blob: 7fa9fc656b0ca7b6b48f31ce5c6a32d7c2cc77e0 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn20_optc.h"
#include "dc.h"
#define REG(reg)\
optc1->tg_regs->reg
#define CTX \
optc1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
optc1->tg_shift->field_name, optc1->tg_mask->field_name
/**
* Enable CRTC
* Enable CRTC - call ASIC Control Object to enable Timing generator.
*/
bool optc2_enable_crtc(struct timing_generator *optc)
{
/* TODO FPGA wait for answer
* OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
* OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
*/
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* opp instance for OTG. For DCN1.0, ODM is remoed.
* OPP and OPTC should 1:1 mapping
*/
REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, optc->inst);
/* VTG enable first is for HW workaround */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 1);
REG_SEQ_START();
/* Enable CRTC */
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 3,
OTG_MASTER_EN, 1);
REG_SEQ_SUBMIT();
REG_SEQ_WAIT_DONE();
return true;
}
/**
* DRR double buffering control to select buffer point
* for V_TOTAL, H_TOTAL, VTOTAL_MIN, VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers
* Options: anytime, start of frame, dp start of frame (range timing)
*/
void optc2_set_timing_db_mode(struct timing_generator *optc, bool enable)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
OTG_RANGE_TIMING_DBUF_UPDATE_MODE, blank_data_double_buffer_enable);
}
/**
*For the below, I'm not sure how your GSL parameters are stored in your env,
* so I will assume a gsl_params struct for now
*/
void optc2_set_gsl(struct timing_generator *optc,
const struct gsl_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/**
* There are (MAX_OPTC+1)/2 gsl groups available for use.
* In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1,
* set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves.
*/
REG_UPDATE_5(OTG_GSL_CONTROL,
OTG_GSL0_EN, params->gsl0_en,
OTG_GSL1_EN, params->gsl1_en,
OTG_GSL2_EN, params->gsl2_en,
OTG_GSL_MASTER_EN, params->gsl_master_en,
OTG_GSL_MASTER_MODE, params->gsl_master_mode);
}
/* Use the gsl allow flip as the master update lock */
void optc2_use_gsl_as_master_update_lock(struct timing_generator *optc,
const struct gsl_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OTG_GSL_CONTROL,
OTG_MASTER_UPDATE_LOCK_GSL_EN, params->master_update_lock_gsl_en);
}
/* You can control the GSL timing by limiting GSL to a window (X,Y) */
void optc2_set_gsl_window(struct timing_generator *optc,
const struct gsl_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_2(OTG_GSL_WINDOW_X, 0,
OTG_GSL_WINDOW_START_X, params->gsl_window_start_x,
OTG_GSL_WINDOW_END_X, params->gsl_window_end_x);
REG_SET_2(OTG_GSL_WINDOW_Y, 0,
OTG_GSL_WINDOW_START_Y, params->gsl_window_start_y,
OTG_GSL_WINDOW_END_Y, params->gsl_window_end_y);
}
void optc2_set_gsl_source_select(
struct timing_generator *optc,
int group_idx,
uint32_t gsl_ready_signal)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
switch (group_idx) {
case 1:
REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal);
break;
case 2:
REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal);
break;
case 3:
REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal);
break;
default:
break;
}
}
/* DSC encoder frame start controls: x = h position, line_num = # of lines from vstartup */
void optc2_set_dsc_encoder_frame_start(struct timing_generator *optc,
int x_position,
int line_num)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_2(OTG_DSC_START_POSITION, 0,
OTG_DSC_START_POSITION_X, x_position,
OTG_DSC_START_POSITION_LINE_NUM, line_num);
}
/* Set DSC-related configuration.
* dsc_mode: 0 disables DSC, other values enable DSC in specified format
* sc_bytes_per_pixel: Bytes per pixel in u3.28 format
* dsc_slice_width: Slice width in pixels
*/
void optc2_set_dsc_config(struct timing_generator *optc,
enum optc_dsc_mode dsc_mode,
uint32_t dsc_bytes_per_pixel,
uint32_t dsc_slice_width)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OPTC_DATA_FORMAT_CONTROL,
OPTC_DSC_MODE, dsc_mode);
REG_SET(OPTC_BYTES_PER_PIXEL, 0,
OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_DSC_SLICE_WIDTH, dsc_slice_width);
}
/*TEMP: Need to figure out inheritance model here.*/
bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
{
return optc1_is_two_pixels_per_containter(timing);
}
void optc2_set_odm_bypass(struct timing_generator *optc,
const struct dc_crtc_timing *dc_crtc_timing)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t h_div_2 = 0;
REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 0,
OPTC_SEG0_SRC_SEL, optc->inst,
OPTC_SEG1_SRC_SEL, 0xf);
REG_WRITE(OTG_H_TIMING_CNTL, 0);
h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_BY2, h_div_2);
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, 0);
optc1->opp_count = 1;
}
void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt,
struct dc_crtc_timing *timing)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right)
/ opp_cnt;
uint32_t memory_mask;
ASSERT(opp_cnt == 2);
/* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic
* REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1);
* Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start
* REG_SET_2(OTG_GLOBAL_CONTROL1, 0,
* MASTER_UPDATE_LOCK_DB_X, 160,
* MASTER_UPDATE_LOCK_DB_Y, 240);
*/
/* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192,
* however, for ODM combine we can simplify by always using 4.
* To make sure there's no overlap, each instance "reserves" 2 memories and
* they are uniquely combined here.
*/
memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2);
if (REG(OPTC_MEMORY_CONFIG))
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, memory_mask);
REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 1,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, mpcc_hactive);
REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1);
optc1->opp_count = opp_cnt;
}
void optc2_get_optc_source(struct timing_generator *optc,
uint32_t *num_of_src_opp,
uint32_t *src_opp_id_0,
uint32_t *src_opp_id_1)
{
uint32_t num_of_input_segments;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_GET_3(OPTC_DATA_SOURCE_SELECT,
OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments,
OPTC_SEG0_SRC_SEL, src_opp_id_0,
OPTC_SEG1_SRC_SEL, src_opp_id_1);
if (num_of_input_segments == 1)
*num_of_src_opp = 2;
else
*num_of_src_opp = 1;
/* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */
if (*src_opp_id_1 == 0xf)
*num_of_src_opp = 1;
}
void optc2_set_dwb_source(struct timing_generator *optc,
uint32_t dwb_pipe_inst)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
if (dwb_pipe_inst == 0)
REG_UPDATE(DWB_SOURCE_SELECT,
OPTC_DWB0_SOURCE_SELECT, optc->inst);
else if (dwb_pipe_inst == 1)
REG_UPDATE(DWB_SOURCE_SELECT,
OPTC_DWB1_SOURCE_SELECT, optc->inst);
}
void optc2_align_vblanks(
struct timing_generator *optc_master,
struct timing_generator *optc_slave,
uint32_t master_pixel_clock_100Hz,
uint32_t slave_pixel_clock_100Hz,
uint8_t master_clock_divider,
uint8_t slave_clock_divider)
{
/* accessing slave OTG registers */
struct optc *optc1 = DCN10TG_FROM_TG(optc_slave);
uint32_t master_v_active = 0;
uint32_t master_h_total = 0;
uint32_t slave_h_total = 0;
uint64_t L, XY;
uint32_t X, Y, p = 10000;
uint32_t master_update_lock;
/* disable slave OTG */
REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
/* wait until disabled */
REG_WAIT(OTG_CONTROL,
OTG_CURRENT_MASTER_EN_STATE,
0, 10, 5000);
REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total);
/* assign slave OTG to be controlled by master update lock */
REG_SET(OTG_GLOBAL_CONTROL0, 0,
OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst);
/* accessing master OTG registers */
optc1 = DCN10TG_FROM_TG(optc_master);
/* saving update lock state, not sure if it's needed */
REG_GET(OTG_MASTER_UPDATE_LOCK,
OTG_MASTER_UPDATE_LOCK, &master_update_lock);
/* unlocking master OTG */
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 0);
REG_GET(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, &master_v_active);
REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total);
/* calculate when to enable slave OTG */
L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz;
L = div_u64(L, master_h_total);
L = div_u64(L, slave_pixel_clock_100Hz);
XY = div_u64(L, p);
Y = master_v_active - XY - 1;
X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider);
/*
* set master OTG to unlock when V/H
* counters reach calculated values
*/
REG_UPDATE(OTG_GLOBAL_CONTROL1,
MASTER_UPDATE_LOCK_DB_EN, 1);
REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
MASTER_UPDATE_LOCK_DB_X,
X,
MASTER_UPDATE_LOCK_DB_Y,
Y);
/* lock master OTG */
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 1);
REG_WAIT(OTG_MASTER_UPDATE_LOCK,
UPDATE_LOCK_STATUS, 1, 1, 10);
/* accessing slave OTG registers */
optc1 = DCN10TG_FROM_TG(optc_slave);
/*
* enable slave OTG, the OTG is locked with
* master's update lock, so it will not run
*/
REG_UPDATE(OTG_CONTROL,
OTG_MASTER_EN, 1);
/* accessing master OTG registers */
optc1 = DCN10TG_FROM_TG(optc_master);
/*
* unlock master OTG. When master H/V counters reach
* DB_XY point, slave OTG will start
*/
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 0);
/* accessing slave OTG registers */
optc1 = DCN10TG_FROM_TG(optc_slave);
/* wait for slave OTG to start running*/
REG_WAIT(OTG_CONTROL,
OTG_CURRENT_MASTER_EN_STATE,
1, 10, 5000);
/* accessing master OTG registers */
optc1 = DCN10TG_FROM_TG(optc_master);
/* disable the XY point*/
REG_UPDATE(OTG_GLOBAL_CONTROL1,
MASTER_UPDATE_LOCK_DB_EN, 0);
REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
MASTER_UPDATE_LOCK_DB_X,
0,
MASTER_UPDATE_LOCK_DB_Y,
0);
/*restore master update lock*/
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, master_update_lock);
/* accessing slave OTG registers */
optc1 = DCN10TG_FROM_TG(optc_slave);
/* restore slave to be controlled by it's own */
REG_SET(OTG_GLOBAL_CONTROL0, 0,
OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst);
}
void optc2_triplebuffer_lock(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_GLOBAL_CONTROL0, 0,
OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
REG_SET(OTG_VUPDATE_KEEPOUT, 0,
OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1);
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 1);
if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
REG_WAIT(OTG_MASTER_UPDATE_LOCK,
UPDATE_LOCK_STATUS, 1,
1, 10);
}
void optc2_triplebuffer_unlock(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 0);
REG_SET(OTG_VUPDATE_KEEPOUT, 0,
OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0);
}
void optc2_lock_doublebuffer_enable(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t v_blank_start = 0;
uint32_t h_blank_start = 0;
REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1);
REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1,
DIG_UPDATE_LOCATION, 20);
REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start);
REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start);
REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
MASTER_UPDATE_LOCK_DB_X,
h_blank_start - 200 - 1,
MASTER_UPDATE_LOCK_DB_Y,
v_blank_start - 1);
}
void optc2_lock_doublebuffer_disable(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
MASTER_UPDATE_LOCK_DB_X,
0,
MASTER_UPDATE_LOCK_DB_Y,
0);
REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0,
DIG_UPDATE_LOCATION, 0);
REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0);
}
void optc2_setup_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_8(OTG_TRIGA_CNTL, 0,
OTG_TRIGA_SOURCE_SELECT, 21,
OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
OTG_TRIGA_POLARITY_SELECT, 0,
OTG_TRIGA_FREQUENCY_SELECT, 0,
OTG_TRIGA_DELAY, 0,
OTG_TRIGA_CLEAR, 1);
}
void optc2_program_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_TRIGA_MANUAL_TRIG, 0,
OTG_TRIGA_MANUAL_TRIG, 1);
}
bool optc2_configure_crc(struct timing_generator *optc,
const struct crc_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_2(OTG_CRC_CNTL2, 0,
OTG_CRC_DSC_MODE, params->dsc_mode,
OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode);
return optc1_configure_crc(optc, params);
}
void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate);
}
static struct timing_generator_funcs dcn20_tg_funcs = {
.validate_timing = optc1_validate_timing,
.program_timing = optc1_program_timing,
.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
.program_global_sync = optc1_program_global_sync,
.enable_crtc = optc2_enable_crtc,
.disable_crtc = optc1_disable_crtc,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = optc1_is_counter_moving,
.get_position = optc1_get_position,
.get_frame_count = optc1_get_vblank_counter,
.get_scanoutpos = optc1_get_crtc_scanoutpos,
.get_otg_active_size = optc1_get_otg_active_size,
.set_early_control = optc1_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = optc1_wait_for_state,
.set_blank = optc1_set_blank,
.is_blanked = optc1_is_blanked,
.set_blank_color = optc1_program_blank_color,
.enable_reset_trigger = optc1_enable_reset_trigger,
.enable_crtc_reset = optc1_enable_crtc_reset,
.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
.triplebuffer_lock = optc2_triplebuffer_lock,
.triplebuffer_unlock = optc2_triplebuffer_unlock,
.disable_reset_trigger = optc1_disable_reset_trigger,
.lock = optc1_lock,
.unlock = optc1_unlock,
.lock_doublebuffer_enable = optc2_lock_doublebuffer_enable,
.lock_doublebuffer_disable = optc2_lock_doublebuffer_disable,
.enable_optc_clock = optc1_enable_optc_clock,
.set_drr = optc1_set_drr,
.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
.set_static_screen_control = optc1_set_static_screen_control,
.program_stereo = optc1_program_stereo,
.is_stereo_left_eye = optc1_is_stereo_left_eye,
.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
.tg_init = optc1_tg_init,
.is_tg_enabled = optc1_is_tg_enabled,
.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
.clear_optc_underflow = optc1_clear_optc_underflow,
.setup_global_swap_lock = NULL,
.get_crc = optc1_get_crc,
.configure_crc = optc2_configure_crc,
.set_dsc_config = optc2_set_dsc_config,
.set_dwb_source = optc2_set_dwb_source,
.set_odm_bypass = optc2_set_odm_bypass,
.set_odm_combine = optc2_set_odm_combine,
.get_optc_source = optc2_get_optc_source,
.set_gsl = optc2_set_gsl,
.set_gsl_source_select = optc2_set_gsl_source_select,
.set_vtg_params = optc1_set_vtg_params,
.program_manual_trigger = optc2_program_manual_trigger,
.setup_manual_trigger = optc2_setup_manual_trigger,
.get_hw_timing = optc1_get_hw_timing,
.align_vblanks = optc2_align_vblanks,
};
void dcn20_timing_generator_init(struct optc *optc1)
{
optc1->base.funcs = &dcn20_tg_funcs;
optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
optc1->min_h_blank = 32;
optc1->min_v_blank = 3;
optc1->min_v_blank_interlace = 5;
optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue.
optc1->min_v_sync_width = 1;
}