blob: c13b02caf8c32a97a27446ec035a102692d49c81 [file] [log] [blame]
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*
*/
#include <linux/debugfs.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/reboot.h>
#include <linux/syscalls.h>
#include <linux/pm_runtime.h>
#include "amdgpu.h"
#include "amdgpu_ras.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_xgmi.h"
#include "ivsrcid/nbio/irqsrcs_nbif_7_4.h"
#include "atom.h"
static const char *RAS_FS_NAME = "ras";
const char *ras_error_string[] = {
"none",
"parity",
"single_correctable",
"multi_uncorrectable",
"poison",
};
const char *ras_block_string[] = {
"umc",
"sdma",
"gfx",
"mmhub",
"athub",
"pcie_bif",
"hdp",
"xgmi_wafl",
"df",
"smn",
"sem",
"mp0",
"mp1",
"fuse",
};
#define ras_err_str(i) (ras_error_string[ffs(i)])
#define ras_block_str(i) (ras_block_string[i])
#define RAS_DEFAULT_FLAGS (AMDGPU_RAS_FLAG_INIT_BY_VBIOS)
/* inject address is 52 bits */
#define RAS_UMC_INJECT_ADDR_LIMIT (0x1ULL << 52)
/* typical ECC bad page rate(1 bad page per 100MB VRAM) */
#define RAS_BAD_PAGE_RATE (100 * 1024 * 1024ULL)
enum amdgpu_ras_retire_page_reservation {
AMDGPU_RAS_RETIRE_PAGE_RESERVED,
AMDGPU_RAS_RETIRE_PAGE_PENDING,
AMDGPU_RAS_RETIRE_PAGE_FAULT,
};
atomic_t amdgpu_ras_in_intr = ATOMIC_INIT(0);
static bool amdgpu_ras_check_bad_page_unlock(struct amdgpu_ras *con,
uint64_t addr);
static bool amdgpu_ras_check_bad_page(struct amdgpu_device *adev,
uint64_t addr);
void amdgpu_ras_set_error_query_ready(struct amdgpu_device *adev, bool ready)
{
if (adev && amdgpu_ras_get_context(adev))
amdgpu_ras_get_context(adev)->error_query_ready = ready;
}
static bool amdgpu_ras_get_error_query_ready(struct amdgpu_device *adev)
{
if (adev && amdgpu_ras_get_context(adev))
return amdgpu_ras_get_context(adev)->error_query_ready;
return false;
}
static int amdgpu_reserve_page_direct(struct amdgpu_device *adev, uint64_t address)
{
struct ras_err_data err_data = {0, 0, 0, NULL};
struct eeprom_table_record err_rec;
if ((address >= adev->gmc.mc_vram_size) ||
(address >= RAS_UMC_INJECT_ADDR_LIMIT)) {
dev_warn(adev->dev,
"RAS WARN: input address 0x%llx is invalid.\n",
address);
return -EINVAL;
}
if (amdgpu_ras_check_bad_page(adev, address)) {
dev_warn(adev->dev,
"RAS WARN: 0x%llx has already been marked as bad page!\n",
address);
return 0;
}
memset(&err_rec, 0x0, sizeof(struct eeprom_table_record));
err_rec.address = address;
err_rec.retired_page = address >> AMDGPU_GPU_PAGE_SHIFT;
err_rec.ts = (uint64_t)ktime_get_real_seconds();
err_rec.err_type = AMDGPU_RAS_EEPROM_ERR_NON_RECOVERABLE;
err_data.err_addr = &err_rec;
err_data.err_addr_cnt = 1;
if (amdgpu_bad_page_threshold != 0) {
amdgpu_ras_add_bad_pages(adev, err_data.err_addr,
err_data.err_addr_cnt);
amdgpu_ras_save_bad_pages(adev);
}
dev_warn(adev->dev, "WARNING: THIS IS ONLY FOR TEST PURPOSES AND WILL CORRUPT RAS EEPROM\n");
dev_warn(adev->dev, "Clear EEPROM:\n");
dev_warn(adev->dev, " echo 1 > /sys/kernel/debug/dri/0/ras/ras_eeprom_reset\n");
return 0;
}
static ssize_t amdgpu_ras_debugfs_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct ras_manager *obj = (struct ras_manager *)file_inode(f)->i_private;
struct ras_query_if info = {
.head = obj->head,
};
ssize_t s;
char val[128];
if (amdgpu_ras_query_error_status(obj->adev, &info))
return -EINVAL;
s = snprintf(val, sizeof(val), "%s: %lu\n%s: %lu\n",
"ue", info.ue_count,
"ce", info.ce_count);
if (*pos >= s)
return 0;
s -= *pos;
s = min_t(u64, s, size);
if (copy_to_user(buf, &val[*pos], s))
return -EINVAL;
*pos += s;
return s;
}
static const struct file_operations amdgpu_ras_debugfs_ops = {
.owner = THIS_MODULE,
.read = amdgpu_ras_debugfs_read,
.write = NULL,
.llseek = default_llseek
};
static int amdgpu_ras_find_block_id_by_name(const char *name, int *block_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(ras_block_string); i++) {
*block_id = i;
if (strcmp(name, ras_block_str(i)) == 0)
return 0;
}
return -EINVAL;
}
static int amdgpu_ras_debugfs_ctrl_parse_data(struct file *f,
const char __user *buf, size_t size,
loff_t *pos, struct ras_debug_if *data)
{
ssize_t s = min_t(u64, 64, size);
char str[65];
char block_name[33];
char err[9] = "ue";
int op = -1;
int block_id;
uint32_t sub_block;
u64 address, value;
if (*pos)
return -EINVAL;
*pos = size;
memset(str, 0, sizeof(str));
memset(data, 0, sizeof(*data));
if (copy_from_user(str, buf, s))
return -EINVAL;
if (sscanf(str, "disable %32s", block_name) == 1)
op = 0;
else if (sscanf(str, "enable %32s %8s", block_name, err) == 2)
op = 1;
else if (sscanf(str, "inject %32s %8s", block_name, err) == 2)
op = 2;
else if (strstr(str, "retire_page") != NULL)
op = 3;
else if (str[0] && str[1] && str[2] && str[3])
/* ascii string, but commands are not matched. */
return -EINVAL;
if (op != -1) {
if (op == 3) {
if (sscanf(str, "%*s 0x%llx", &address) != 1 &&
sscanf(str, "%*s %llu", &address) != 1)
return -EINVAL;
data->op = op;
data->inject.address = address;
return 0;
}
if (amdgpu_ras_find_block_id_by_name(block_name, &block_id))
return -EINVAL;
data->head.block = block_id;
/* only ue and ce errors are supported */
if (!memcmp("ue", err, 2))
data->head.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
else if (!memcmp("ce", err, 2))
data->head.type = AMDGPU_RAS_ERROR__SINGLE_CORRECTABLE;
else
return -EINVAL;
data->op = op;
if (op == 2) {
if (sscanf(str, "%*s %*s %*s 0x%x 0x%llx 0x%llx",
&sub_block, &address, &value) != 3 &&
sscanf(str, "%*s %*s %*s %u %llu %llu",
&sub_block, &address, &value) != 3)
return -EINVAL;
data->head.sub_block_index = sub_block;
data->inject.address = address;
data->inject.value = value;
}
} else {
if (size < sizeof(*data))
return -EINVAL;
if (copy_from_user(data, buf, sizeof(*data)))
return -EINVAL;
}
return 0;
}
/**
* DOC: AMDGPU RAS debugfs control interface
*
* The control interface accepts struct ras_debug_if which has two members.
*
* First member: ras_debug_if::head or ras_debug_if::inject.
*
* head is used to indicate which IP block will be under control.
*
* head has four members, they are block, type, sub_block_index, name.
* block: which IP will be under control.
* type: what kind of error will be enabled/disabled/injected.
* sub_block_index: some IPs have subcomponets. say, GFX, sDMA.
* name: the name of IP.
*
* inject has two more members than head, they are address, value.
* As their names indicate, inject operation will write the
* value to the address.
*
* The second member: struct ras_debug_if::op.
* It has three kinds of operations.
*
* - 0: disable RAS on the block. Take ::head as its data.
* - 1: enable RAS on the block. Take ::head as its data.
* - 2: inject errors on the block. Take ::inject as its data.
*
* How to use the interface?
*
* In a program
*
* Copy the struct ras_debug_if in your code and initialize it.
* Write the struct to the control interface.
*
* From shell
*
* .. code-block:: bash
*
* echo "disable <block>" > /sys/kernel/debug/dri/<N>/ras/ras_ctrl
* echo "enable <block> <error>" > /sys/kernel/debug/dri/<N>/ras/ras_ctrl
* echo "inject <block> <error> <sub-block> <address> <value> > /sys/kernel/debug/dri/<N>/ras/ras_ctrl
*
* Where N, is the card which you want to affect.
*
* "disable" requires only the block.
* "enable" requires the block and error type.
* "inject" requires the block, error type, address, and value.
*
* The block is one of: umc, sdma, gfx, etc.
* see ras_block_string[] for details
*
* The error type is one of: ue, ce, where,
* ue is multi-uncorrectable
* ce is single-correctable
*
* The sub-block is a the sub-block index, pass 0 if there is no sub-block.
* The address and value are hexadecimal numbers, leading 0x is optional.
*
* For instance,
*
* .. code-block:: bash
*
* echo inject umc ue 0x0 0x0 0x0 > /sys/kernel/debug/dri/0/ras/ras_ctrl
* echo inject umc ce 0 0 0 > /sys/kernel/debug/dri/0/ras/ras_ctrl
* echo disable umc > /sys/kernel/debug/dri/0/ras/ras_ctrl
*
* How to check the result of the operation?
*
* To check disable/enable, see "ras" features at,
* /sys/class/drm/card[0/1/2...]/device/ras/features
*
* To check inject, see the corresponding error count at,
* /sys/class/drm/card[0/1/2...]/device/ras/[gfx|sdma|umc|...]_err_count
*
* .. note::
* Operations are only allowed on blocks which are supported.
* Check the "ras" mask at /sys/module/amdgpu/parameters/ras_mask
* to see which blocks support RAS on a particular asic.
*
*/
static ssize_t amdgpu_ras_debugfs_ctrl_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct ras_debug_if data;
int ret = 0;
if (!amdgpu_ras_get_error_query_ready(adev)) {
dev_warn(adev->dev, "RAS WARN: error injection "
"currently inaccessible\n");
return size;
}
ret = amdgpu_ras_debugfs_ctrl_parse_data(f, buf, size, pos, &data);
if (ret)
return -EINVAL;
if (data.op == 3) {
ret = amdgpu_reserve_page_direct(adev, data.inject.address);
if (!ret)
return size;
else
return ret;
}
if (!amdgpu_ras_is_supported(adev, data.head.block))
return -EINVAL;
switch (data.op) {
case 0:
ret = amdgpu_ras_feature_enable(adev, &data.head, 0);
break;
case 1:
ret = amdgpu_ras_feature_enable(adev, &data.head, 1);
break;
case 2:
if ((data.inject.address >= adev->gmc.mc_vram_size) ||
(data.inject.address >= RAS_UMC_INJECT_ADDR_LIMIT)) {
dev_warn(adev->dev, "RAS WARN: input address "
"0x%llx is invalid.",
data.inject.address);
ret = -EINVAL;
break;
}
/* umc ce/ue error injection for a bad page is not allowed */
if ((data.head.block == AMDGPU_RAS_BLOCK__UMC) &&
amdgpu_ras_check_bad_page(adev, data.inject.address)) {
dev_warn(adev->dev, "RAS WARN: 0x%llx has been marked "
"as bad before error injection!\n",
data.inject.address);
break;
}
/* data.inject.address is offset instead of absolute gpu address */
ret = amdgpu_ras_error_inject(adev, &data.inject);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
return -EINVAL;
return size;
}
/**
* DOC: AMDGPU RAS debugfs EEPROM table reset interface
*
* Some boards contain an EEPROM which is used to persistently store a list of
* bad pages which experiences ECC errors in vram. This interface provides
* a way to reset the EEPROM, e.g., after testing error injection.
*
* Usage:
*
* .. code-block:: bash
*
* echo 1 > ../ras/ras_eeprom_reset
*
* will reset EEPROM table to 0 entries.
*
*/
static ssize_t amdgpu_ras_debugfs_eeprom_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev =
(struct amdgpu_device *)file_inode(f)->i_private;
int ret;
ret = amdgpu_ras_eeprom_reset_table(
&(amdgpu_ras_get_context(adev)->eeprom_control));
if (ret == 1) {
amdgpu_ras_get_context(adev)->flags = RAS_DEFAULT_FLAGS;
return size;
} else {
return -EIO;
}
}
static const struct file_operations amdgpu_ras_debugfs_ctrl_ops = {
.owner = THIS_MODULE,
.read = NULL,
.write = amdgpu_ras_debugfs_ctrl_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_ras_debugfs_eeprom_ops = {
.owner = THIS_MODULE,
.read = NULL,
.write = amdgpu_ras_debugfs_eeprom_write,
.llseek = default_llseek
};
/**
* DOC: AMDGPU RAS sysfs Error Count Interface
*
* It allows the user to read the error count for each IP block on the gpu through
* /sys/class/drm/card[0/1/2...]/device/ras/[gfx/sdma/...]_err_count
*
* It outputs the multiple lines which report the uncorrected (ue) and corrected
* (ce) error counts.
*
* The format of one line is below,
*
* [ce|ue]: count
*
* Example:
*
* .. code-block:: bash
*
* ue: 0
* ce: 1
*
*/
static ssize_t amdgpu_ras_sysfs_read(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ras_manager *obj = container_of(attr, struct ras_manager, sysfs_attr);
struct ras_query_if info = {
.head = obj->head,
};
if (!amdgpu_ras_get_error_query_ready(obj->adev))
return sysfs_emit(buf, "Query currently inaccessible\n");
if (amdgpu_ras_query_error_status(obj->adev, &info))
return -EINVAL;
if (obj->adev->asic_type == CHIP_ALDEBARAN) {
if (amdgpu_ras_reset_error_status(obj->adev, info.head.block))
DRM_WARN("Failed to reset error counter and error status");
}
return sysfs_emit(buf, "%s: %lu\n%s: %lu\n", "ue", info.ue_count,
"ce", info.ce_count);
}
/* obj begin */
#define get_obj(obj) do { (obj)->use++; } while (0)
#define alive_obj(obj) ((obj)->use)
static inline void put_obj(struct ras_manager *obj)
{
if (obj && (--obj->use == 0))
list_del(&obj->node);
if (obj && (obj->use < 0))
DRM_ERROR("RAS ERROR: Unbalance obj(%s) use\n", obj->head.name);
}
/* make one obj and return it. */
static struct ras_manager *amdgpu_ras_create_obj(struct amdgpu_device *adev,
struct ras_common_if *head)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj;
if (!adev->ras_enabled || !con)
return NULL;
if (head->block >= AMDGPU_RAS_BLOCK_COUNT)
return NULL;
obj = &con->objs[head->block];
/* already exist. return obj? */
if (alive_obj(obj))
return NULL;
obj->head = *head;
obj->adev = adev;
list_add(&obj->node, &con->head);
get_obj(obj);
return obj;
}
/* return an obj equal to head, or the first when head is NULL */
struct ras_manager *amdgpu_ras_find_obj(struct amdgpu_device *adev,
struct ras_common_if *head)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj;
int i;
if (!adev->ras_enabled || !con)
return NULL;
if (head) {
if (head->block >= AMDGPU_RAS_BLOCK_COUNT)
return NULL;
obj = &con->objs[head->block];
if (alive_obj(obj)) {
WARN_ON(head->block != obj->head.block);
return obj;
}
} else {
for (i = 0; i < AMDGPU_RAS_BLOCK_COUNT; i++) {
obj = &con->objs[i];
if (alive_obj(obj)) {
WARN_ON(i != obj->head.block);
return obj;
}
}
}
return NULL;
}
/* obj end */
/* feature ctl begin */
static int amdgpu_ras_is_feature_allowed(struct amdgpu_device *adev,
struct ras_common_if *head)
{
return adev->ras_hw_enabled & BIT(head->block);
}
static int amdgpu_ras_is_feature_enabled(struct amdgpu_device *adev,
struct ras_common_if *head)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
return con->features & BIT(head->block);
}
/*
* if obj is not created, then create one.
* set feature enable flag.
*/
static int __amdgpu_ras_feature_enable(struct amdgpu_device *adev,
struct ras_common_if *head, int enable)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj = amdgpu_ras_find_obj(adev, head);
/* If hardware does not support ras, then do not create obj.
* But if hardware support ras, we can create the obj.
* Ras framework checks con->hw_supported to see if it need do
* corresponding initialization.
* IP checks con->support to see if it need disable ras.
*/
if (!amdgpu_ras_is_feature_allowed(adev, head))
return 0;
if (!(!!enable ^ !!amdgpu_ras_is_feature_enabled(adev, head)))
return 0;
if (enable) {
if (!obj) {
obj = amdgpu_ras_create_obj(adev, head);
if (!obj)
return -EINVAL;
} else {
/* In case we create obj somewhere else */
get_obj(obj);
}
con->features |= BIT(head->block);
} else {
if (obj && amdgpu_ras_is_feature_enabled(adev, head)) {
con->features &= ~BIT(head->block);
put_obj(obj);
}
}
return 0;
}
/* wrapper of psp_ras_enable_features */
int amdgpu_ras_feature_enable(struct amdgpu_device *adev,
struct ras_common_if *head, bool enable)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
union ta_ras_cmd_input *info;
int ret;
if (!con)
return -EINVAL;
info = kzalloc(sizeof(union ta_ras_cmd_input), GFP_KERNEL);
if (!info)
return -ENOMEM;
if (!enable) {
info->disable_features = (struct ta_ras_disable_features_input) {
.block_id = amdgpu_ras_block_to_ta(head->block),
.error_type = amdgpu_ras_error_to_ta(head->type),
};
} else {
info->enable_features = (struct ta_ras_enable_features_input) {
.block_id = amdgpu_ras_block_to_ta(head->block),
.error_type = amdgpu_ras_error_to_ta(head->type),
};
}
/* Do not enable if it is not allowed. */
WARN_ON(enable && !amdgpu_ras_is_feature_allowed(adev, head));
/* Are we alerady in that state we are going to set? */
if (!(!!enable ^ !!amdgpu_ras_is_feature_enabled(adev, head))) {
ret = 0;
goto out;
}
if (!amdgpu_ras_intr_triggered()) {
ret = psp_ras_enable_features(&adev->psp, info, enable);
if (ret) {
dev_err(adev->dev, "ras %s %s failed %d\n",
enable ? "enable":"disable",
ras_block_str(head->block),
ret);
goto out;
}
}
/* setup the obj */
__amdgpu_ras_feature_enable(adev, head, enable);
ret = 0;
out:
kfree(info);
return ret;
}
/* Only used in device probe stage and called only once. */
int amdgpu_ras_feature_enable_on_boot(struct amdgpu_device *adev,
struct ras_common_if *head, bool enable)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int ret;
if (!con)
return -EINVAL;
if (con->flags & AMDGPU_RAS_FLAG_INIT_BY_VBIOS) {
if (enable) {
/* There is no harm to issue a ras TA cmd regardless of
* the currecnt ras state.
* If current state == target state, it will do nothing
* But sometimes it requests driver to reset and repost
* with error code -EAGAIN.
*/
ret = amdgpu_ras_feature_enable(adev, head, 1);
/* With old ras TA, we might fail to enable ras.
* Log it and just setup the object.
* TODO need remove this WA in the future.
*/
if (ret == -EINVAL) {
ret = __amdgpu_ras_feature_enable(adev, head, 1);
if (!ret)
dev_info(adev->dev,
"RAS INFO: %s setup object\n",
ras_block_str(head->block));
}
} else {
/* setup the object then issue a ras TA disable cmd.*/
ret = __amdgpu_ras_feature_enable(adev, head, 1);
if (ret)
return ret;
/* gfx block ras dsiable cmd must send to ras-ta */
if (head->block == AMDGPU_RAS_BLOCK__GFX)
con->features |= BIT(head->block);
ret = amdgpu_ras_feature_enable(adev, head, 0);
/* clean gfx block ras features flag */
if (adev->ras_enabled && head->block == AMDGPU_RAS_BLOCK__GFX)
con->features &= ~BIT(head->block);
}
} else
ret = amdgpu_ras_feature_enable(adev, head, enable);
return ret;
}
static int amdgpu_ras_disable_all_features(struct amdgpu_device *adev,
bool bypass)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj, *tmp;
list_for_each_entry_safe(obj, tmp, &con->head, node) {
/* bypass psp.
* aka just release the obj and corresponding flags
*/
if (bypass) {
if (__amdgpu_ras_feature_enable(adev, &obj->head, 0))
break;
} else {
if (amdgpu_ras_feature_enable(adev, &obj->head, 0))
break;
}
}
return con->features;
}
static int amdgpu_ras_enable_all_features(struct amdgpu_device *adev,
bool bypass)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int ras_block_count = AMDGPU_RAS_BLOCK_COUNT;
int i;
const enum amdgpu_ras_error_type default_ras_type =
AMDGPU_RAS_ERROR__NONE;
for (i = 0; i < ras_block_count; i++) {
struct ras_common_if head = {
.block = i,
.type = default_ras_type,
.sub_block_index = 0,
};
strcpy(head.name, ras_block_str(i));
if (bypass) {
/*
* bypass psp. vbios enable ras for us.
* so just create the obj
*/
if (__amdgpu_ras_feature_enable(adev, &head, 1))
break;
} else {
if (amdgpu_ras_feature_enable(adev, &head, 1))
break;
}
}
return con->features;
}
/* feature ctl end */
/* query/inject/cure begin */
int amdgpu_ras_query_error_status(struct amdgpu_device *adev,
struct ras_query_if *info)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &info->head);
struct ras_err_data err_data = {0, 0, 0, NULL};
int i;
if (!obj)
return -EINVAL;
switch (info->head.block) {
case AMDGPU_RAS_BLOCK__UMC:
if (adev->umc.ras_funcs &&
adev->umc.ras_funcs->query_ras_error_count)
adev->umc.ras_funcs->query_ras_error_count(adev, &err_data);
/* umc query_ras_error_address is also responsible for clearing
* error status
*/
if (adev->umc.ras_funcs &&
adev->umc.ras_funcs->query_ras_error_address)
adev->umc.ras_funcs->query_ras_error_address(adev, &err_data);
break;
case AMDGPU_RAS_BLOCK__SDMA:
if (adev->sdma.funcs->query_ras_error_count) {
for (i = 0; i < adev->sdma.num_instances; i++)
adev->sdma.funcs->query_ras_error_count(adev, i,
&err_data);
}
break;
case AMDGPU_RAS_BLOCK__GFX:
if (adev->gfx.ras_funcs &&
adev->gfx.ras_funcs->query_ras_error_count)
adev->gfx.ras_funcs->query_ras_error_count(adev, &err_data);
if (adev->gfx.ras_funcs &&
adev->gfx.ras_funcs->query_ras_error_status)
adev->gfx.ras_funcs->query_ras_error_status(adev);
break;
case AMDGPU_RAS_BLOCK__MMHUB:
if (adev->mmhub.ras_funcs &&
adev->mmhub.ras_funcs->query_ras_error_count)
adev->mmhub.ras_funcs->query_ras_error_count(adev, &err_data);
if (adev->mmhub.ras_funcs &&
adev->mmhub.ras_funcs->query_ras_error_status)
adev->mmhub.ras_funcs->query_ras_error_status(adev);
break;
case AMDGPU_RAS_BLOCK__PCIE_BIF:
if (adev->nbio.ras_funcs &&
adev->nbio.ras_funcs->query_ras_error_count)
adev->nbio.ras_funcs->query_ras_error_count(adev, &err_data);
break;
case AMDGPU_RAS_BLOCK__XGMI_WAFL:
if (adev->gmc.xgmi.ras_funcs &&
adev->gmc.xgmi.ras_funcs->query_ras_error_count)
adev->gmc.xgmi.ras_funcs->query_ras_error_count(adev, &err_data);
break;
case AMDGPU_RAS_BLOCK__HDP:
if (adev->hdp.ras_funcs &&
adev->hdp.ras_funcs->query_ras_error_count)
adev->hdp.ras_funcs->query_ras_error_count(adev, &err_data);
break;
default:
break;
}
obj->err_data.ue_count += err_data.ue_count;
obj->err_data.ce_count += err_data.ce_count;
info->ue_count = obj->err_data.ue_count;
info->ce_count = obj->err_data.ce_count;
if (err_data.ce_count) {
if (adev->smuio.funcs &&
adev->smuio.funcs->get_socket_id &&
adev->smuio.funcs->get_die_id) {
dev_info(adev->dev, "socket: %d, die: %d "
"%ld correctable hardware errors "
"detected in %s block, no user "
"action is needed.\n",
adev->smuio.funcs->get_socket_id(adev),
adev->smuio.funcs->get_die_id(adev),
obj->err_data.ce_count,
ras_block_str(info->head.block));
} else {
dev_info(adev->dev, "%ld correctable hardware errors "
"detected in %s block, no user "
"action is needed.\n",
obj->err_data.ce_count,
ras_block_str(info->head.block));
}
}
if (err_data.ue_count) {
if (adev->smuio.funcs &&
adev->smuio.funcs->get_socket_id &&
adev->smuio.funcs->get_die_id) {
dev_info(adev->dev, "socket: %d, die: %d "
"%ld uncorrectable hardware errors "
"detected in %s block\n",
adev->smuio.funcs->get_socket_id(adev),
adev->smuio.funcs->get_die_id(adev),
obj->err_data.ue_count,
ras_block_str(info->head.block));
} else {
dev_info(adev->dev, "%ld uncorrectable hardware errors "
"detected in %s block\n",
obj->err_data.ue_count,
ras_block_str(info->head.block));
}
}
return 0;
}
int amdgpu_ras_reset_error_status(struct amdgpu_device *adev,
enum amdgpu_ras_block block)
{
if (!amdgpu_ras_is_supported(adev, block))
return -EINVAL;
switch (block) {
case AMDGPU_RAS_BLOCK__GFX:
if (adev->gfx.ras_funcs &&
adev->gfx.ras_funcs->reset_ras_error_count)
adev->gfx.ras_funcs->reset_ras_error_count(adev);
if (adev->gfx.ras_funcs &&
adev->gfx.ras_funcs->reset_ras_error_status)
adev->gfx.ras_funcs->reset_ras_error_status(adev);
break;
case AMDGPU_RAS_BLOCK__MMHUB:
if (adev->mmhub.ras_funcs &&
adev->mmhub.ras_funcs->reset_ras_error_count)
adev->mmhub.ras_funcs->reset_ras_error_count(adev);
if (adev->mmhub.ras_funcs &&
adev->mmhub.ras_funcs->reset_ras_error_status)
adev->mmhub.ras_funcs->reset_ras_error_status(adev);
break;
case AMDGPU_RAS_BLOCK__SDMA:
if (adev->sdma.funcs->reset_ras_error_count)
adev->sdma.funcs->reset_ras_error_count(adev);
break;
case AMDGPU_RAS_BLOCK__HDP:
if (adev->hdp.ras_funcs &&
adev->hdp.ras_funcs->reset_ras_error_count)
adev->hdp.ras_funcs->reset_ras_error_count(adev);
break;
default:
break;
}
return 0;
}
/* Trigger XGMI/WAFL error */
static int amdgpu_ras_error_inject_xgmi(struct amdgpu_device *adev,
struct ta_ras_trigger_error_input *block_info)
{
int ret;
if (amdgpu_dpm_set_df_cstate(adev, DF_CSTATE_DISALLOW))
dev_warn(adev->dev, "Failed to disallow df cstate");
if (amdgpu_dpm_allow_xgmi_power_down(adev, false))
dev_warn(adev->dev, "Failed to disallow XGMI power down");
ret = psp_ras_trigger_error(&adev->psp, block_info);
if (amdgpu_ras_intr_triggered())
return ret;
if (amdgpu_dpm_allow_xgmi_power_down(adev, true))
dev_warn(adev->dev, "Failed to allow XGMI power down");
if (amdgpu_dpm_set_df_cstate(adev, DF_CSTATE_ALLOW))
dev_warn(adev->dev, "Failed to allow df cstate");
return ret;
}
/* wrapper of psp_ras_trigger_error */
int amdgpu_ras_error_inject(struct amdgpu_device *adev,
struct ras_inject_if *info)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &info->head);
struct ta_ras_trigger_error_input block_info = {
.block_id = amdgpu_ras_block_to_ta(info->head.block),
.inject_error_type = amdgpu_ras_error_to_ta(info->head.type),
.sub_block_index = info->head.sub_block_index,
.address = info->address,
.value = info->value,
};
int ret = 0;
if (!obj)
return -EINVAL;
/* Calculate XGMI relative offset */
if (adev->gmc.xgmi.num_physical_nodes > 1) {
block_info.address =
amdgpu_xgmi_get_relative_phy_addr(adev,
block_info.address);
}
switch (info->head.block) {
case AMDGPU_RAS_BLOCK__GFX:
if (adev->gfx.ras_funcs &&
adev->gfx.ras_funcs->ras_error_inject)
ret = adev->gfx.ras_funcs->ras_error_inject(adev, info);
else
ret = -EINVAL;
break;
case AMDGPU_RAS_BLOCK__UMC:
case AMDGPU_RAS_BLOCK__SDMA:
case AMDGPU_RAS_BLOCK__MMHUB:
case AMDGPU_RAS_BLOCK__PCIE_BIF:
ret = psp_ras_trigger_error(&adev->psp, &block_info);
break;
case AMDGPU_RAS_BLOCK__XGMI_WAFL:
ret = amdgpu_ras_error_inject_xgmi(adev, &block_info);
break;
default:
dev_info(adev->dev, "%s error injection is not supported yet\n",
ras_block_str(info->head.block));
ret = -EINVAL;
}
if (ret)
dev_err(adev->dev, "ras inject %s failed %d\n",
ras_block_str(info->head.block), ret);
return ret;
}
/* get the total error counts on all IPs */
void amdgpu_ras_query_error_count(struct amdgpu_device *adev,
unsigned long *ce_count,
unsigned long *ue_count)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj;
unsigned long ce, ue;
if (!adev->ras_enabled || !con)
return;
ce = 0;
ue = 0;
list_for_each_entry(obj, &con->head, node) {
struct ras_query_if info = {
.head = obj->head,
};
if (amdgpu_ras_query_error_status(adev, &info))
return;
ce += info.ce_count;
ue += info.ue_count;
}
if (ce_count)
*ce_count = ce;
if (ue_count)
*ue_count = ue;
}
/* query/inject/cure end */
/* sysfs begin */
static int amdgpu_ras_badpages_read(struct amdgpu_device *adev,
struct ras_badpage **bps, unsigned int *count);
static char *amdgpu_ras_badpage_flags_str(unsigned int flags)
{
switch (flags) {
case AMDGPU_RAS_RETIRE_PAGE_RESERVED:
return "R";
case AMDGPU_RAS_RETIRE_PAGE_PENDING:
return "P";
case AMDGPU_RAS_RETIRE_PAGE_FAULT:
default:
return "F";
}
}
/**
* DOC: AMDGPU RAS sysfs gpu_vram_bad_pages Interface
*
* It allows user to read the bad pages of vram on the gpu through
* /sys/class/drm/card[0/1/2...]/device/ras/gpu_vram_bad_pages
*
* It outputs multiple lines, and each line stands for one gpu page.
*
* The format of one line is below,
* gpu pfn : gpu page size : flags
*
* gpu pfn and gpu page size are printed in hex format.
* flags can be one of below character,
*
* R: reserved, this gpu page is reserved and not able to use.
*
* P: pending for reserve, this gpu page is marked as bad, will be reserved
* in next window of page_reserve.
*
* F: unable to reserve. this gpu page can't be reserved due to some reasons.
*
* Examples:
*
* .. code-block:: bash
*
* 0x00000001 : 0x00001000 : R
* 0x00000002 : 0x00001000 : P
*
*/
static ssize_t amdgpu_ras_sysfs_badpages_read(struct file *f,
struct kobject *kobj, struct bin_attribute *attr,
char *buf, loff_t ppos, size_t count)
{
struct amdgpu_ras *con =
container_of(attr, struct amdgpu_ras, badpages_attr);
struct amdgpu_device *adev = con->adev;
const unsigned int element_size =
sizeof("0xabcdabcd : 0x12345678 : R\n") - 1;
unsigned int start = div64_ul(ppos + element_size - 1, element_size);
unsigned int end = div64_ul(ppos + count - 1, element_size);
ssize_t s = 0;
struct ras_badpage *bps = NULL;
unsigned int bps_count = 0;
memset(buf, 0, count);
if (amdgpu_ras_badpages_read(adev, &bps, &bps_count))
return 0;
for (; start < end && start < bps_count; start++)
s += scnprintf(&buf[s], element_size + 1,
"0x%08x : 0x%08x : %1s\n",
bps[start].bp,
bps[start].size,
amdgpu_ras_badpage_flags_str(bps[start].flags));
kfree(bps);
return s;
}
static ssize_t amdgpu_ras_sysfs_features_read(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct amdgpu_ras *con =
container_of(attr, struct amdgpu_ras, features_attr);
return scnprintf(buf, PAGE_SIZE, "feature mask: 0x%x\n", con->features);
}
static void amdgpu_ras_sysfs_remove_bad_page_node(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
sysfs_remove_file_from_group(&adev->dev->kobj,
&con->badpages_attr.attr,
RAS_FS_NAME);
}
static int amdgpu_ras_sysfs_remove_feature_node(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct attribute *attrs[] = {
&con->features_attr.attr,
NULL
};
struct attribute_group group = {
.name = RAS_FS_NAME,
.attrs = attrs,
};
sysfs_remove_group(&adev->dev->kobj, &group);
return 0;
}
int amdgpu_ras_sysfs_create(struct amdgpu_device *adev,
struct ras_fs_if *head)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &head->head);
if (!obj || obj->attr_inuse)
return -EINVAL;
get_obj(obj);
memcpy(obj->fs_data.sysfs_name,
head->sysfs_name,
sizeof(obj->fs_data.sysfs_name));
obj->sysfs_attr = (struct device_attribute){
.attr = {
.name = obj->fs_data.sysfs_name,
.mode = S_IRUGO,
},
.show = amdgpu_ras_sysfs_read,
};
sysfs_attr_init(&obj->sysfs_attr.attr);
if (sysfs_add_file_to_group(&adev->dev->kobj,
&obj->sysfs_attr.attr,
RAS_FS_NAME)) {
put_obj(obj);
return -EINVAL;
}
obj->attr_inuse = 1;
return 0;
}
int amdgpu_ras_sysfs_remove(struct amdgpu_device *adev,
struct ras_common_if *head)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, head);
if (!obj || !obj->attr_inuse)
return -EINVAL;
sysfs_remove_file_from_group(&adev->dev->kobj,
&obj->sysfs_attr.attr,
RAS_FS_NAME);
obj->attr_inuse = 0;
put_obj(obj);
return 0;
}
static int amdgpu_ras_sysfs_remove_all(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj, *tmp;
list_for_each_entry_safe(obj, tmp, &con->head, node) {
amdgpu_ras_sysfs_remove(adev, &obj->head);
}
if (amdgpu_bad_page_threshold != 0)
amdgpu_ras_sysfs_remove_bad_page_node(adev);
amdgpu_ras_sysfs_remove_feature_node(adev);
return 0;
}
/* sysfs end */
/**
* DOC: AMDGPU RAS Reboot Behavior for Unrecoverable Errors
*
* Normally when there is an uncorrectable error, the driver will reset
* the GPU to recover. However, in the event of an unrecoverable error,
* the driver provides an interface to reboot the system automatically
* in that event.
*
* The following file in debugfs provides that interface:
* /sys/kernel/debug/dri/[0/1/2...]/ras/auto_reboot
*
* Usage:
*
* .. code-block:: bash
*
* echo true > .../ras/auto_reboot
*
*/
/* debugfs begin */
static struct dentry *amdgpu_ras_debugfs_create_ctrl_node(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct drm_minor *minor = adev_to_drm(adev)->primary;
struct dentry *dir;
dir = debugfs_create_dir(RAS_FS_NAME, minor->debugfs_root);
debugfs_create_file("ras_ctrl", S_IWUGO | S_IRUGO, dir, adev,
&amdgpu_ras_debugfs_ctrl_ops);
debugfs_create_file("ras_eeprom_reset", S_IWUGO | S_IRUGO, dir, adev,
&amdgpu_ras_debugfs_eeprom_ops);
debugfs_create_u32("bad_page_cnt_threshold", 0444, dir,
&con->bad_page_cnt_threshold);
debugfs_create_x32("ras_hw_enabled", 0444, dir, &adev->ras_hw_enabled);
debugfs_create_x32("ras_enabled", 0444, dir, &adev->ras_enabled);
/*
* After one uncorrectable error happens, usually GPU recovery will
* be scheduled. But due to the known problem in GPU recovery failing
* to bring GPU back, below interface provides one direct way to
* user to reboot system automatically in such case within
* ERREVENT_ATHUB_INTERRUPT generated. Normal GPU recovery routine
* will never be called.
*/
debugfs_create_bool("auto_reboot", S_IWUGO | S_IRUGO, dir, &con->reboot);
/*
* User could set this not to clean up hardware's error count register
* of RAS IPs during ras recovery.
*/
debugfs_create_bool("disable_ras_err_cnt_harvest", 0644, dir,
&con->disable_ras_err_cnt_harvest);
return dir;
}
static void amdgpu_ras_debugfs_create(struct amdgpu_device *adev,
struct ras_fs_if *head,
struct dentry *dir)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &head->head);
if (!obj || !dir)
return;
get_obj(obj);
memcpy(obj->fs_data.debugfs_name,
head->debugfs_name,
sizeof(obj->fs_data.debugfs_name));
debugfs_create_file(obj->fs_data.debugfs_name, S_IWUGO | S_IRUGO, dir,
obj, &amdgpu_ras_debugfs_ops);
}
void amdgpu_ras_debugfs_create_all(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct dentry *dir;
struct ras_manager *obj;
struct ras_fs_if fs_info;
/*
* it won't be called in resume path, no need to check
* suspend and gpu reset status
*/
if (!IS_ENABLED(CONFIG_DEBUG_FS) || !con)
return;
dir = amdgpu_ras_debugfs_create_ctrl_node(adev);
list_for_each_entry(obj, &con->head, node) {
if (amdgpu_ras_is_supported(adev, obj->head.block) &&
(obj->attr_inuse == 1)) {
sprintf(fs_info.debugfs_name, "%s_err_inject",
ras_block_str(obj->head.block));
fs_info.head = obj->head;
amdgpu_ras_debugfs_create(adev, &fs_info, dir);
}
}
}
/* debugfs end */
/* ras fs */
static BIN_ATTR(gpu_vram_bad_pages, S_IRUGO,
amdgpu_ras_sysfs_badpages_read, NULL, 0);
static DEVICE_ATTR(features, S_IRUGO,
amdgpu_ras_sysfs_features_read, NULL);
static int amdgpu_ras_fs_init(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct attribute_group group = {
.name = RAS_FS_NAME,
};
struct attribute *attrs[] = {
&con->features_attr.attr,
NULL
};
struct bin_attribute *bin_attrs[] = {
NULL,
NULL,
};
int r;
/* add features entry */
con->features_attr = dev_attr_features;
group.attrs = attrs;
sysfs_attr_init(attrs[0]);
if (amdgpu_bad_page_threshold != 0) {
/* add bad_page_features entry */
bin_attr_gpu_vram_bad_pages.private = NULL;
con->badpages_attr = bin_attr_gpu_vram_bad_pages;
bin_attrs[0] = &con->badpages_attr;
group.bin_attrs = bin_attrs;
sysfs_bin_attr_init(bin_attrs[0]);
}
r = sysfs_create_group(&adev->dev->kobj, &group);
if (r)
dev_err(adev->dev, "Failed to create RAS sysfs group!");
return 0;
}
static int amdgpu_ras_fs_fini(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *con_obj, *ip_obj, *tmp;
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
list_for_each_entry_safe(con_obj, tmp, &con->head, node) {
ip_obj = amdgpu_ras_find_obj(adev, &con_obj->head);
if (ip_obj)
put_obj(ip_obj);
}
}
amdgpu_ras_sysfs_remove_all(adev);
return 0;
}
/* ras fs end */
/* ih begin */
static void amdgpu_ras_interrupt_handler(struct ras_manager *obj)
{
struct ras_ih_data *data = &obj->ih_data;
struct amdgpu_iv_entry entry;
int ret;
struct ras_err_data err_data = {0, 0, 0, NULL};
while (data->rptr != data->wptr) {
rmb();
memcpy(&entry, &data->ring[data->rptr],
data->element_size);
wmb();
data->rptr = (data->aligned_element_size +
data->rptr) % data->ring_size;
/* Let IP handle its data, maybe we need get the output
* from the callback to udpate the error type/count, etc
*/
if (data->cb) {
ret = data->cb(obj->adev, &err_data, &entry);
/* ue will trigger an interrupt, and in that case
* we need do a reset to recovery the whole system.
* But leave IP do that recovery, here we just dispatch
* the error.
*/
if (ret == AMDGPU_RAS_SUCCESS) {
/* these counts could be left as 0 if
* some blocks do not count error number
*/
obj->err_data.ue_count += err_data.ue_count;
obj->err_data.ce_count += err_data.ce_count;
}
}
}
}
static void amdgpu_ras_interrupt_process_handler(struct work_struct *work)
{
struct ras_ih_data *data =
container_of(work, struct ras_ih_data, ih_work);
struct ras_manager *obj =
container_of(data, struct ras_manager, ih_data);
amdgpu_ras_interrupt_handler(obj);
}
int amdgpu_ras_interrupt_dispatch(struct amdgpu_device *adev,
struct ras_dispatch_if *info)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &info->head);
struct ras_ih_data *data = &obj->ih_data;
if (!obj)
return -EINVAL;
if (data->inuse == 0)
return 0;
/* Might be overflow... */
memcpy(&data->ring[data->wptr], info->entry,
data->element_size);
wmb();
data->wptr = (data->aligned_element_size +
data->wptr) % data->ring_size;
schedule_work(&data->ih_work);
return 0;
}
int amdgpu_ras_interrupt_remove_handler(struct amdgpu_device *adev,
struct ras_ih_if *info)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &info->head);
struct ras_ih_data *data;
if (!obj)
return -EINVAL;
data = &obj->ih_data;
if (data->inuse == 0)
return 0;
cancel_work_sync(&data->ih_work);
kfree(data->ring);
memset(data, 0, sizeof(*data));
put_obj(obj);
return 0;
}
int amdgpu_ras_interrupt_add_handler(struct amdgpu_device *adev,
struct ras_ih_if *info)
{
struct ras_manager *obj = amdgpu_ras_find_obj(adev, &info->head);
struct ras_ih_data *data;
if (!obj) {
/* in case we registe the IH before enable ras feature */
obj = amdgpu_ras_create_obj(adev, &info->head);
if (!obj)
return -EINVAL;
} else
get_obj(obj);
data = &obj->ih_data;
/* add the callback.etc */
*data = (struct ras_ih_data) {
.inuse = 0,
.cb = info->cb,
.element_size = sizeof(struct amdgpu_iv_entry),
.rptr = 0,
.wptr = 0,
};
INIT_WORK(&data->ih_work, amdgpu_ras_interrupt_process_handler);
data->aligned_element_size = ALIGN(data->element_size, 8);
/* the ring can store 64 iv entries. */
data->ring_size = 64 * data->aligned_element_size;
data->ring = kmalloc(data->ring_size, GFP_KERNEL);
if (!data->ring) {
put_obj(obj);
return -ENOMEM;
}
/* IH is ready */
data->inuse = 1;
return 0;
}
static int amdgpu_ras_interrupt_remove_all(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj, *tmp;
list_for_each_entry_safe(obj, tmp, &con->head, node) {
struct ras_ih_if info = {
.head = obj->head,
};
amdgpu_ras_interrupt_remove_handler(adev, &info);
}
return 0;
}
/* ih end */
/* traversal all IPs except NBIO to query error counter */
static void amdgpu_ras_log_on_err_counter(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj;
if (!adev->ras_enabled || !con)
return;
list_for_each_entry(obj, &con->head, node) {
struct ras_query_if info = {
.head = obj->head,
};
/*
* PCIE_BIF IP has one different isr by ras controller
* interrupt, the specific ras counter query will be
* done in that isr. So skip such block from common
* sync flood interrupt isr calling.
*/
if (info.head.block == AMDGPU_RAS_BLOCK__PCIE_BIF)
continue;
amdgpu_ras_query_error_status(adev, &info);
}
}
/* Parse RdRspStatus and WrRspStatus */
static void amdgpu_ras_error_status_query(struct amdgpu_device *adev,
struct ras_query_if *info)
{
/*
* Only two block need to query read/write
* RspStatus at current state
*/
switch (info->head.block) {
case AMDGPU_RAS_BLOCK__GFX:
if (adev->gfx.ras_funcs &&
adev->gfx.ras_funcs->query_ras_error_status)
adev->gfx.ras_funcs->query_ras_error_status(adev);
break;
case AMDGPU_RAS_BLOCK__MMHUB:
if (adev->mmhub.ras_funcs &&
adev->mmhub.ras_funcs->query_ras_error_status)
adev->mmhub.ras_funcs->query_ras_error_status(adev);
break;
default:
break;
}
}
static void amdgpu_ras_query_err_status(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj;
if (!adev->ras_enabled || !con)
return;
list_for_each_entry(obj, &con->head, node) {
struct ras_query_if info = {
.head = obj->head,
};
amdgpu_ras_error_status_query(adev, &info);
}
}
/* recovery begin */
/* return 0 on success.
* caller need free bps.
*/
static int amdgpu_ras_badpages_read(struct amdgpu_device *adev,
struct ras_badpage **bps, unsigned int *count)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_err_handler_data *data;
int i = 0;
int ret = 0, status;
if (!con || !con->eh_data || !bps || !count)
return -EINVAL;
mutex_lock(&con->recovery_lock);
data = con->eh_data;
if (!data || data->count == 0) {
*bps = NULL;
ret = -EINVAL;
goto out;
}
*bps = kmalloc(sizeof(struct ras_badpage) * data->count, GFP_KERNEL);
if (!*bps) {
ret = -ENOMEM;
goto out;
}
for (; i < data->count; i++) {
(*bps)[i] = (struct ras_badpage){
.bp = data->bps[i].retired_page,
.size = AMDGPU_GPU_PAGE_SIZE,
.flags = AMDGPU_RAS_RETIRE_PAGE_RESERVED,
};
status = amdgpu_vram_mgr_query_page_status(
ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM),
data->bps[i].retired_page);
if (status == -EBUSY)
(*bps)[i].flags = AMDGPU_RAS_RETIRE_PAGE_PENDING;
else if (status == -ENOENT)
(*bps)[i].flags = AMDGPU_RAS_RETIRE_PAGE_FAULT;
}
*count = data->count;
out:
mutex_unlock(&con->recovery_lock);
return ret;
}
static void amdgpu_ras_do_recovery(struct work_struct *work)
{
struct amdgpu_ras *ras =
container_of(work, struct amdgpu_ras, recovery_work);
struct amdgpu_device *remote_adev = NULL;
struct amdgpu_device *adev = ras->adev;
struct list_head device_list, *device_list_handle = NULL;
if (!ras->disable_ras_err_cnt_harvest) {
struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(adev);
/* Build list of devices to query RAS related errors */
if (hive && adev->gmc.xgmi.num_physical_nodes > 1) {
device_list_handle = &hive->device_list;
} else {
INIT_LIST_HEAD(&device_list);
list_add_tail(&adev->gmc.xgmi.head, &device_list);
device_list_handle = &device_list;
}
list_for_each_entry(remote_adev,
device_list_handle, gmc.xgmi.head) {
amdgpu_ras_query_err_status(remote_adev);
amdgpu_ras_log_on_err_counter(remote_adev);
}
amdgpu_put_xgmi_hive(hive);
}
if (amdgpu_device_should_recover_gpu(ras->adev))
amdgpu_device_gpu_recover(ras->adev, NULL);
atomic_set(&ras->in_recovery, 0);
}
/* alloc/realloc bps array */
static int amdgpu_ras_realloc_eh_data_space(struct amdgpu_device *adev,
struct ras_err_handler_data *data, int pages)
{
unsigned int old_space = data->count + data->space_left;
unsigned int new_space = old_space + pages;
unsigned int align_space = ALIGN(new_space, 512);
void *bps = kmalloc(align_space * sizeof(*data->bps), GFP_KERNEL);
if (!bps) {
kfree(bps);
return -ENOMEM;
}
if (data->bps) {
memcpy(bps, data->bps,
data->count * sizeof(*data->bps));
kfree(data->bps);
}
data->bps = bps;
data->space_left += align_space - old_space;
return 0;
}
/* it deal with vram only. */
int amdgpu_ras_add_bad_pages(struct amdgpu_device *adev,
struct eeprom_table_record *bps, int pages)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_err_handler_data *data;
int ret = 0;
uint32_t i;
if (!con || !con->eh_data || !bps || pages <= 0)
return 0;
mutex_lock(&con->recovery_lock);
data = con->eh_data;
if (!data)
goto out;
for (i = 0; i < pages; i++) {
if (amdgpu_ras_check_bad_page_unlock(con,
bps[i].retired_page << AMDGPU_GPU_PAGE_SHIFT))
continue;
if (!data->space_left &&
amdgpu_ras_realloc_eh_data_space(adev, data, 256)) {
ret = -ENOMEM;
goto out;
}
amdgpu_vram_mgr_reserve_range(
ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM),
bps[i].retired_page << AMDGPU_GPU_PAGE_SHIFT,
AMDGPU_GPU_PAGE_SIZE);
memcpy(&data->bps[data->count], &bps[i], sizeof(*data->bps));
data->count++;
data->space_left--;
}
out:
mutex_unlock(&con->recovery_lock);
return ret;
}
/*
* write error record array to eeprom, the function should be
* protected by recovery_lock
*/
int amdgpu_ras_save_bad_pages(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_err_handler_data *data;
struct amdgpu_ras_eeprom_control *control;
int save_count;
if (!con || !con->eh_data)
return 0;
control = &con->eeprom_control;
data = con->eh_data;
save_count = data->count - control->num_recs;
/* only new entries are saved */
if (save_count > 0) {
if (amdgpu_ras_eeprom_process_recods(control,
&data->bps[control->num_recs],
true,
save_count)) {
dev_err(adev->dev, "Failed to save EEPROM table data!");
return -EIO;
}
dev_info(adev->dev, "Saved %d pages to EEPROM table.\n", save_count);
}
return 0;
}
/*
* read error record array in eeprom and reserve enough space for
* storing new bad pages
*/
static int amdgpu_ras_load_bad_pages(struct amdgpu_device *adev)
{
struct amdgpu_ras_eeprom_control *control =
&adev->psp.ras.ras->eeprom_control;
struct eeprom_table_record *bps = NULL;
int ret = 0;
/* no bad page record, skip eeprom access */
if (!control->num_recs || (amdgpu_bad_page_threshold == 0))
return ret;
bps = kcalloc(control->num_recs, sizeof(*bps), GFP_KERNEL);
if (!bps)
return -ENOMEM;
if (amdgpu_ras_eeprom_process_recods(control, bps, false,
control->num_recs)) {
dev_err(adev->dev, "Failed to load EEPROM table records!");
ret = -EIO;
goto out;
}
ret = amdgpu_ras_add_bad_pages(adev, bps, control->num_recs);
out:
kfree(bps);
return ret;
}
static bool amdgpu_ras_check_bad_page_unlock(struct amdgpu_ras *con,
uint64_t addr)
{
struct ras_err_handler_data *data = con->eh_data;
int i;
addr >>= AMDGPU_GPU_PAGE_SHIFT;
for (i = 0; i < data->count; i++)
if (addr == data->bps[i].retired_page)
return true;
return false;
}
/*
* check if an address belongs to bad page
*
* Note: this check is only for umc block
*/
static bool amdgpu_ras_check_bad_page(struct amdgpu_device *adev,
uint64_t addr)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
bool ret = false;
if (!con || !con->eh_data)
return ret;
mutex_lock(&con->recovery_lock);
ret = amdgpu_ras_check_bad_page_unlock(con, addr);
mutex_unlock(&con->recovery_lock);
return ret;
}
static void amdgpu_ras_validate_threshold(struct amdgpu_device *adev,
uint32_t max_length)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int tmp_threshold = amdgpu_bad_page_threshold;
u64 val;
/*
* Justification of value bad_page_cnt_threshold in ras structure
*
* Generally, -1 <= amdgpu_bad_page_threshold <= max record length
* in eeprom, and introduce two scenarios accordingly.
*
* Bad page retirement enablement:
* - If amdgpu_bad_page_threshold = -1,
* bad_page_cnt_threshold = typical value by formula.
*
* - When the value from user is 0 < amdgpu_bad_page_threshold <
* max record length in eeprom, use it directly.
*
* Bad page retirement disablement:
* - If amdgpu_bad_page_threshold = 0, bad page retirement
* functionality is disabled, and bad_page_cnt_threshold will
* take no effect.
*/
if (tmp_threshold < -1)
tmp_threshold = -1;
else if (tmp_threshold > max_length)
tmp_threshold = max_length;
if (tmp_threshold == -1) {
val = adev->gmc.mc_vram_size;
do_div(val, RAS_BAD_PAGE_RATE);
con->bad_page_cnt_threshold = min(lower_32_bits(val),
max_length);
} else {
con->bad_page_cnt_threshold = tmp_threshold;
}
}
int amdgpu_ras_recovery_init(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_err_handler_data **data;
uint32_t max_eeprom_records_len = 0;
bool exc_err_limit = false;
int ret;
if (adev->ras_enabled && con)
data = &con->eh_data;
else
return 0;
*data = kmalloc(sizeof(**data), GFP_KERNEL | __GFP_ZERO);
if (!*data) {
ret = -ENOMEM;
goto out;
}
mutex_init(&con->recovery_lock);
INIT_WORK(&con->recovery_work, amdgpu_ras_do_recovery);
atomic_set(&con->in_recovery, 0);
con->adev = adev;
max_eeprom_records_len = amdgpu_ras_eeprom_get_record_max_length();
amdgpu_ras_validate_threshold(adev, max_eeprom_records_len);
/* Todo: During test the SMU might fail to read the eeprom through I2C
* when the GPU is pending on XGMI reset during probe time
* (Mostly after second bus reset), skip it now
*/
if (adev->gmc.xgmi.pending_reset)
return 0;
ret = amdgpu_ras_eeprom_init(&con->eeprom_control, &exc_err_limit);
/*
* This calling fails when exc_err_limit is true or
* ret != 0.
*/
if (exc_err_limit || ret)
goto free;
if (con->eeprom_control.num_recs) {
ret = amdgpu_ras_load_bad_pages(adev);
if (ret)
goto free;
if (adev->smu.ppt_funcs && adev->smu.ppt_funcs->send_hbm_bad_pages_num)
adev->smu.ppt_funcs->send_hbm_bad_pages_num(&adev->smu, con->eeprom_control.num_recs);
}
return 0;
free:
kfree((*data)->bps);
kfree(*data);
con->eh_data = NULL;
out:
dev_warn(adev->dev, "Failed to initialize ras recovery!\n");
/*
* Except error threshold exceeding case, other failure cases in this
* function would not fail amdgpu driver init.
*/
if (!exc_err_limit)
ret = 0;
else
ret = -EINVAL;
return ret;
}
static int amdgpu_ras_recovery_fini(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_err_handler_data *data = con->eh_data;
/* recovery_init failed to init it, fini is useless */
if (!data)
return 0;
cancel_work_sync(&con->recovery_work);
mutex_lock(&con->recovery_lock);
con->eh_data = NULL;
kfree(data->bps);
kfree(data);
mutex_unlock(&con->recovery_lock);
return 0;
}
/* recovery end */
/* return 0 if ras will reset gpu and repost.*/
int amdgpu_ras_request_reset_on_boot(struct amdgpu_device *adev,
unsigned int block)
{
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
if (!ras)
return -EINVAL;
ras->flags |= AMDGPU_RAS_FLAG_INIT_NEED_RESET;
return 0;
}
static bool amdgpu_ras_asic_supported(struct amdgpu_device *adev)
{
return adev->asic_type == CHIP_VEGA10 ||
adev->asic_type == CHIP_VEGA20 ||
adev->asic_type == CHIP_ARCTURUS ||
adev->asic_type == CHIP_ALDEBARAN ||
adev->asic_type == CHIP_SIENNA_CICHLID;
}
/*
* this is workaround for vega20 workstation sku,
* force enable gfx ras, ignore vbios gfx ras flag
* due to GC EDC can not write
*/
static void amdgpu_ras_get_quirks(struct amdgpu_device *adev)
{
struct atom_context *ctx = adev->mode_info.atom_context;
if (!ctx)
return;
if (strnstr(ctx->vbios_version, "D16406",
sizeof(ctx->vbios_version)) ||
strnstr(ctx->vbios_version, "D36002",
sizeof(ctx->vbios_version)))
adev->ras_hw_enabled |= (1 << AMDGPU_RAS_BLOCK__GFX);
}
/*
* check hardware's ras ability which will be saved in hw_supported.
* if hardware does not support ras, we can skip some ras initializtion and
* forbid some ras operations from IP.
* if software itself, say boot parameter, limit the ras ability. We still
* need allow IP do some limited operations, like disable. In such case,
* we have to initialize ras as normal. but need check if operation is
* allowed or not in each function.
*/
static void amdgpu_ras_check_supported(struct amdgpu_device *adev)
{
adev->ras_hw_enabled = adev->ras_enabled = 0;
if (amdgpu_sriov_vf(adev) || !adev->is_atom_fw ||
!amdgpu_ras_asic_supported(adev))
return;
if (!adev->gmc.xgmi.connected_to_cpu) {
if (amdgpu_atomfirmware_mem_ecc_supported(adev)) {
dev_info(adev->dev, "MEM ECC is active.\n");
adev->ras_hw_enabled |= (1 << AMDGPU_RAS_BLOCK__UMC |
1 << AMDGPU_RAS_BLOCK__DF);
} else {
dev_info(adev->dev, "MEM ECC is not presented.\n");
}
if (amdgpu_atomfirmware_sram_ecc_supported(adev)) {
dev_info(adev->dev, "SRAM ECC is active.\n");
adev->ras_hw_enabled |= ~(1 << AMDGPU_RAS_BLOCK__UMC |
1 << AMDGPU_RAS_BLOCK__DF);
} else {
dev_info(adev->dev, "SRAM ECC is not presented.\n");
}
} else {
/* driver only manages a few IP blocks RAS feature
* when GPU is connected cpu through XGMI */
adev->ras_hw_enabled |= (1 << AMDGPU_RAS_BLOCK__GFX |
1 << AMDGPU_RAS_BLOCK__SDMA |
1 << AMDGPU_RAS_BLOCK__MMHUB);
}
amdgpu_ras_get_quirks(adev);
/* hw_supported needs to be aligned with RAS block mask. */
adev->ras_hw_enabled &= AMDGPU_RAS_BLOCK_MASK;
adev->ras_enabled = amdgpu_ras_enable == 0 ? 0 :
adev->ras_hw_enabled & amdgpu_ras_mask;
}
static void amdgpu_ras_counte_dw(struct work_struct *work)
{
struct amdgpu_ras *con = container_of(work, struct amdgpu_ras,
ras_counte_delay_work.work);
struct amdgpu_device *adev = con->adev;
struct drm_device *dev = adev_to_drm(adev);
unsigned long ce_count, ue_count;
int res;
res = pm_runtime_get_sync(dev->dev);
if (res < 0)
goto Out;
/* Cache new values.
*/
amdgpu_ras_query_error_count(adev, &ce_count, &ue_count);
atomic_set(&con->ras_ce_count, ce_count);
atomic_set(&con->ras_ue_count, ue_count);
pm_runtime_mark_last_busy(dev->dev);
Out:
pm_runtime_put_autosuspend(dev->dev);
}
int amdgpu_ras_init(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int r;
if (con)
return 0;
con = kmalloc(sizeof(struct amdgpu_ras) +
sizeof(struct ras_manager) * AMDGPU_RAS_BLOCK_COUNT,
GFP_KERNEL|__GFP_ZERO);
if (!con)
return -ENOMEM;
con->adev = adev;
INIT_DELAYED_WORK(&con->ras_counte_delay_work, amdgpu_ras_counte_dw);
atomic_set(&con->ras_ce_count, 0);
atomic_set(&con->ras_ue_count, 0);
con->objs = (struct ras_manager *)(con + 1);
amdgpu_ras_set_context(adev, con);
amdgpu_ras_check_supported(adev);
if (!adev->ras_enabled || adev->asic_type == CHIP_VEGA10) {
/* set gfx block ras context feature for VEGA20 Gaming
* send ras disable cmd to ras ta during ras late init.
*/
if (!adev->ras_enabled && adev->asic_type == CHIP_VEGA20) {
con->features |= BIT(AMDGPU_RAS_BLOCK__GFX);
return 0;
}
r = 0;
goto release_con;
}
con->features = 0;
INIT_LIST_HEAD(&con->head);
/* Might need get this flag from vbios. */
con->flags = RAS_DEFAULT_FLAGS;
/* initialize nbio ras function ahead of any other
* ras functions so hardware fatal error interrupt
* can be enabled as early as possible */
switch (adev->asic_type) {
case CHIP_VEGA20:
case CHIP_ARCTURUS:
case CHIP_ALDEBARAN:
if (!adev->gmc.xgmi.connected_to_cpu)
adev->nbio.ras_funcs = &nbio_v7_4_ras_funcs;
break;
default:
/* nbio ras is not available */
break;
}
if (adev->nbio.ras_funcs &&
adev->nbio.ras_funcs->init_ras_controller_interrupt) {
r = adev->nbio.ras_funcs->init_ras_controller_interrupt(adev);
if (r)
goto release_con;
}
if (adev->nbio.ras_funcs &&
adev->nbio.ras_funcs->init_ras_err_event_athub_interrupt) {
r = adev->nbio.ras_funcs->init_ras_err_event_athub_interrupt(adev);
if (r)
goto release_con;
}
if (amdgpu_ras_fs_init(adev)) {
r = -EINVAL;
goto release_con;
}
dev_info(adev->dev, "RAS INFO: ras initialized successfully, "
"hardware ability[%x] ras_mask[%x]\n",
adev->ras_hw_enabled, adev->ras_enabled);
return 0;
release_con:
amdgpu_ras_set_context(adev, NULL);
kfree(con);
return r;
}
int amdgpu_persistent_edc_harvesting_supported(struct amdgpu_device *adev)
{
if (adev->gmc.xgmi.connected_to_cpu)
return 1;
return 0;
}
static int amdgpu_persistent_edc_harvesting(struct amdgpu_device *adev,
struct ras_common_if *ras_block)
{
struct ras_query_if info = {
.head = *ras_block,
};
if (!amdgpu_persistent_edc_harvesting_supported(adev))
return 0;
if (amdgpu_ras_query_error_status(adev, &info) != 0)
DRM_WARN("RAS init harvest failure");
if (amdgpu_ras_reset_error_status(adev, ras_block->block) != 0)
DRM_WARN("RAS init harvest reset failure");
return 0;
}
/* helper function to handle common stuff in ip late init phase */
int amdgpu_ras_late_init(struct amdgpu_device *adev,
struct ras_common_if *ras_block,
struct ras_fs_if *fs_info,
struct ras_ih_if *ih_info)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
unsigned long ue_count, ce_count;
int r;
/* disable RAS feature per IP block if it is not supported */
if (!amdgpu_ras_is_supported(adev, ras_block->block)) {
amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
return 0;
}
r = amdgpu_ras_feature_enable_on_boot(adev, ras_block, 1);
if (r) {
if (r == -EAGAIN) {
/* request gpu reset. will run again */
amdgpu_ras_request_reset_on_boot(adev,
ras_block->block);
return 0;
} else if (adev->in_suspend || amdgpu_in_reset(adev)) {
/* in resume phase, if fail to enable ras,
* clean up all ras fs nodes, and disable ras */
goto cleanup;
} else
return r;
}
/* check for errors on warm reset edc persisant supported ASIC */
amdgpu_persistent_edc_harvesting(adev, ras_block);
/* in resume phase, no need to create ras fs node */
if (adev->in_suspend || amdgpu_in_reset(adev))
return 0;
if (ih_info->cb) {
r = amdgpu_ras_interrupt_add_handler(adev, ih_info);
if (r)
goto interrupt;
}
r = amdgpu_ras_sysfs_create(adev, fs_info);
if (r)
goto sysfs;
/* Those are the cached values at init.
*/
amdgpu_ras_query_error_count(adev, &ce_count, &ue_count);
atomic_set(&con->ras_ce_count, ce_count);
atomic_set(&con->ras_ue_count, ue_count);
return 0;
cleanup:
amdgpu_ras_sysfs_remove(adev, ras_block);
sysfs:
if (ih_info->cb)
amdgpu_ras_interrupt_remove_handler(adev, ih_info);
interrupt:
amdgpu_ras_feature_enable(adev, ras_block, 0);
return r;
}
/* helper function to remove ras fs node and interrupt handler */
void amdgpu_ras_late_fini(struct amdgpu_device *adev,
struct ras_common_if *ras_block,
struct ras_ih_if *ih_info)
{
if (!ras_block || !ih_info)
return;
amdgpu_ras_sysfs_remove(adev, ras_block);
if (ih_info->cb)
amdgpu_ras_interrupt_remove_handler(adev, ih_info);
amdgpu_ras_feature_enable(adev, ras_block, 0);
}
/* do some init work after IP late init as dependence.
* and it runs in resume/gpu reset/booting up cases.
*/
void amdgpu_ras_resume(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct ras_manager *obj, *tmp;
if (!adev->ras_enabled || !con) {
/* clean ras context for VEGA20 Gaming after send ras disable cmd */
amdgpu_release_ras_context(adev);
return;
}
if (con->flags & AMDGPU_RAS_FLAG_INIT_BY_VBIOS) {
/* Set up all other IPs which are not implemented. There is a
* tricky thing that IP's actual ras error type should be
* MULTI_UNCORRECTABLE, but as driver does not handle it, so
* ERROR_NONE make sense anyway.
*/
amdgpu_ras_enable_all_features(adev, 1);
/* We enable ras on all hw_supported block, but as boot
* parameter might disable some of them and one or more IP has
* not implemented yet. So we disable them on behalf.
*/
list_for_each_entry_safe(obj, tmp, &con->head, node) {
if (!amdgpu_ras_is_supported(adev, obj->head.block)) {
amdgpu_ras_feature_enable(adev, &obj->head, 0);
/* there should be no any reference. */
WARN_ON(alive_obj(obj));
}
}
}
if (con->flags & AMDGPU_RAS_FLAG_INIT_NEED_RESET) {
con->flags &= ~AMDGPU_RAS_FLAG_INIT_NEED_RESET;
/* setup ras obj state as disabled.
* for init_by_vbios case.
* if we want to enable ras, just enable it in a normal way.
* If we want do disable it, need setup ras obj as enabled,
* then issue another TA disable cmd.
* See feature_enable_on_boot
*/
amdgpu_ras_disable_all_features(adev, 1);
amdgpu_ras_reset_gpu(adev);
}
}
void amdgpu_ras_suspend(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!adev->ras_enabled || !con)
return;
amdgpu_ras_disable_all_features(adev, 0);
/* Make sure all ras objects are disabled. */
if (con->features)
amdgpu_ras_disable_all_features(adev, 1);
}
/* do some fini work before IP fini as dependence */
int amdgpu_ras_pre_fini(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!adev->ras_enabled || !con)
return 0;
/* Need disable ras on all IPs here before ip [hw/sw]fini */
amdgpu_ras_disable_all_features(adev, 0);
amdgpu_ras_recovery_fini(adev);
return 0;
}
int amdgpu_ras_fini(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!adev->ras_enabled || !con)
return 0;
amdgpu_ras_fs_fini(adev);
amdgpu_ras_interrupt_remove_all(adev);
WARN(con->features, "Feature mask is not cleared");
if (con->features)
amdgpu_ras_disable_all_features(adev, 1);
cancel_delayed_work_sync(&con->ras_counte_delay_work);
amdgpu_ras_set_context(adev, NULL);
kfree(con);
return 0;
}
void amdgpu_ras_global_ras_isr(struct amdgpu_device *adev)
{
amdgpu_ras_check_supported(adev);
if (!adev->ras_hw_enabled)
return;
if (atomic_cmpxchg(&amdgpu_ras_in_intr, 0, 1) == 0) {
dev_info(adev->dev, "uncorrectable hardware error"
"(ERREVENT_ATHUB_INTERRUPT) detected!\n");
amdgpu_ras_reset_gpu(adev);
}
}
bool amdgpu_ras_need_emergency_restart(struct amdgpu_device *adev)
{
if (adev->asic_type == CHIP_VEGA20 &&
adev->pm.fw_version <= 0x283400) {
return !(amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO) &&
amdgpu_ras_intr_triggered();
}
return false;
}
void amdgpu_release_ras_context(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!con)
return;
if (!adev->ras_enabled && con->features & BIT(AMDGPU_RAS_BLOCK__GFX)) {
con->features &= ~BIT(AMDGPU_RAS_BLOCK__GFX);
amdgpu_ras_set_context(adev, NULL);
kfree(con);
}
}