| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * MHI Endpoint bus stack |
| * |
| * Copyright (C) 2022 Linaro Ltd. |
| * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/delay.h> |
| #include <linux/dma-direction.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/mhi_ep.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include "internal.h" |
| |
| #define M0_WAIT_DELAY_MS 100 |
| #define M0_WAIT_COUNT 100 |
| |
| static DEFINE_IDA(mhi_ep_cntrl_ida); |
| |
| static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id); |
| static int mhi_ep_destroy_device(struct device *dev, void *data); |
| |
| static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx, |
| struct mhi_ring_element *el, bool bei) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| union mhi_ep_ring_ctx *ctx; |
| struct mhi_ep_ring *ring; |
| int ret; |
| |
| mutex_lock(&mhi_cntrl->event_lock); |
| ring = &mhi_cntrl->mhi_event[ring_idx].ring; |
| ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx]; |
| if (!ring->started) { |
| ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx); |
| if (ret) { |
| dev_err(dev, "Error starting event ring (%u)\n", ring_idx); |
| goto err_unlock; |
| } |
| } |
| |
| /* Add element to the event ring */ |
| ret = mhi_ep_ring_add_element(ring, el); |
| if (ret) { |
| dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx); |
| goto err_unlock; |
| } |
| |
| mutex_unlock(&mhi_cntrl->event_lock); |
| |
| /* |
| * As per the MHI specification, section 4.3, Interrupt moderation: |
| * |
| * 1. If BEI flag is not set, cancel any pending intmodt work if started |
| * for the event ring and raise IRQ immediately. |
| * |
| * 2. If both BEI and intmodt are set, and if no IRQ is pending for the |
| * same event ring, start the IRQ delayed work as per the value of |
| * intmodt. If previous IRQ is pending, then do nothing as the pending |
| * IRQ is enough for the host to process the current event ring element. |
| * |
| * 3. If BEI is set and intmodt is not set, no need to raise IRQ. |
| */ |
| if (!bei) { |
| if (READ_ONCE(ring->irq_pending)) |
| cancel_delayed_work(&ring->intmodt_work); |
| |
| mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector); |
| } else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) { |
| WRITE_ONCE(ring->irq_pending, true); |
| schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt)); |
| } |
| |
| return 0; |
| |
| err_unlock: |
| mutex_unlock(&mhi_cntrl->event_lock); |
| |
| return ret; |
| } |
| |
| static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring, |
| struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code) |
| { |
| struct mhi_ring_element *event; |
| int ret; |
| |
| event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); |
| if (!event) |
| return -ENOMEM; |
| |
| event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre)); |
| event->dword[0] = MHI_TRE_EV_DWORD0(code, len); |
| event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT); |
| |
| ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre)); |
| kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); |
| |
| return ret; |
| } |
| |
| int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state) |
| { |
| struct mhi_ring_element *event; |
| int ret; |
| |
| event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); |
| if (!event) |
| return -ENOMEM; |
| |
| event->dword[0] = MHI_SC_EV_DWORD0(state); |
| event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT); |
| |
| ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); |
| kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); |
| |
| return ret; |
| } |
| |
| int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env) |
| { |
| struct mhi_ring_element *event; |
| int ret; |
| |
| event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); |
| if (!event) |
| return -ENOMEM; |
| |
| event->dword[0] = MHI_EE_EV_DWORD0(exec_env); |
| event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT); |
| |
| ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); |
| kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); |
| |
| return ret; |
| } |
| |
| static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code) |
| { |
| struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; |
| struct mhi_ring_element *event; |
| int ret; |
| |
| event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); |
| if (!event) |
| return -ENOMEM; |
| |
| event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element)); |
| event->dword[0] = MHI_CC_EV_DWORD0(code); |
| event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT); |
| |
| ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); |
| kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); |
| |
| return ret; |
| } |
| |
| static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| struct mhi_result result = {}; |
| struct mhi_ep_chan *mhi_chan; |
| struct mhi_ep_ring *ch_ring; |
| u32 tmp, ch_id; |
| int ret; |
| |
| ch_id = MHI_TRE_GET_CMD_CHID(el); |
| |
| /* Check if the channel is supported by the controller */ |
| if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) { |
| dev_dbg(dev, "Channel (%u) not supported!\n", ch_id); |
| return -ENODEV; |
| } |
| |
| mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; |
| ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring; |
| |
| switch (MHI_TRE_GET_CMD_TYPE(el)) { |
| case MHI_PKT_TYPE_START_CHAN_CMD: |
| dev_dbg(dev, "Received START command for channel (%u)\n", ch_id); |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Initialize and configure the corresponding channel ring */ |
| if (!ch_ring->started) { |
| ret = mhi_ep_ring_start(mhi_cntrl, ch_ring, |
| (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]); |
| if (ret) { |
| dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id); |
| ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, |
| MHI_EV_CC_UNDEFINED_ERR); |
| if (ret) |
| dev_err(dev, "Error sending completion event: %d\n", ret); |
| |
| goto err_unlock; |
| } |
| |
| mhi_chan->rd_offset = ch_ring->rd_offset; |
| } |
| |
| /* Set channel state to RUNNING */ |
| mhi_chan->state = MHI_CH_STATE_RUNNING; |
| tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); |
| tmp &= ~CHAN_CTX_CHSTATE_MASK; |
| tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); |
| mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); |
| |
| ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); |
| if (ret) { |
| dev_err(dev, "Error sending command completion event (%u)\n", |
| MHI_EV_CC_SUCCESS); |
| goto err_unlock; |
| } |
| |
| mutex_unlock(&mhi_chan->lock); |
| |
| /* |
| * Create MHI device only during UL channel start. Since the MHI |
| * channels operate in a pair, we'll associate both UL and DL |
| * channels to the same device. |
| * |
| * We also need to check for mhi_dev != NULL because, the host |
| * will issue START_CHAN command during resume and we don't |
| * destroy the device during suspend. |
| */ |
| if (!(ch_id % 2) && !mhi_chan->mhi_dev) { |
| ret = mhi_ep_create_device(mhi_cntrl, ch_id); |
| if (ret) { |
| dev_err(dev, "Error creating device for channel (%u)\n", ch_id); |
| mhi_ep_handle_syserr(mhi_cntrl); |
| return ret; |
| } |
| } |
| |
| /* Finally, enable DB for the channel */ |
| mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id); |
| |
| break; |
| case MHI_PKT_TYPE_STOP_CHAN_CMD: |
| dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id); |
| if (!ch_ring->started) { |
| dev_err(dev, "Channel (%u) not opened\n", ch_id); |
| return -ENODEV; |
| } |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Disable DB for the channel */ |
| mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id); |
| |
| /* Send channel disconnect status to client drivers */ |
| if (mhi_chan->xfer_cb) { |
| result.transaction_status = -ENOTCONN; |
| result.bytes_xferd = 0; |
| mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); |
| } |
| |
| /* Set channel state to STOP */ |
| mhi_chan->state = MHI_CH_STATE_STOP; |
| tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); |
| tmp &= ~CHAN_CTX_CHSTATE_MASK; |
| tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP); |
| mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); |
| |
| ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); |
| if (ret) { |
| dev_err(dev, "Error sending command completion event (%u)\n", |
| MHI_EV_CC_SUCCESS); |
| goto err_unlock; |
| } |
| |
| mutex_unlock(&mhi_chan->lock); |
| break; |
| case MHI_PKT_TYPE_RESET_CHAN_CMD: |
| dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id); |
| if (!ch_ring->started) { |
| dev_err(dev, "Channel (%u) not opened\n", ch_id); |
| return -ENODEV; |
| } |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Stop and reset the transfer ring */ |
| mhi_ep_ring_reset(mhi_cntrl, ch_ring); |
| |
| /* Send channel disconnect status to client driver */ |
| if (mhi_chan->xfer_cb) { |
| result.transaction_status = -ENOTCONN; |
| result.bytes_xferd = 0; |
| mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); |
| } |
| |
| /* Set channel state to DISABLED */ |
| mhi_chan->state = MHI_CH_STATE_DISABLED; |
| tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); |
| tmp &= ~CHAN_CTX_CHSTATE_MASK; |
| tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); |
| mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); |
| |
| ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); |
| if (ret) { |
| dev_err(dev, "Error sending command completion event (%u)\n", |
| MHI_EV_CC_SUCCESS); |
| goto err_unlock; |
| } |
| |
| mutex_unlock(&mhi_chan->lock); |
| break; |
| default: |
| dev_err(dev, "Invalid command received: %lu for channel (%u)\n", |
| MHI_TRE_GET_CMD_TYPE(el), ch_id); |
| return -EINVAL; |
| } |
| |
| return 0; |
| |
| err_unlock: |
| mutex_unlock(&mhi_chan->lock); |
| |
| return ret; |
| } |
| |
| bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir) |
| { |
| struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan : |
| mhi_dev->ul_chan; |
| struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; |
| struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; |
| |
| return !!(mhi_chan->rd_offset == ring->wr_offset); |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty); |
| |
| static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info) |
| { |
| struct mhi_ep_device *mhi_dev = buf_info->mhi_dev; |
| struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; |
| struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan; |
| struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; |
| struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset]; |
| struct mhi_result result = {}; |
| int ret; |
| |
| if (mhi_chan->xfer_cb) { |
| result.buf_addr = buf_info->cb_buf; |
| result.dir = mhi_chan->dir; |
| result.bytes_xferd = buf_info->size; |
| |
| mhi_chan->xfer_cb(mhi_dev, &result); |
| } |
| |
| /* |
| * The host will split the data packet into multiple TREs if it can't fit |
| * the packet in a single TRE. In that case, CHAIN flag will be set by the |
| * host for all TREs except the last one. |
| */ |
| if (buf_info->code != MHI_EV_CC_OVERFLOW) { |
| if (MHI_TRE_DATA_GET_CHAIN(el)) { |
| /* |
| * IEOB (Interrupt on End of Block) flag will be set by the host if |
| * it expects the completion event for all TREs of a TD. |
| */ |
| if (MHI_TRE_DATA_GET_IEOB(el)) { |
| ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, |
| MHI_TRE_DATA_GET_LEN(el), |
| MHI_EV_CC_EOB); |
| if (ret < 0) { |
| dev_err(&mhi_chan->mhi_dev->dev, |
| "Error sending transfer compl. event\n"); |
| goto err_free_tre_buf; |
| } |
| } |
| } else { |
| /* |
| * IEOT (Interrupt on End of Transfer) flag will be set by the host |
| * for the last TRE of the TD and expects the completion event for |
| * the same. |
| */ |
| if (MHI_TRE_DATA_GET_IEOT(el)) { |
| ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, |
| MHI_TRE_DATA_GET_LEN(el), |
| MHI_EV_CC_EOT); |
| if (ret < 0) { |
| dev_err(&mhi_chan->mhi_dev->dev, |
| "Error sending transfer compl. event\n"); |
| goto err_free_tre_buf; |
| } |
| } |
| } |
| } |
| |
| mhi_ep_ring_inc_index(ring); |
| |
| err_free_tre_buf: |
| kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf); |
| } |
| |
| static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl, |
| struct mhi_ep_ring *ring) |
| { |
| struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| size_t tr_len, read_offset, write_offset; |
| struct mhi_ep_buf_info buf_info = {}; |
| u32 len = MHI_EP_DEFAULT_MTU; |
| struct mhi_ring_element *el; |
| bool tr_done = false; |
| void *buf_addr; |
| u32 buf_left; |
| int ret; |
| |
| buf_left = len; |
| |
| do { |
| /* Don't process the transfer ring if the channel is not in RUNNING state */ |
| if (mhi_chan->state != MHI_CH_STATE_RUNNING) { |
| dev_err(dev, "Channel not available\n"); |
| return -ENODEV; |
| } |
| |
| el = &ring->ring_cache[mhi_chan->rd_offset]; |
| |
| /* Check if there is data pending to be read from previous read operation */ |
| if (mhi_chan->tre_bytes_left) { |
| dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left); |
| tr_len = min(buf_left, mhi_chan->tre_bytes_left); |
| } else { |
| mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el); |
| mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el); |
| mhi_chan->tre_bytes_left = mhi_chan->tre_size; |
| |
| tr_len = min(buf_left, mhi_chan->tre_size); |
| } |
| |
| read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left; |
| write_offset = len - buf_left; |
| |
| buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL); |
| if (!buf_addr) |
| return -ENOMEM; |
| |
| buf_info.host_addr = mhi_chan->tre_loc + read_offset; |
| buf_info.dev_addr = buf_addr + write_offset; |
| buf_info.size = tr_len; |
| buf_info.cb = mhi_ep_read_completion; |
| buf_info.cb_buf = buf_addr; |
| buf_info.mhi_dev = mhi_chan->mhi_dev; |
| |
| if (mhi_chan->tre_bytes_left - tr_len) |
| buf_info.code = MHI_EV_CC_OVERFLOW; |
| |
| dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id); |
| ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info); |
| if (ret < 0) { |
| dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n"); |
| goto err_free_buf_addr; |
| } |
| |
| buf_left -= tr_len; |
| mhi_chan->tre_bytes_left -= tr_len; |
| |
| if (!mhi_chan->tre_bytes_left) { |
| if (MHI_TRE_DATA_GET_IEOT(el)) |
| tr_done = true; |
| |
| mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size; |
| } |
| } while (buf_left && !tr_done); |
| |
| return 0; |
| |
| err_free_buf_addr: |
| kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr); |
| |
| return ret; |
| } |
| |
| static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; |
| struct mhi_result result = {}; |
| struct mhi_ep_chan *mhi_chan; |
| int ret; |
| |
| mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; |
| |
| /* |
| * Bail out if transfer callback is not registered for the channel. |
| * This is most likely due to the client driver not loaded at this point. |
| */ |
| if (!mhi_chan->xfer_cb) { |
| dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n"); |
| return -ENODEV; |
| } |
| |
| if (ring->ch_id % 2) { |
| /* DL channel */ |
| result.dir = mhi_chan->dir; |
| mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); |
| } else { |
| /* UL channel */ |
| do { |
| ret = mhi_ep_read_channel(mhi_cntrl, ring); |
| if (ret < 0) { |
| dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n"); |
| return ret; |
| } |
| |
| /* Read until the ring becomes empty */ |
| } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE)); |
| } |
| |
| return 0; |
| } |
| |
| static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info) |
| { |
| struct mhi_ep_device *mhi_dev = buf_info->mhi_dev; |
| struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; |
| struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; |
| struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; |
| struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset]; |
| struct device *dev = &mhi_dev->dev; |
| struct mhi_result result = {}; |
| int ret; |
| |
| if (mhi_chan->xfer_cb) { |
| result.buf_addr = buf_info->cb_buf; |
| result.dir = mhi_chan->dir; |
| result.bytes_xferd = buf_info->size; |
| |
| mhi_chan->xfer_cb(mhi_dev, &result); |
| } |
| |
| ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size, |
| buf_info->code); |
| if (ret) { |
| dev_err(dev, "Error sending transfer completion event\n"); |
| return; |
| } |
| |
| mhi_ep_ring_inc_index(ring); |
| } |
| |
| /* TODO: Handle partially formed TDs */ |
| int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; |
| struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; |
| struct device *dev = &mhi_chan->mhi_dev->dev; |
| struct mhi_ep_buf_info buf_info = {}; |
| struct mhi_ring_element *el; |
| u32 buf_left, read_offset; |
| struct mhi_ep_ring *ring; |
| size_t tr_len; |
| u32 tre_len; |
| int ret; |
| |
| buf_left = skb->len; |
| ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; |
| |
| mutex_lock(&mhi_chan->lock); |
| |
| do { |
| /* Don't process the transfer ring if the channel is not in RUNNING state */ |
| if (mhi_chan->state != MHI_CH_STATE_RUNNING) { |
| dev_err(dev, "Channel not available\n"); |
| ret = -ENODEV; |
| goto err_exit; |
| } |
| |
| if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) { |
| dev_err(dev, "TRE not available!\n"); |
| ret = -ENOSPC; |
| goto err_exit; |
| } |
| |
| el = &ring->ring_cache[mhi_chan->rd_offset]; |
| tre_len = MHI_TRE_DATA_GET_LEN(el); |
| |
| tr_len = min(buf_left, tre_len); |
| read_offset = skb->len - buf_left; |
| |
| buf_info.dev_addr = skb->data + read_offset; |
| buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el); |
| buf_info.size = tr_len; |
| buf_info.cb = mhi_ep_skb_completion; |
| buf_info.cb_buf = skb; |
| buf_info.mhi_dev = mhi_dev; |
| |
| /* |
| * For all TREs queued by the host for DL channel, only the EOT flag will be set. |
| * If the packet doesn't fit into a single TRE, send the OVERFLOW event to |
| * the host so that the host can adjust the packet boundary to next TREs. Else send |
| * the EOT event to the host indicating the packet boundary. |
| */ |
| if (buf_left - tr_len) |
| buf_info.code = MHI_EV_CC_OVERFLOW; |
| else |
| buf_info.code = MHI_EV_CC_EOT; |
| |
| dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id); |
| ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info); |
| if (ret < 0) { |
| dev_err(dev, "Error writing to the channel\n"); |
| goto err_exit; |
| } |
| |
| buf_left -= tr_len; |
| |
| /* |
| * Update the read offset cached in mhi_chan. Actual read offset |
| * will be updated by the completion handler. |
| */ |
| mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size; |
| } while (buf_left); |
| |
| mutex_unlock(&mhi_chan->lock); |
| |
| return 0; |
| |
| err_exit: |
| mutex_unlock(&mhi_chan->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_queue_skb); |
| |
| static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret; |
| |
| /* Update the number of event rings (NER) programmed by the host */ |
| mhi_ep_mmio_update_ner(mhi_cntrl); |
| |
| dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n", |
| mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings); |
| |
| ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; |
| ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; |
| cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; |
| |
| /* Get the channel context base pointer from host */ |
| mhi_ep_mmio_get_chc_base(mhi_cntrl); |
| |
| /* Allocate and map memory for caching host channel context */ |
| ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, |
| &mhi_cntrl->ch_ctx_cache_phys, |
| (void __iomem **) &mhi_cntrl->ch_ctx_cache, |
| ch_ctx_host_size); |
| if (ret) { |
| dev_err(dev, "Failed to allocate and map ch_ctx_cache\n"); |
| return ret; |
| } |
| |
| /* Get the event context base pointer from host */ |
| mhi_ep_mmio_get_erc_base(mhi_cntrl); |
| |
| /* Allocate and map memory for caching host event context */ |
| ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, |
| &mhi_cntrl->ev_ctx_cache_phys, |
| (void __iomem **) &mhi_cntrl->ev_ctx_cache, |
| ev_ctx_host_size); |
| if (ret) { |
| dev_err(dev, "Failed to allocate and map ev_ctx_cache\n"); |
| goto err_ch_ctx; |
| } |
| |
| /* Get the command context base pointer from host */ |
| mhi_ep_mmio_get_crc_base(mhi_cntrl); |
| |
| /* Allocate and map memory for caching host command context */ |
| ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, |
| &mhi_cntrl->cmd_ctx_cache_phys, |
| (void __iomem **) &mhi_cntrl->cmd_ctx_cache, |
| cmd_ctx_host_size); |
| if (ret) { |
| dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n"); |
| goto err_ev_ctx; |
| } |
| |
| /* Initialize command ring */ |
| ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring, |
| (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache); |
| if (ret) { |
| dev_err(dev, "Failed to start the command ring\n"); |
| goto err_cmd_ctx; |
| } |
| |
| return ret; |
| |
| err_cmd_ctx: |
| mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, |
| (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); |
| |
| err_ev_ctx: |
| mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, |
| (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); |
| |
| err_ch_ctx: |
| mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, |
| (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); |
| |
| return ret; |
| } |
| |
| static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; |
| |
| ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; |
| ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; |
| cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; |
| |
| mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, |
| (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); |
| |
| mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, |
| (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); |
| |
| mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, |
| (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); |
| } |
| |
| static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| /* |
| * Doorbell interrupts are enabled when the corresponding channel gets started. |
| * Enabling all interrupts here triggers spurious irqs as some of the interrupts |
| * associated with hw channels always get triggered. |
| */ |
| mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl); |
| mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl); |
| } |
| |
| static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| enum mhi_state state; |
| bool mhi_reset; |
| u32 count = 0; |
| int ret; |
| |
| /* Wait for Host to set the M0 state */ |
| do { |
| msleep(M0_WAIT_DELAY_MS); |
| mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); |
| if (mhi_reset) { |
| /* Clear the MHI reset if host is in reset state */ |
| mhi_ep_mmio_clear_reset(mhi_cntrl); |
| dev_info(dev, "Detected Host reset while waiting for M0\n"); |
| } |
| count++; |
| } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT); |
| |
| if (state != MHI_STATE_M0) { |
| dev_err(dev, "Host failed to enter M0\n"); |
| return -ETIMEDOUT; |
| } |
| |
| ret = mhi_ep_cache_host_cfg(mhi_cntrl); |
| if (ret) { |
| dev_err(dev, "Failed to cache host config\n"); |
| return ret; |
| } |
| |
| mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); |
| |
| /* Enable all interrupts now */ |
| mhi_ep_enable_int(mhi_cntrl); |
| |
| return 0; |
| } |
| |
| static void mhi_ep_cmd_ring_worker(struct work_struct *work) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work); |
| struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| struct mhi_ring_element *el; |
| int ret; |
| |
| /* Update the write offset for the ring */ |
| ret = mhi_ep_update_wr_offset(ring); |
| if (ret) { |
| dev_err(dev, "Error updating write offset for ring\n"); |
| return; |
| } |
| |
| /* Sanity check to make sure there are elements in the ring */ |
| if (ring->rd_offset == ring->wr_offset) |
| return; |
| |
| /* |
| * Process command ring element till write offset. In case of an error, just try to |
| * process next element. |
| */ |
| while (ring->rd_offset != ring->wr_offset) { |
| el = &ring->ring_cache[ring->rd_offset]; |
| |
| ret = mhi_ep_process_cmd_ring(ring, el); |
| if (ret && ret != -ENODEV) |
| dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset); |
| |
| mhi_ep_ring_inc_index(ring); |
| } |
| } |
| |
| static void mhi_ep_ch_ring_worker(struct work_struct *work) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work); |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| struct mhi_ep_ring_item *itr, *tmp; |
| struct mhi_ep_ring *ring; |
| struct mhi_ep_chan *chan; |
| unsigned long flags; |
| LIST_HEAD(head); |
| int ret; |
| |
| spin_lock_irqsave(&mhi_cntrl->list_lock, flags); |
| list_splice_tail_init(&mhi_cntrl->ch_db_list, &head); |
| spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); |
| |
| /* Process each queued channel ring. In case of an error, just process next element. */ |
| list_for_each_entry_safe(itr, tmp, &head, node) { |
| list_del(&itr->node); |
| ring = itr->ring; |
| |
| chan = &mhi_cntrl->mhi_chan[ring->ch_id]; |
| mutex_lock(&chan->lock); |
| |
| /* |
| * The ring could've stopped while we waited to grab the (chan->lock), so do |
| * a sanity check before going further. |
| */ |
| if (!ring->started) { |
| mutex_unlock(&chan->lock); |
| kfree(itr); |
| continue; |
| } |
| |
| /* Update the write offset for the ring */ |
| ret = mhi_ep_update_wr_offset(ring); |
| if (ret) { |
| dev_err(dev, "Error updating write offset for ring\n"); |
| mutex_unlock(&chan->lock); |
| kmem_cache_free(mhi_cntrl->ring_item_cache, itr); |
| continue; |
| } |
| |
| /* Sanity check to make sure there are elements in the ring */ |
| if (chan->rd_offset == ring->wr_offset) { |
| mutex_unlock(&chan->lock); |
| kmem_cache_free(mhi_cntrl->ring_item_cache, itr); |
| continue; |
| } |
| |
| dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id); |
| ret = mhi_ep_process_ch_ring(ring); |
| if (ret) { |
| dev_err(dev, "Error processing ring for channel (%u): %d\n", |
| ring->ch_id, ret); |
| mutex_unlock(&chan->lock); |
| kmem_cache_free(mhi_cntrl->ring_item_cache, itr); |
| continue; |
| } |
| |
| mutex_unlock(&chan->lock); |
| kmem_cache_free(mhi_cntrl->ring_item_cache, itr); |
| } |
| } |
| |
| static void mhi_ep_state_worker(struct work_struct *work) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work); |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| struct mhi_ep_state_transition *itr, *tmp; |
| unsigned long flags; |
| LIST_HEAD(head); |
| int ret; |
| |
| spin_lock_irqsave(&mhi_cntrl->list_lock, flags); |
| list_splice_tail_init(&mhi_cntrl->st_transition_list, &head); |
| spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); |
| |
| list_for_each_entry_safe(itr, tmp, &head, node) { |
| list_del(&itr->node); |
| dev_dbg(dev, "Handling MHI state transition to %s\n", |
| mhi_state_str(itr->state)); |
| |
| switch (itr->state) { |
| case MHI_STATE_M0: |
| ret = mhi_ep_set_m0_state(mhi_cntrl); |
| if (ret) |
| dev_err(dev, "Failed to transition to M0 state\n"); |
| break; |
| case MHI_STATE_M3: |
| ret = mhi_ep_set_m3_state(mhi_cntrl); |
| if (ret) |
| dev_err(dev, "Failed to transition to M3 state\n"); |
| break; |
| default: |
| dev_err(dev, "Invalid MHI state transition: %d\n", itr->state); |
| break; |
| } |
| kfree(itr); |
| } |
| } |
| |
| static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int, |
| u32 ch_idx) |
| { |
| struct mhi_ep_ring_item *item; |
| struct mhi_ep_ring *ring; |
| bool work = !!ch_int; |
| LIST_HEAD(head); |
| u32 i; |
| |
| /* First add the ring items to a local list */ |
| for_each_set_bit(i, &ch_int, 32) { |
| /* Channel index varies for each register: 0, 32, 64, 96 */ |
| u32 ch_id = ch_idx + i; |
| |
| ring = &mhi_cntrl->mhi_chan[ch_id].ring; |
| item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC); |
| if (!item) |
| return; |
| |
| item->ring = ring; |
| list_add_tail(&item->node, &head); |
| } |
| |
| /* Now, splice the local list into ch_db_list and queue the work item */ |
| if (work) { |
| spin_lock(&mhi_cntrl->list_lock); |
| list_splice_tail_init(&head, &mhi_cntrl->ch_db_list); |
| spin_unlock(&mhi_cntrl->list_lock); |
| |
| queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work); |
| } |
| } |
| |
| /* |
| * Channel interrupt statuses are contained in 4 registers each of 32bit length. |
| * For checking all interrupts, we need to loop through each registers and then |
| * check for bits set. |
| */ |
| static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| u32 ch_int, ch_idx, i; |
| |
| /* Bail out if there is no channel doorbell interrupt */ |
| if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl)) |
| return; |
| |
| for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) { |
| ch_idx = i * MHI_MASK_CH_LEN; |
| |
| /* Only process channel interrupt if the mask is enabled */ |
| ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask; |
| if (ch_int) { |
| mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx); |
| mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i), |
| mhi_cntrl->chdb[i].status); |
| } |
| } |
| } |
| |
| static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl, |
| enum mhi_state state) |
| { |
| struct mhi_ep_state_transition *item; |
| |
| item = kzalloc(sizeof(*item), GFP_ATOMIC); |
| if (!item) |
| return; |
| |
| item->state = state; |
| spin_lock(&mhi_cntrl->list_lock); |
| list_add_tail(&item->node, &mhi_cntrl->st_transition_list); |
| spin_unlock(&mhi_cntrl->list_lock); |
| |
| queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work); |
| } |
| |
| /* |
| * Interrupt handler that services interrupts raised by the host writing to |
| * MHICTRL and Command ring doorbell (CRDB) registers for state change and |
| * channel interrupts. |
| */ |
| static irqreturn_t mhi_ep_irq(int irq, void *data) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = data; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| enum mhi_state state; |
| u32 int_value; |
| bool mhi_reset; |
| |
| /* Acknowledge the ctrl interrupt */ |
| int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS); |
| mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value); |
| |
| /* Check for ctrl interrupt */ |
| if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) { |
| dev_dbg(dev, "Processing ctrl interrupt\n"); |
| mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); |
| if (mhi_reset) { |
| dev_info(dev, "Host triggered MHI reset!\n"); |
| disable_irq_nosync(mhi_cntrl->irq); |
| schedule_work(&mhi_cntrl->reset_work); |
| return IRQ_HANDLED; |
| } |
| |
| mhi_ep_process_ctrl_interrupt(mhi_cntrl, state); |
| } |
| |
| /* Check for command doorbell interrupt */ |
| if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) { |
| dev_dbg(dev, "Processing command doorbell interrupt\n"); |
| queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work); |
| } |
| |
| /* Check for channel interrupts */ |
| mhi_ep_check_channel_interrupt(mhi_cntrl); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct mhi_ep_ring *ch_ring, *ev_ring; |
| struct mhi_result result = {}; |
| struct mhi_ep_chan *mhi_chan; |
| int i; |
| |
| /* Stop all the channels */ |
| for (i = 0; i < mhi_cntrl->max_chan; i++) { |
| mhi_chan = &mhi_cntrl->mhi_chan[i]; |
| if (!mhi_chan->ring.started) |
| continue; |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Send channel disconnect status to client drivers */ |
| if (mhi_chan->xfer_cb) { |
| result.transaction_status = -ENOTCONN; |
| result.bytes_xferd = 0; |
| mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); |
| } |
| |
| mhi_chan->state = MHI_CH_STATE_DISABLED; |
| mutex_unlock(&mhi_chan->lock); |
| } |
| |
| flush_workqueue(mhi_cntrl->wq); |
| |
| /* Destroy devices associated with all channels */ |
| device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device); |
| |
| /* Stop and reset the transfer rings */ |
| for (i = 0; i < mhi_cntrl->max_chan; i++) { |
| mhi_chan = &mhi_cntrl->mhi_chan[i]; |
| if (!mhi_chan->ring.started) |
| continue; |
| |
| ch_ring = &mhi_cntrl->mhi_chan[i].ring; |
| mutex_lock(&mhi_chan->lock); |
| mhi_ep_ring_reset(mhi_cntrl, ch_ring); |
| mutex_unlock(&mhi_chan->lock); |
| } |
| |
| /* Stop and reset the event rings */ |
| for (i = 0; i < mhi_cntrl->event_rings; i++) { |
| ev_ring = &mhi_cntrl->mhi_event[i].ring; |
| if (!ev_ring->started) |
| continue; |
| |
| mutex_lock(&mhi_cntrl->event_lock); |
| mhi_ep_ring_reset(mhi_cntrl, ev_ring); |
| mutex_unlock(&mhi_cntrl->event_lock); |
| } |
| |
| /* Stop and reset the command ring */ |
| mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring); |
| |
| mhi_ep_free_host_cfg(mhi_cntrl); |
| mhi_ep_mmio_mask_interrupts(mhi_cntrl); |
| |
| mhi_cntrl->enabled = false; |
| } |
| |
| static void mhi_ep_reset_worker(struct work_struct *work) |
| { |
| struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work); |
| enum mhi_state cur_state; |
| |
| mhi_ep_power_down(mhi_cntrl); |
| |
| mutex_lock(&mhi_cntrl->state_lock); |
| |
| /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */ |
| mhi_ep_mmio_reset(mhi_cntrl); |
| cur_state = mhi_cntrl->mhi_state; |
| |
| /* |
| * Only proceed further if the reset is due to SYS_ERR. The host will |
| * issue reset during shutdown also and we don't need to do re-init in |
| * that case. |
| */ |
| if (cur_state == MHI_STATE_SYS_ERR) |
| mhi_ep_power_up(mhi_cntrl); |
| |
| mutex_unlock(&mhi_cntrl->state_lock); |
| } |
| |
| /* |
| * We don't need to do anything special other than setting the MHI SYS_ERR |
| * state. The host will reset all contexts and issue MHI RESET so that we |
| * could also recover from error state. |
| */ |
| void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret; |
| |
| ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); |
| if (ret) |
| return; |
| |
| /* Signal host that the device went to SYS_ERR state */ |
| ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR); |
| if (ret) |
| dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret); |
| } |
| |
| int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret, i; |
| |
| /* |
| * Mask all interrupts until the state machine is ready. Interrupts will |
| * be enabled later with mhi_ep_enable(). |
| */ |
| mhi_ep_mmio_mask_interrupts(mhi_cntrl); |
| mhi_ep_mmio_init(mhi_cntrl); |
| |
| mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings, |
| sizeof(*mhi_cntrl->mhi_event), |
| GFP_KERNEL); |
| if (!mhi_cntrl->mhi_event) |
| return -ENOMEM; |
| |
| /* Initialize command, channel and event rings */ |
| mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0); |
| for (i = 0; i < mhi_cntrl->max_chan; i++) |
| mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i); |
| for (i = 0; i < mhi_cntrl->event_rings; i++) |
| mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i); |
| |
| mhi_cntrl->mhi_state = MHI_STATE_RESET; |
| |
| /* Set AMSS EE before signaling ready state */ |
| mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); |
| |
| /* All set, notify the host that we are ready */ |
| ret = mhi_ep_set_ready_state(mhi_cntrl); |
| if (ret) |
| goto err_free_event; |
| |
| dev_dbg(dev, "READY state notification sent to the host\n"); |
| |
| ret = mhi_ep_enable(mhi_cntrl); |
| if (ret) { |
| dev_err(dev, "Failed to enable MHI endpoint\n"); |
| goto err_free_event; |
| } |
| |
| enable_irq(mhi_cntrl->irq); |
| mhi_cntrl->enabled = true; |
| |
| return 0; |
| |
| err_free_event: |
| kfree(mhi_cntrl->mhi_event); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_power_up); |
| |
| void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| if (mhi_cntrl->enabled) { |
| mhi_ep_abort_transfer(mhi_cntrl); |
| kfree(mhi_cntrl->mhi_event); |
| disable_irq(mhi_cntrl->irq); |
| } |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_power_down); |
| |
| void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct mhi_ep_chan *mhi_chan; |
| u32 tmp; |
| int i; |
| |
| for (i = 0; i < mhi_cntrl->max_chan; i++) { |
| mhi_chan = &mhi_cntrl->mhi_chan[i]; |
| |
| if (!mhi_chan->mhi_dev) |
| continue; |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Skip if the channel is not currently running */ |
| tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); |
| if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) { |
| mutex_unlock(&mhi_chan->lock); |
| continue; |
| } |
| |
| dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n"); |
| /* Set channel state to SUSPENDED */ |
| mhi_chan->state = MHI_CH_STATE_SUSPENDED; |
| tmp &= ~CHAN_CTX_CHSTATE_MASK; |
| tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED); |
| mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); |
| mutex_unlock(&mhi_chan->lock); |
| } |
| } |
| |
| void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct mhi_ep_chan *mhi_chan; |
| u32 tmp; |
| int i; |
| |
| for (i = 0; i < mhi_cntrl->max_chan; i++) { |
| mhi_chan = &mhi_cntrl->mhi_chan[i]; |
| |
| if (!mhi_chan->mhi_dev) |
| continue; |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Skip if the channel is not currently suspended */ |
| tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); |
| if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) { |
| mutex_unlock(&mhi_chan->lock); |
| continue; |
| } |
| |
| dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n"); |
| /* Set channel state to RUNNING */ |
| mhi_chan->state = MHI_CH_STATE_RUNNING; |
| tmp &= ~CHAN_CTX_CHSTATE_MASK; |
| tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); |
| mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); |
| mutex_unlock(&mhi_chan->lock); |
| } |
| } |
| |
| static void mhi_ep_release_device(struct device *dev) |
| { |
| struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); |
| |
| if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) |
| mhi_dev->mhi_cntrl->mhi_dev = NULL; |
| |
| /* |
| * We need to set the mhi_chan->mhi_dev to NULL here since the MHI |
| * devices for the channels will only get created in mhi_ep_create_device() |
| * if the mhi_dev associated with it is NULL. |
| */ |
| if (mhi_dev->ul_chan) |
| mhi_dev->ul_chan->mhi_dev = NULL; |
| |
| if (mhi_dev->dl_chan) |
| mhi_dev->dl_chan->mhi_dev = NULL; |
| |
| kfree(mhi_dev); |
| } |
| |
| static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl, |
| enum mhi_device_type dev_type) |
| { |
| struct mhi_ep_device *mhi_dev; |
| struct device *dev; |
| |
| mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); |
| if (!mhi_dev) |
| return ERR_PTR(-ENOMEM); |
| |
| dev = &mhi_dev->dev; |
| device_initialize(dev); |
| dev->bus = &mhi_ep_bus_type; |
| dev->release = mhi_ep_release_device; |
| |
| /* Controller device is always allocated first */ |
| if (dev_type == MHI_DEVICE_CONTROLLER) |
| /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */ |
| dev->parent = mhi_cntrl->cntrl_dev; |
| else |
| /* for MHI client devices, parent is the MHI controller device */ |
| dev->parent = &mhi_cntrl->mhi_dev->dev; |
| |
| mhi_dev->mhi_cntrl = mhi_cntrl; |
| mhi_dev->dev_type = dev_type; |
| |
| return mhi_dev; |
| } |
| |
| /* |
| * MHI channels are always defined in pairs with UL as the even numbered |
| * channel and DL as odd numbered one. This function gets UL channel (primary) |
| * as the ch_id and always looks after the next entry in channel list for |
| * the corresponding DL channel (secondary). |
| */ |
| static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id) |
| { |
| struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; |
| struct device *dev = mhi_cntrl->cntrl_dev; |
| struct mhi_ep_device *mhi_dev; |
| int ret; |
| |
| /* Check if the channel name is same for both UL and DL */ |
| if (strcmp(mhi_chan->name, mhi_chan[1].name)) { |
| dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n", |
| mhi_chan->name, mhi_chan[1].name); |
| return -EINVAL; |
| } |
| |
| mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER); |
| if (IS_ERR(mhi_dev)) |
| return PTR_ERR(mhi_dev); |
| |
| /* Configure primary channel */ |
| mhi_dev->ul_chan = mhi_chan; |
| get_device(&mhi_dev->dev); |
| mhi_chan->mhi_dev = mhi_dev; |
| |
| /* Configure secondary channel as well */ |
| mhi_chan++; |
| mhi_dev->dl_chan = mhi_chan; |
| get_device(&mhi_dev->dev); |
| mhi_chan->mhi_dev = mhi_dev; |
| |
| /* Channel name is same for both UL and DL */ |
| mhi_dev->name = mhi_chan->name; |
| ret = dev_set_name(&mhi_dev->dev, "%s_%s", |
| dev_name(&mhi_cntrl->mhi_dev->dev), |
| mhi_dev->name); |
| if (ret) { |
| put_device(&mhi_dev->dev); |
| return ret; |
| } |
| |
| ret = device_add(&mhi_dev->dev); |
| if (ret) |
| put_device(&mhi_dev->dev); |
| |
| return ret; |
| } |
| |
| static int mhi_ep_destroy_device(struct device *dev, void *data) |
| { |
| struct mhi_ep_device *mhi_dev; |
| struct mhi_ep_cntrl *mhi_cntrl; |
| struct mhi_ep_chan *ul_chan, *dl_chan; |
| |
| if (dev->bus != &mhi_ep_bus_type) |
| return 0; |
| |
| mhi_dev = to_mhi_ep_device(dev); |
| mhi_cntrl = mhi_dev->mhi_cntrl; |
| |
| /* Only destroy devices created for channels */ |
| if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) |
| return 0; |
| |
| ul_chan = mhi_dev->ul_chan; |
| dl_chan = mhi_dev->dl_chan; |
| |
| if (ul_chan) |
| put_device(&ul_chan->mhi_dev->dev); |
| |
| if (dl_chan) |
| put_device(&dl_chan->mhi_dev->dev); |
| |
| dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n", |
| mhi_dev->name); |
| |
| /* Notify the client and remove the device from MHI bus */ |
| device_del(dev); |
| put_device(dev); |
| |
| return 0; |
| } |
| |
| static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl, |
| const struct mhi_ep_cntrl_config *config) |
| { |
| const struct mhi_ep_channel_config *ch_cfg; |
| struct device *dev = mhi_cntrl->cntrl_dev; |
| u32 chan, i; |
| int ret = -EINVAL; |
| |
| mhi_cntrl->max_chan = config->max_channels; |
| |
| /* |
| * Allocate max_channels supported by the MHI endpoint and populate |
| * only the defined channels |
| */ |
| mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan), |
| GFP_KERNEL); |
| if (!mhi_cntrl->mhi_chan) |
| return -ENOMEM; |
| |
| for (i = 0; i < config->num_channels; i++) { |
| struct mhi_ep_chan *mhi_chan; |
| |
| ch_cfg = &config->ch_cfg[i]; |
| |
| chan = ch_cfg->num; |
| if (chan >= mhi_cntrl->max_chan) { |
| dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n", |
| chan, mhi_cntrl->max_chan); |
| goto error_chan_cfg; |
| } |
| |
| /* Bi-directional and direction less channels are not supported */ |
| if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) { |
| dev_err(dev, "Invalid direction (%u) for channel (%u)\n", |
| ch_cfg->dir, chan); |
| goto error_chan_cfg; |
| } |
| |
| mhi_chan = &mhi_cntrl->mhi_chan[chan]; |
| mhi_chan->name = ch_cfg->name; |
| mhi_chan->chan = chan; |
| mhi_chan->dir = ch_cfg->dir; |
| mutex_init(&mhi_chan->lock); |
| } |
| |
| return 0; |
| |
| error_chan_cfg: |
| kfree(mhi_cntrl->mhi_chan); |
| |
| return ret; |
| } |
| |
| /* |
| * Allocate channel and command rings here. Event rings will be allocated |
| * in mhi_ep_power_up() as the config comes from the host. |
| */ |
| int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl, |
| const struct mhi_ep_cntrl_config *config) |
| { |
| struct mhi_ep_device *mhi_dev; |
| int ret; |
| |
| if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq) |
| return -EINVAL; |
| |
| if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync || |
| !mhi_cntrl->read_async || !mhi_cntrl->write_async) |
| return -EINVAL; |
| |
| ret = mhi_ep_chan_init(mhi_cntrl, config); |
| if (ret) |
| return ret; |
| |
| mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); |
| if (!mhi_cntrl->mhi_cmd) { |
| ret = -ENOMEM; |
| goto err_free_ch; |
| } |
| |
| mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el", |
| sizeof(struct mhi_ring_element), 0, |
| 0, NULL); |
| if (!mhi_cntrl->ev_ring_el_cache) { |
| ret = -ENOMEM; |
| goto err_free_cmd; |
| } |
| |
| mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0, |
| 0, NULL); |
| if (!mhi_cntrl->tre_buf_cache) { |
| ret = -ENOMEM; |
| goto err_destroy_ev_ring_el_cache; |
| } |
| |
| mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item", |
| sizeof(struct mhi_ep_ring_item), 0, |
| 0, NULL); |
| if (!mhi_cntrl->ring_item_cache) { |
| ret = -ENOMEM; |
| goto err_destroy_tre_buf_cache; |
| } |
| |
| INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker); |
| INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker); |
| INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker); |
| INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker); |
| |
| mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0); |
| if (!mhi_cntrl->wq) { |
| ret = -ENOMEM; |
| goto err_destroy_ring_item_cache; |
| } |
| |
| INIT_LIST_HEAD(&mhi_cntrl->st_transition_list); |
| INIT_LIST_HEAD(&mhi_cntrl->ch_db_list); |
| spin_lock_init(&mhi_cntrl->list_lock); |
| mutex_init(&mhi_cntrl->state_lock); |
| mutex_init(&mhi_cntrl->event_lock); |
| |
| /* Set MHI version and AMSS EE before enumeration */ |
| mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version); |
| mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); |
| |
| /* Set controller index */ |
| ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL); |
| if (ret < 0) |
| goto err_destroy_wq; |
| |
| mhi_cntrl->index = ret; |
| |
| irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN); |
| ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH, |
| "doorbell_irq", mhi_cntrl); |
| if (ret) { |
| dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n"); |
| goto err_ida_free; |
| } |
| |
| /* Allocate the controller device */ |
| mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER); |
| if (IS_ERR(mhi_dev)) { |
| dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n"); |
| ret = PTR_ERR(mhi_dev); |
| goto err_free_irq; |
| } |
| |
| ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index); |
| if (ret) |
| goto err_put_dev; |
| |
| mhi_dev->name = dev_name(&mhi_dev->dev); |
| mhi_cntrl->mhi_dev = mhi_dev; |
| |
| ret = device_add(&mhi_dev->dev); |
| if (ret) |
| goto err_put_dev; |
| |
| dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n"); |
| |
| return 0; |
| |
| err_put_dev: |
| put_device(&mhi_dev->dev); |
| err_free_irq: |
| free_irq(mhi_cntrl->irq, mhi_cntrl); |
| err_ida_free: |
| ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); |
| err_destroy_wq: |
| destroy_workqueue(mhi_cntrl->wq); |
| err_destroy_ring_item_cache: |
| kmem_cache_destroy(mhi_cntrl->ring_item_cache); |
| err_destroy_ev_ring_el_cache: |
| kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); |
| err_destroy_tre_buf_cache: |
| kmem_cache_destroy(mhi_cntrl->tre_buf_cache); |
| err_free_cmd: |
| kfree(mhi_cntrl->mhi_cmd); |
| err_free_ch: |
| kfree(mhi_cntrl->mhi_chan); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_register_controller); |
| |
| /* |
| * It is expected that the controller drivers will power down the MHI EP stack |
| * using "mhi_ep_power_down()" before calling this function to unregister themselves. |
| */ |
| void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl) |
| { |
| struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev; |
| |
| destroy_workqueue(mhi_cntrl->wq); |
| |
| free_irq(mhi_cntrl->irq, mhi_cntrl); |
| |
| kmem_cache_destroy(mhi_cntrl->tre_buf_cache); |
| kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); |
| kmem_cache_destroy(mhi_cntrl->ring_item_cache); |
| kfree(mhi_cntrl->mhi_cmd); |
| kfree(mhi_cntrl->mhi_chan); |
| |
| device_del(&mhi_dev->dev); |
| put_device(&mhi_dev->dev); |
| |
| ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller); |
| |
| static int mhi_ep_driver_probe(struct device *dev) |
| { |
| struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); |
| struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); |
| struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan; |
| struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan; |
| |
| ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; |
| dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; |
| |
| return mhi_drv->probe(mhi_dev, mhi_dev->id); |
| } |
| |
| static int mhi_ep_driver_remove(struct device *dev) |
| { |
| struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); |
| struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); |
| struct mhi_result result = {}; |
| struct mhi_ep_chan *mhi_chan; |
| int dir; |
| |
| /* Skip if it is a controller device */ |
| if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) |
| return 0; |
| |
| /* Disconnect the channels associated with the driver */ |
| for (dir = 0; dir < 2; dir++) { |
| mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; |
| |
| if (!mhi_chan) |
| continue; |
| |
| mutex_lock(&mhi_chan->lock); |
| /* Send channel disconnect status to the client driver */ |
| if (mhi_chan->xfer_cb) { |
| result.transaction_status = -ENOTCONN; |
| result.bytes_xferd = 0; |
| mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); |
| } |
| |
| mhi_chan->state = MHI_CH_STATE_DISABLED; |
| mhi_chan->xfer_cb = NULL; |
| mutex_unlock(&mhi_chan->lock); |
| } |
| |
| /* Remove the client driver now */ |
| mhi_drv->remove(mhi_dev); |
| |
| return 0; |
| } |
| |
| int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner) |
| { |
| struct device_driver *driver = &mhi_drv->driver; |
| |
| if (!mhi_drv->probe || !mhi_drv->remove) |
| return -EINVAL; |
| |
| /* Client drivers should have callbacks defined for both channels */ |
| if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb) |
| return -EINVAL; |
| |
| driver->bus = &mhi_ep_bus_type; |
| driver->owner = owner; |
| driver->probe = mhi_ep_driver_probe; |
| driver->remove = mhi_ep_driver_remove; |
| |
| return driver_register(driver); |
| } |
| EXPORT_SYMBOL_GPL(__mhi_ep_driver_register); |
| |
| void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv) |
| { |
| driver_unregister(&mhi_drv->driver); |
| } |
| EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister); |
| |
| static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| { |
| const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); |
| |
| return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT, |
| mhi_dev->name); |
| } |
| |
| static int mhi_ep_match(struct device *dev, const struct device_driver *drv) |
| { |
| struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); |
| const struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv); |
| const struct mhi_device_id *id; |
| |
| /* |
| * If the device is a controller type then there is no client driver |
| * associated with it |
| */ |
| if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) |
| return 0; |
| |
| for (id = mhi_drv->id_table; id->chan[0]; id++) |
| if (!strcmp(mhi_dev->name, id->chan)) { |
| mhi_dev->id = id; |
| return 1; |
| } |
| |
| return 0; |
| }; |
| |
| struct bus_type mhi_ep_bus_type = { |
| .name = "mhi_ep", |
| .dev_name = "mhi_ep", |
| .match = mhi_ep_match, |
| .uevent = mhi_ep_uevent, |
| }; |
| |
| static int __init mhi_ep_init(void) |
| { |
| return bus_register(&mhi_ep_bus_type); |
| } |
| |
| static void __exit mhi_ep_exit(void) |
| { |
| bus_unregister(&mhi_ep_bus_type); |
| } |
| |
| postcore_initcall(mhi_ep_init); |
| module_exit(mhi_ep_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("MHI Bus Endpoint stack"); |
| MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); |