wide */ |
| if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F) |
| timer_res = 0; |
| else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF) |
| timer_res = 1; |
| else |
| timer_res = 2; |
| timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res); |
| qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI, |
| QED_COAL_RX_STATE_MACHINE, timeset); |
| |
| if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F) |
| timer_res = 0; |
| else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF) |
| timer_res = 1; |
| else |
| timer_res = 2; |
| timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res); |
| for (i = 0; i < num_tc; i++) { |
| qed_int_cau_conf_pi(p_hwfn, p_ptt, |
| igu_sb_id, TX_PI(i), |
| QED_COAL_TX_STATE_MACHINE, |
| timeset); |
| } |
| } |
| } |
| |
| void qed_int_sb_setup(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, struct qed_sb_info *sb_info) |
| { |
| /* zero status block and ack counter */ |
| sb_info->sb_ack = 0; |
| memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); |
| |
| if (IS_PF(p_hwfn->cdev)) |
| qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys, |
| sb_info->igu_sb_id, 0, 0); |
| } |
| |
| struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf) |
| { |
| struct qed_igu_block *p_block; |
| u16 igu_id; |
| |
| for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); |
| igu_id++) { |
| p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; |
| |
| if (!(p_block->status & QED_IGU_STATUS_VALID) || |
| !(p_block->status & QED_IGU_STATUS_FREE)) |
| continue; |
| |
| if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf) |
| return p_block; |
| } |
| |
| return NULL; |
| } |
| |
| static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id) |
| { |
| struct qed_igu_block *p_block; |
| u16 igu_id; |
| |
| for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); |
| igu_id++) { |
| p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; |
| |
| if (!(p_block->status & QED_IGU_STATUS_VALID) || |
| !p_block->is_pf || |
| p_block->vector_number != vector_id) |
| continue; |
| |
| return igu_id; |
| } |
| |
| return QED_SB_INVALID_IDX; |
| } |
| |
| u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id) |
| { |
| u16 igu_sb_id; |
| |
| /* Assuming continuous set of IGU SBs dedicated for given PF */ |
| if (sb_id == QED_SP_SB_ID) |
| igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id; |
| else if (IS_PF(p_hwfn->cdev)) |
| igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1); |
| else |
| igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id); |
| |
| if (sb_id == QED_SP_SB_ID) |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id); |
| else |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id); |
| |
| return igu_sb_id; |
| } |
| |
| int qed_int_sb_init(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_sb_info *sb_info, |
| void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id) |
| { |
| sb_info->sb_virt = sb_virt_addr; |
| sb_info->sb_phys = sb_phy_addr; |
| |
| sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id); |
| |
| if (sb_id != QED_SP_SB_ID) { |
| if (IS_PF(p_hwfn->cdev)) { |
| struct qed_igu_info *p_info; |
| struct qed_igu_block *p_block; |
| |
| p_info = p_hwfn->hw_info.p_igu_info; |
| p_block = &p_info->entry[sb_info->igu_sb_id]; |
| |
| p_block->sb_info = sb_info; |
| p_block->status &= ~QED_IGU_STATUS_FREE; |
| p_info->usage.free_cnt--; |
| } else { |
| qed_vf_set_sb_info(p_hwfn, sb_id, sb_info); |
| } |
| } |
| |
| sb_info->cdev = p_hwfn->cdev; |
| |
| /* The igu address will hold the absolute address that needs to be |
| * written to for a specific status block |
| */ |
| if (IS_PF(p_hwfn->cdev)) { |
| sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + |
| GTT_BAR0_MAP_REG_IGU_CMD + |
| (sb_info->igu_sb_id << 3); |
| } else { |
| sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + |
| PXP_VF_BAR0_START_IGU + |
| ((IGU_CMD_INT_ACK_BASE + |
| sb_info->igu_sb_id) << 3); |
| } |
| |
| sb_info->flags |= QED_SB_INFO_INIT; |
| |
| qed_int_sb_setup(p_hwfn, p_ptt, sb_info); |
| |
| return 0; |
| } |
| |
| int qed_int_sb_release(struct qed_hwfn *p_hwfn, |
| struct qed_sb_info *sb_info, u16 sb_id) |
| { |
| struct qed_igu_block *p_block; |
| struct qed_igu_info *p_info; |
| |
| if (!sb_info) |
| return 0; |
| |
| /* zero status block and ack counter */ |
| sb_info->sb_ack = 0; |
| memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); |
| |
| if (IS_VF(p_hwfn->cdev)) { |
| qed_vf_set_sb_info(p_hwfn, sb_id, NULL); |
| return 0; |
| } |
| |
| p_info = p_hwfn->hw_info.p_igu_info; |
| p_block = &p_info->entry[sb_info->igu_sb_id]; |
| |
| /* Vector 0 is reserved to Default SB */ |
| if (!p_block->vector_number) { |
| DP_ERR(p_hwfn, "Do Not free sp sb using this function"); |
| return -EINVAL; |
| } |
| |
| /* Lose reference to client's SB info, and fix counters */ |
| p_block->sb_info = NULL; |
| p_block->status |= QED_IGU_STATUS_FREE; |
| p_info->usage.free_cnt++; |
| |
| return 0; |
| } |
| |
| static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb; |
| |
| if (!p_sb) |
| return; |
| |
| if (p_sb->sb_info.sb_virt) |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| SB_ALIGNED_SIZE(p_hwfn), |
| p_sb->sb_info.sb_virt, |
| p_sb->sb_info.sb_phys); |
| kfree(p_sb); |
| p_hwfn->p_sp_sb = NULL; |
| } |
| |
| static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_sb_sp_info *p_sb; |
| dma_addr_t p_phys = 0; |
| void *p_virt; |
| |
| /* SB struct */ |
| p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); |
| if (!p_sb) |
| return -ENOMEM; |
| |
| /* SB ring */ |
| p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| SB_ALIGNED_SIZE(p_hwfn), |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) { |
| kfree(p_sb); |
| return -ENOMEM; |
| } |
| |
| /* Status Block setup */ |
| p_hwfn->p_sp_sb = p_sb; |
| qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt, |
| p_phys, QED_SP_SB_ID); |
| |
| memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr)); |
| |
| return 0; |
| } |
| |
| int qed_int_register_cb(struct qed_hwfn *p_hwfn, |
| qed_int_comp_cb_t comp_cb, |
| void *cookie, u8 *sb_idx, __le16 **p_fw_cons) |
| { |
| struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; |
| int rc = -ENOMEM; |
| u8 pi; |
| |
| /* Look for a free index */ |
| for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) { |
| if (p_sp_sb->pi_info_arr[pi].comp_cb) |
| continue; |
| |
| p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb; |
| p_sp_sb->pi_info_arr[pi].cookie = cookie; |
| *sb_idx = pi; |
| *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi]; |
| rc = 0; |
| break; |
| } |
| |
| return rc; |
| } |
| |
| int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi) |
| { |
| struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; |
| |
| if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL) |
| return -ENOMEM; |
| |
| p_sp_sb->pi_info_arr[pi].comp_cb = NULL; |
| p_sp_sb->pi_info_arr[pi].cookie = NULL; |
| |
| return 0; |
| } |
| |
| u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn) |
| { |
| return p_hwfn->p_sp_sb->sb_info.igu_sb_id; |
| } |
| |
| void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, enum qed_int_mode int_mode) |
| { |
| u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN; |
| |
| p_hwfn->cdev->int_mode = int_mode; |
| switch (p_hwfn->cdev->int_mode) { |
| case QED_INT_MODE_INTA: |
| igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN; |
| igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; |
| break; |
| |
| case QED_INT_MODE_MSI: |
| igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; |
| igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; |
| break; |
| |
| case QED_INT_MODE_MSIX: |
| igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; |
| break; |
| case QED_INT_MODE_POLL: |
| break; |
| } |
| |
| qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf); |
| } |
| |
| static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| |
| /* Configure AEU signal change to produce attentions */ |
| qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0); |
| qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff); |
| qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff); |
| qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff); |
| |
| /* Unmask AEU signals toward IGU */ |
| qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff); |
| } |
| |
| int |
| qed_int_igu_enable(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, enum qed_int_mode int_mode) |
| { |
| int rc = 0; |
| |
| qed_int_igu_enable_attn(p_hwfn, p_ptt); |
| |
| if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) { |
| rc = qed_slowpath_irq_req(p_hwfn); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n"); |
| return -EINVAL; |
| } |
| p_hwfn->b_int_requested = true; |
| } |
| /* Enable interrupt Generation */ |
| qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode); |
| p_hwfn->b_int_enabled = 1; |
| |
| return rc; |
| } |
| |
| void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| p_hwfn->b_int_enabled = 0; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return; |
| |
| qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0); |
| } |
| |
| #define IGU_CLEANUP_SLEEP_LENGTH (1000) |
| static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 igu_sb_id, |
| bool cleanup_set, u16 opaque_fid) |
| { |
| u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0; |
| u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id; |
| u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH; |
| |
| /* Set the data field */ |
| SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0); |
| SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0); |
| SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET); |
| |
| /* Set the control register */ |
| SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr); |
| SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid); |
| SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR); |
| |
| qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data); |
| |
| barrier(); |
| |
| qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl); |
| |
| /* calculate where to read the status bit from */ |
| sb_bit = 1 << (igu_sb_id % 32); |
| sb_bit_addr = igu_sb_id / 32 * sizeof(u32); |
| |
| sb_bit_addr += IGU_REG_CLEANUP_STATUS_0; |
| |
| /* Now wait for the command to complete */ |
| do { |
| val = qed_rd(p_hwfn, p_ptt, sb_bit_addr); |
| |
| if ((val & sb_bit) == (cleanup_set ? sb_bit : 0)) |
| break; |
| |
| usleep_range(5000, 10000); |
| } while (--sleep_cnt); |
| |
| if (!sleep_cnt) |
| DP_NOTICE(p_hwfn, |
| "Timeout waiting for clear status 0x%08x [for sb %d]\n", |
| val, igu_sb_id); |
| } |
| |
| void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 igu_sb_id, u16 opaque, bool b_set) |
| { |
| struct qed_igu_block *p_block; |
| int pi, i; |
| |
| p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n", |
| igu_sb_id, |
| p_block->function_id, |
| p_block->is_pf, p_block->vector_number); |
| |
| /* Set */ |
| if (b_set) |
| qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque); |
| |
| /* Clear */ |
| qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque); |
| |
| /* Wait for the IGU SB to cleanup */ |
| for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) { |
| u32 val; |
| |
| val = qed_rd(p_hwfn, p_ptt, |
| IGU_REG_WRITE_DONE_PENDING + |
| ((igu_sb_id / 32) * 4)); |
| if (val & BIT((igu_sb_id % 32))) |
| usleep_range(10, 20); |
| else |
| break; |
| } |
| if (i == IGU_CLEANUP_SLEEP_LENGTH) |
| DP_NOTICE(p_hwfn, |
| "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n", |
| igu_sb_id); |
| |
| /* Clear the CAU for the SB */ |
| for (pi = 0; pi < 12; pi++) |
| qed_wr(p_hwfn, p_ptt, |
| CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0); |
| } |
| |
| void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| bool b_set, bool b_slowpath) |
| { |
| struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; |
| struct qed_igu_block *p_block; |
| u16 igu_sb_id = 0; |
| u32 val = 0; |
| |
| val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION); |
| val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN; |
| val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN; |
| qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val); |
| |
| for (igu_sb_id = 0; |
| igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { |
| p_block = &p_info->entry[igu_sb_id]; |
| |
| if (!(p_block->status & QED_IGU_STATUS_VALID) || |
| !p_block->is_pf || |
| (p_block->status & QED_IGU_STATUS_DSB)) |
| continue; |
| |
| qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id, |
| p_hwfn->hw_info.opaque_fid, |
| b_set); |
| } |
| |
| if (b_slowpath) |
| qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, |
| p_info->igu_dsb_id, |
| p_hwfn->hw_info.opaque_fid, |
| b_set); |
| } |
| |
| int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; |
| struct qed_igu_block *p_block; |
| int pf_sbs, vf_sbs; |
| u16 igu_sb_id; |
| u32 val, rval; |
| |
| if (!RESC_NUM(p_hwfn, QED_SB)) { |
| p_info->b_allow_pf_vf_change = false; |
| } else { |
| /* Use the numbers the MFW have provided - |
| * don't forget MFW accounts for the default SB as well. |
| */ |
| p_info->b_allow_pf_vf_change = true; |
| |
| if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) { |
| DP_INFO(p_hwfn, |
| "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n", |
| RESC_NUM(p_hwfn, QED_SB) - 1, |
| p_info->usage.cnt); |
| p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1; |
| } |
| |
| if (IS_PF_SRIOV(p_hwfn)) { |
| u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs; |
| |
| if (vfs != p_info->usage.iov_cnt) |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_INTR, |
| "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n", |
| p_info->usage.iov_cnt, vfs); |
| |
| /* At this point we know how many SBs we have totally |
| * in IGU + number of PF SBs. So we can validate that |
| * we'd have sufficient for VF. |
| */ |
| if (vfs > p_info->usage.free_cnt + |
| p_info->usage.free_cnt_iov - p_info->usage.cnt) { |
| DP_NOTICE(p_hwfn, |
| "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n", |
| p_info->usage.free_cnt + |
| p_info->usage.free_cnt_iov, |
| p_info->usage.cnt, vfs); |
| return -EINVAL; |
| } |
| |
| /* Currently cap the number of VFs SBs by the |
| * number of VFs. |
| */ |
| p_info->usage.iov_cnt = vfs; |
| } |
| } |
| |
| /* Mark all SBs as free, now in the right PF/VFs division */ |
| p_info->usage.free_cnt = p_info->usage.cnt; |
| p_info->usage.free_cnt_iov = p_info->usage.iov_cnt; |
| p_info->usage.orig = p_info->usage.cnt; |
| p_info->usage.iov_orig = p_info->usage.iov_cnt; |
| |
| /* We now proceed to re-configure the IGU cam to reflect the initial |
| * configuration. We can start with the Default SB. |
| */ |
| pf_sbs = p_info->usage.cnt; |
| vf_sbs = p_info->usage.iov_cnt; |
| |
| for (igu_sb_id = p_info->igu_dsb_id; |
| igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { |
| p_block = &p_info->entry[igu_sb_id]; |
| val = 0; |
| |
| if (!(p_block->status & QED_IGU_STATUS_VALID)) |
| continue; |
| |
| if (p_block->status & QED_IGU_STATUS_DSB) { |
| p_block->function_id = p_hwfn->rel_pf_id; |
| p_block->is_pf = 1; |
| p_block->vector_number = 0; |
| p_block->status = QED_IGU_STATUS_VALID | |
| QED_IGU_STATUS_PF | |
| QED_IGU_STATUS_DSB; |
| } else if (pf_sbs) { |
| pf_sbs--; |
| p_block->function_id = p_hwfn->rel_pf_id; |
| p_block->is_pf = 1; |
| p_block->vector_number = p_info->usage.cnt - pf_sbs; |
| p_block->status = QED_IGU_STATUS_VALID | |
| QED_IGU_STATUS_PF | |
| QED_IGU_STATUS_FREE; |
| } else if (vf_sbs) { |
| p_block->function_id = |
| p_hwfn->cdev->p_iov_info->first_vf_in_pf + |
| p_info->usage.iov_cnt - vf_sbs; |
| p_block->is_pf = 0; |
| p_block->vector_number = 0; |
| p_block->status = QED_IGU_STATUS_VALID | |
| QED_IGU_STATUS_FREE; |
| vf_sbs--; |
| } else { |
| p_block->function_id = 0; |
| p_block->is_pf = 0; |
| p_block->vector_number = 0; |
| } |
| |
| SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, |
| p_block->function_id); |
| SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf); |
| SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, |
| p_block->vector_number); |
| |
| /* VF entries would be enabled when VF is initializaed */ |
| SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf); |
| |
| rval = qed_rd(p_hwfn, p_ptt, |
| IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); |
| |
| if (rval != val) { |
| qed_wr(p_hwfn, p_ptt, |
| IGU_REG_MAPPING_MEMORY + |
| sizeof(u32) * igu_sb_id, val); |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_INTR, |
| "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n", |
| igu_sb_id, |
| p_block->function_id, |
| p_block->is_pf, |
| p_block->vector_number, rval, val); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 igu_sb_id) |
| { |
| u32 val = qed_rd(p_hwfn, p_ptt, |
| IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); |
| struct qed_igu_block *p_block; |
| |
| p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; |
| |
| /* Fill the block information */ |
| p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER); |
| p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID); |
| p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER); |
| p_block->igu_sb_id = igu_sb_id; |
| } |
| |
| int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_igu_info *p_igu_info; |
| struct qed_igu_block *p_block; |
| u32 min_vf = 0, max_vf = 0; |
| u16 igu_sb_id; |
| |
| p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL); |
| if (!p_hwfn->hw_info.p_igu_info) |
| return -ENOMEM; |
| |
| p_igu_info = p_hwfn->hw_info.p_igu_info; |
| |
| /* Distinguish between existent and non-existent default SB */ |
| p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX; |
| |
| /* Find the range of VF ids whose SB belong to this PF */ |
| if (p_hwfn->cdev->p_iov_info) { |
| struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; |
| |
| min_vf = p_iov->first_vf_in_pf; |
| max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs; |
| } |
| |
| for (igu_sb_id = 0; |
| igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { |
| /* Read current entry; Notice it might not belong to this PF */ |
| qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id); |
| p_block = &p_igu_info->entry[igu_sb_id]; |
| |
| if ((p_block->is_pf) && |
| (p_block->function_id == p_hwfn->rel_pf_id)) { |
| p_block->status = QED_IGU_STATUS_PF | |
| QED_IGU_STATUS_VALID | |
| QED_IGU_STATUS_FREE; |
| |
| if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) |
| p_igu_info->usage.cnt++; |
| } else if (!(p_block->is_pf) && |
| (p_block->function_id >= min_vf) && |
| (p_block->function_id < max_vf)) { |
| /* Available for VFs of this PF */ |
| p_block->status = QED_IGU_STATUS_VALID | |
| QED_IGU_STATUS_FREE; |
| |
| if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) |
| p_igu_info->usage.iov_cnt++; |
| } |
| |
| /* Mark the First entry belonging to the PF or its VFs |
| * as the default SB [we'll reset IGU prior to first usage]. |
| */ |
| if ((p_block->status & QED_IGU_STATUS_VALID) && |
| (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) { |
| p_igu_info->igu_dsb_id = igu_sb_id; |
| p_block->status |= QED_IGU_STATUS_DSB; |
| } |
| |
| /* limit number of prints by having each PF print only its |
| * entries with the exception of PF0 which would print |
| * everything. |
| */ |
| if ((p_block->status & QED_IGU_STATUS_VALID) || |
| (p_hwfn->abs_pf_id == 0)) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n", |
| igu_sb_id, p_block->function_id, |
| p_block->is_pf, p_block->vector_number); |
| } |
| } |
| |
| if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) { |
| DP_NOTICE(p_hwfn, |
| "IGU CAM returned invalid values igu_dsb_id=0x%x\n", |
| p_igu_info->igu_dsb_id); |
| return -EINVAL; |
| } |
| |
| /* All non default SB are considered free at this point */ |
| p_igu_info->usage.free_cnt = p_igu_info->usage.cnt; |
| p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt; |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, |
| "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n", |
| p_igu_info->igu_dsb_id, |
| p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Initialize igu runtime registers |
| * |
| * @param p_hwfn |
| */ |
| void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn) |
| { |
| u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN; |
| |
| STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf); |
| } |
| |
| u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn) |
| { |
| u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - |
| IGU_CMD_INT_ACK_BASE; |
| u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - |
| IGU_CMD_INT_ACK_BASE; |
| u32 intr_status_hi = 0, intr_status_lo = 0; |
| u64 intr_status = 0; |
| |
| intr_status_lo = REG_RD(p_hwfn, |
| GTT_BAR0_MAP_REG_IGU_CMD + |
| lsb_igu_cmd_addr * 8); |
| intr_status_hi = REG_RD(p_hwfn, |
| GTT_BAR0_MAP_REG_IGU_CMD + |
| msb_igu_cmd_addr * 8); |
| intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo; |
| |
| return intr_status; |
| } |
| |
| static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn) |
| { |
| tasklet_init(p_hwfn->sp_dpc, |
| qed_int_sp_dpc, (unsigned long)p_hwfn); |
| p_hwfn->b_sp_dpc_enabled = true; |
| } |
| |
| static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn) |
| { |
| p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL); |
| if (!p_hwfn->sp_dpc) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn) |
| { |
| kfree(p_hwfn->sp_dpc); |
| p_hwfn->sp_dpc = NULL; |
| } |
| |
| int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| int rc = 0; |
| |
| rc = qed_int_sp_dpc_alloc(p_hwfn); |
| if (rc) |
| return rc; |
| |
| rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| |
| rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt); |
| |
| return rc; |
| } |
| |
| void qed_int_free(struct qed_hwfn *p_hwfn) |
| { |
| qed_int_sp_sb_free(p_hwfn); |
| qed_int_sb_attn_free(p_hwfn); |
| qed_int_sp_dpc_free(p_hwfn); |
| } |
| |
| void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info); |
| qed_int_sb_attn_setup(p_hwfn, p_ptt); |
| qed_int_sp_dpc_setup(p_hwfn); |
| } |
| |
| void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn, |
| struct qed_sb_cnt_info *p_sb_cnt_info) |
| { |
| struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info; |
| |
| if (!info || !p_sb_cnt_info) |
| return; |
| |
| memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info)); |
| } |
| |
| void qed_int_disable_post_isr_release(struct qed_dev *cdev) |
| { |
| int i; |
| |
| for_each_hwfn(cdev, i) |
| cdev->hwfns[i].b_int_requested = false; |
| } |
| |
| void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable) |
| { |
| cdev->attn_clr_en = clr_enable; |
| } |
| |
| int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| u8 timer_res, u16 sb_id, bool tx) |
| { |
| struct cau_sb_entry sb_entry; |
| int rc; |
| |
| if (!p_hwfn->hw_init_done) { |
| DP_ERR(p_hwfn, "hardware not initialized yet\n"); |
| return -EINVAL; |
| } |
| |
| rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY + |
| sb_id * sizeof(u64), |
| (u64)(uintptr_t)&sb_entry, 2, NULL); |
| if (rc) { |
| DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc); |
| return rc; |
| } |
| |
| if (tx) |
| SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res); |
| else |
| SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res); |
| |
| rc = qed_dmae_host2grc(p_hwfn, p_ptt, |
| (u64)(uintptr_t)&sb_entry, |
| CAU_REG_SB_VAR_MEMORY + |
| sb_id * sizeof(u64), 2, NULL); |
| if (rc) { |
| DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc); |
| return rc; |
| } |
| |
| return rc; |
| } |